
7 Introduction to thermodynamics

7.1 INTRODUCTION

Thermodynamics, the study of energy, is one of the most
important subjects in all of science. Historically, it evolved
from the desire to understand the efficiency of machines, in
particular of steam engines. Much of its terminology, there-
fore, centers around heat and work, especially work associ-
ated with expanding gas. Thermodynamics, however, deals
with the transfer of other forms of energy, such as that
associated with chemical reactions. Although heat and
mechanical work done by expanding gas are important in
geology, for example in the cooling of a magma or the
explosion of a volcano, it is in the study of chemical energies
that thermodynamics is of greatest value to petrology. It is
particularly useful in the study of processes that take place
within the Earth, where they cannot be observed directly. The
increased availability in recent years of thermodynamic data
for the common minerals and magmas has resulted in a rapid
growth in the application of thermodynamics to petrologic
problems, and computer programs now use these data to
calculate the compositions of minerals crystallizing from
magmas and the mineral assemblages that can form in meta-
morphic rocks under any given temperature and pressure.

The general applicability of thermodynamics stems from
the fundamental nature of the principles on which it is based,
namely simple observations on the behavior of energy. For
example, although energy can be converted from one form to
another (kinetic to potential, chemical to thermal, etc.), it can
never be destroyed. Furthermore, experience tells us that heat
flows from hot to cold bodies, and never the reverse. The first
observation, which concerns the conservation of energy, is
embodied in the first law of thermodynamics, whereas the
second one, which deals with the natural direction of pro-
cesses, leads to the second law of thermodynamics. These
laws can be expressed in simple mathematical forms, which
can then be combined and manipulated to give useful func-
tions from which the equilibrium conditions for a process or
reaction can be calculated. In this way, it is possible, for
example, to determine melting points of minerals, composi-
tions of minerals crystallizing frommagma, temperatures and
pressures of metamorphic reactions, relative stabilities of
minerals with respect to chemical weathering, and composi-
tions of ore-forming solutions.

Little more than a descriptive treatment of petrology could
be given if thermodynamics were to be omitted. However,
an entire book would be required to fully develop all

thermodynamic relations encountered in the petrologic liter-
ature. In this and the following two chapters, only some of the
more important fundamental concepts are covered. Standard
physical chemistry texts will provide the reader with a more
extensive coverage of the topic (e.g. Castellan, 1983, and
Denbigh, 1957).

7.2 ENERGY IN THE FORM OF HEAT AND WORK

When discussing the energy of processes, it is important to
specify the extent of the material being considered. This is
done by using the term system to designate that part of space
under consideration. A system may have real boundaries,
such as the walls of a magma chamber, or imaginary ones,
as did the small control volume used in Chapter 2 to derive
the rate of flow of magma. The system is chosen to suit the
particular problem. Systems are isolated if they have no
interaction with the surroundings, closed if they exchange
only heat, and open if they exchange both heat and material.
Truly isolated systems are difficult to find, but their concept
plays an important role in derivations of certain theoretical
relations. Many geological systems can be considered closed,
as, for example, a small rapidly cooling dike. A large bath-
olith, on the other hand, might exchange considerable
amounts of water and other mobile constituents with its
surroundings while cooling and would be considered an
open system. Many metamorphic reactions involve the loss
of a volatile phase from the rock and are therefore open.

Energy can be expressed in the form of either heat or
work, ignoring for the moment energy tied up with chemical
reaction. Heat is the quantity of energy that flows across the
boundary of a system in response to a temperature gradient.
Work is the quantity of energy that crosses the boundary of a
system and is converted entirely into mechanical work in the
surroundings, such as the lifting of a weight (Fig. 7.1); a
geological example would be the explosive removal of the
top of Mount St. Helens. By convention, energy put into a
system in the form of heat, Q, is positive, whereas that in the
form of work,W, is negative. Positive work, then, is done on
the surroundings. This convention is inherited from the early
days of thermodynamics when there was interest in how
much work a machine could do on its surroundings. Some
texts (e.g. Kern and Weisbrod, 1967) have changed the sign
convention for work, so that, like heat, it is positive when
done on the system. Because the designation of sign is purely
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arbitrary, the sign convention does not affect thermodynamic
conclusions. Care should be taken, however, in reading thermo-
dynamic texts to ascertain the sign convention used.

The type of work most commonly encountered in petro-
logic processes is that known as work of expansion. For
example, when a rock melts at some depth in the Earth, the
approximate 10% expansion involved with the phase change
results in work being done as the volume expands against the
opposing pressure (Pop) of the surrounding rock. This work
of expansion is given by

Wexp ¼ ðforceÞ � ðdistanceÞ ¼ ðPop � areaÞ � ðdistanceÞ
¼ Pop ΔV (7:1)

where ΔV is the volume change. Other types of work include
electrical and magnetic, but these are not normally involved
in petrologic processes (now would be a good time to do
Problem 7.1 and 7.2).

To appreciate work of expansion, consider a gas bubble
with volume V1, pressure P1, and temperature T in a magma
that is suddenly erupted onto the Earth’s surface where the
pressure is P2. The bubble expands to V2 against the opposing
pressure P2, but its temperature is kept constant by the ther-
mal buffering of the surrounding hot magma. This change can
be represented by the simple mechanical analog shown in
Figure 7.2. The work of expansion done by this bubble on the
surrounding magma is given by

Wexp ¼ P2ðV2 � V1Þ

If the gas behaves ideally (PV = nRT), this isothermal expan-
sion can be represented by the P versus V plot in Figure 7.2, in
which the shaded area represents the amount of work done.

If the magma had stopped at some intermediate depth
where the bubble could have expanded against an intermedi-
ate pressure Pi and then erupted onto the surface to complete
its expansion, the work done in this two-stage decompression
would be

Wexp ¼ PiðVi � V1Þ þ P2ðV2 � ViÞ

This amount of work (Fig. 7.3 (A)) is greater than that done
by the single-stage expansion. If the bubble had expanded in
three stages, the work would have been still greater (Fig. 7.3
(B)). Clearly, the maximum amount of work that could be

obtained from this expansion results from an infinite number
of infinitesimal steps (Fig. 7.3(C)), in which case the work
done would be

Wmax
exp ¼

ð2
1
PopdV

where Pop is the opposing pressure at any stage of expansion.
If the gas is taken to be ideal, Pop can be replaced by nRT/V, in
which case

Wmax
exp ¼

ð2
1

nRT
V

dV ¼ nRT
ð2
1

dV
V
¼ nRT ln

V2

V1
(7:2)

Supposing that the gas bubble were now to be compressed
back to its original state, work would have to be done on the
system. This could be done in a single stage of compression
by suddenly increasing the pressure to P1, in which case the
amount of work done (Fig. 7.3(D)) would be given by

Wcomp ¼ P1ðV1 � V2Þ

Pressure of
magma
column

Pressure of
atmosphere

P1V1T

P1V1T

P2V2T

P2V2T

(P1, V1)

(P2, V2)

nRT
V

P

V

P1

P2

V2V1

Work

P =

Fig. 7.2 Mechanical analog of a gas bubble expanding isothermally
against a pressure of 1 atm (105 Pa), and a graphical representation of the
amount of work done during expansion (PΔV) assuming that the gas
behaves ideally (PV= nRT).
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Fig. 7.1 Sign convention for energy transferred into or out of a
thermodynamic system in the form of heat or work.
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If the bubble were compressed in a series of stages (Fig. 7.3
(E)) the amount of work required would obviously be less,
and the minimum amount of work (Fig. 7.3(F)) would be
done when the pressure at each stage was increased infinites-
imally, giving

Wmin
comp ¼

ð1
2
Pop dV ¼ nRT

ð1
2

dV
V
¼ nRT ln

V1

V2

¼ �nRT ln
V2

V1

(7:3)

We have followed a bubble through an isothermal cycle of
expansion and compression. During the first half of the cycle,
the bubble did work on the surroundings, but during the
second part, work was done on the bubble to restore it to its
initial state. From Figure 7.3, the amount of work produced
during expansion in a finite number of steps is clearly less
than the amount of work that has to be performed on the
system to restore it to its former state. Therefore, processes
such as this, carried out in a finite number of steps, always
result in work having to be done on the system. On the other
hand, if the cycle of decompression and compression could
be carried out in an infinite number of infinitesimal steps, the
work of expansion (Eq. (7.2)) would equal exactly the work
required to compress the gas (Eq. (7.3)); that is, the areas
under the PV curves (∫PdV) would be equal. Because the
compression part of the cycle carried out in this manner is the
exact reverse of the decompression part of the cycle, pro-
cesses of this type are described as reversible, whereas pro-
cesses carried out in a finite number of steps are irreversible.
All natural processes are irreversible; reversible processes are

unnatural because they would require an infinite amount
of time to take place. The concept of a reversible reaction,
however, plays an important role in determining conditions of
equilibrium, as will be seen later in this chapter.

7.3 FIRST LAW OF THERMODYNAMICS

In the isothermal cyclic process described above, irreversible
expansion or compression of the bubble results in turbulence in
the gas, which can be equated with heat. For the temperature to
remain constant, this heat has to be liberated into the surround-
ings. Hence, all natural cycles (natural = irreversible), in addi-
tion to requiring work to be done on the system, produce heat
in the surroundings. Experience tells us that these two quanti-
ties of energy are always equal. This fact was first clearly
enunciated by the German physicist Mayer in 1842 and eight
years later was quantified in Joule’s classic experiment on the
mechanical equivalent of heat. Observations such as these led
to the formulation of the first law of thermodynamics, which
states that for any cyclical process (reversible or irreversible),
the work produced in the surroundings is equal to the heat
removed from the surroundings.

Mathematically the first law can be expressed asþ
�dW ¼

þ
�dQ

orþ
�dQ � �dWð Þ ¼ 0 (7:4)

Fig. 7.3 Work of expansion (shaded
area) produced when
decompression of an ideal gas takes
place in (A) two stages, (B) three
stages, (C) an infinite number of
infinitesimal steps, and the amount
of work necessary to return this gas
to its original state by isothermally
compressing it in (D) one stage,
(E) three stages, and (F) an infinite
number of infinitesimal steps.
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where �dQ and �dW are the differentials of heat and work
involved in the cyclic process, and the symbol

H
indicates a

cyclic integral; that is, the sum of all the �dQ and �dW around
the cycle. Note that �d is used to indicate an inexact differ-
ential, because the integrals of �dQ or �dW have no definite
values unless the path is specified (Figure 7.3). Equation
(7.4), however, reveals that although

H
�dQ and

H
�dW by

themselves do not have definite values,
H

�dQ� �dWð Þ does
have a definite value, which for a cyclic process is zero. This
means that although the quantities of work and heat taken
separately can have various values depending on the path
followed by the process, the value of their combination is
independent of the path; its value is determined only by the
initial and final states of the system. Because of this behavior,
�dQ� �dW is said to be a state property; that is, a property
which is dependent only on the state of the system and not on
the path followed. For convenience, this state property is
given the name internal energy, E, and is defined as

dE � �dQ� �dw (7:5)

Note that the internal energy is not an independent quantity
that can be equated with heat and work; it is simply the sum
of the energy put into the system in the form of heat ( �dQ) and
work (� �dW ). Note also that it is defined in differential form;
only changes in the internal energy can be measured, not
absolute amounts. Integration of Eq. (7.5) results in a constant
of integration that cannot be evaluated. This lack of knowl-
edge of the absolute value of internal energy is of no impor-
tance because all thermodynamic calculations eventually deal
only with differences, and thus the constant of integration
disappears. For example, the change in internal energy asso-
ciated with a reaction going from state 1 to state 2 is given by

ð2
1
dE ¼

ð2
1
�dQ�

ð2
1
�dW

or

E2 � E1 ¼ ΔE ¼ Q�W (7:6)

So far, we have used, for illustrative purposes, the purely
physical process of the expansion and compression of a gas
bubble. Equation (7.5), however, is equally applicable to any
process in which there is a change in energy, whether it is
physical or chemical. The process could, for example, involve
a change of state from solid to liquid or from one mineral
polymorph to another, or a chemical reaction between several
minerals. Each of these processes will involve the transfer
of energy in the form of both heat and work and must obey
Eq. (7.5).

Many reactions of interest to petrologists involve work of
expansion (PΔV) at constant pressure – for example, the
melting of a rock at a specific depth in the Earth. In such a
case, Eq. (7.6) can be expressed as

E2 � E1 ¼ QP � PðV2 � V1Þ
where QP is the heat involved with the reaction at constant
pressure. On rearranging, we obtain

QP ¼ ðE2 þ PV2Þ � ðE1 þ PV1Þ (7:7)

which shows that the heat involved with a reaction taking
place at constant pressure is the difference between two
groups of terms which describe the energy, pressure, and
volume of the final and initial states of the system. We have
already seen that the internal energy is a state property. But
PV is also a state property; for example, in the case of an ideal
gas it would be equal to nRT. Consequently, E + PVmust also
be a state property. It is therefore given a special name,
enthalpy (H), which is defined as

H � E þ PV (7:8)

Equation (7.7) now becomes

QP ¼ H2 �H1 ¼ ΔH (7:9)

The enthalpy change in a reaction is, therefore, the heat
withdrawn from the surroundings at constant pressure.

If heat is given out during a reaction it is said to be
exothermic and ΔH is negative. An endothermic reaction is
one that takes heat from the surroundings and hence ΔH is
positive. For example, if forsterite were to react with quartz at
298 K (25 °C) to form enstatite, 7.4 kJ mol−1 of forsterite
would be liberated, and hence ΔH298 = −7.3 kJ mol−1. In
contrast, the reaction from low quartz (α) to high quartz (β)
at 848 K (575 °C) is endothermic, and ΔH848 = +1.2 kJ mol−1.

7.4 STANDARD HEATS OF FORMATION

Because enthalpy involves the internal energy (Eq. (7.8)),
absolute values cannot be known. This, however, is not a
problem because thermodynamic calculations deal only with
changes in enthalpy. For example, in the reaction above
where forsterite reacts with quartz to form enstatite, the
absolute values of the enthalpies of the minerals cannot be
known, but the enthalpy change (ΔH= −7.4 kJ mol−1) accom-
panying the reaction can be determined and used to calculate
the conditions under which this reaction will occur.

Although absolute values of enthalpy cannot be known,
it is convenient to think of substances as having such values.
By convention, then, we assign an arbitrary “absolute”
value of zero to the enthalpy of each of the elements in
their standard stable form at 298.15 K (25 °C) and a pressure
of 105 Pa (1 bar). This is represented by H�298;element � 0,
where the superscript o indicates 105 Pa pressure. With this
arbitrary base level, it is then possible to define the enthalpy
of a mineral in terms of the enthalpy change accompany-
ing the formation of that mineral from the elements at 298
K and 105 Pa pressure. An enthalpy defined in this way is
referred to as the standard heat (enthalpy) of formation of
the mineral,H�f ;298. For example, the reaction to form quartz
would be

Sicrystal þO2 gas ����!
ΔH�f ;298Q

SiO2 crystal
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and the standard heat of formation would be given by

ΔH�f ;298;Q ¼ H�298;Q � H�298;Si þH�298;O2

� �

But the terms in parentheses have values of zero, since they
refer to the elements in their stable states at 298 K and 105 Pa
pressure. The enthalpy of quartz under these conditions is
therefore equal to the enthalpy change of the reaction, which
is –910.83 kJ mol−1. Note that in this reaction the stable form
of silicon under these conditions is a crystalline metal, whereas
the stable form of oxygen is the diatomic gas (O2). Standard
heats of formation of minerals are given in Table 7.1.

Although the heat of formation of quartz in the previous
reaction was given for a temperature of 298 K, this reaction is
not likely to proceed rapidly at this temperature – if it did,
pocket calculators and computers would have a very short life
expectancy. High temperatures are required before silicon
metal will react rapidly with oxygen. Therefore, if we were
interested in measuring the heat involved with this reaction,
it would be necessary to carry out the experiment at high
temperatures. How, then, would we determine, from the high-
temperature experiments, the enthalpy change associated with
the reaction at 298K?

To answer this we make use of the fact that enthalpy is a
state property, and therefore its value is independent of the
path followed by the reaction. For instance, instead of trying
to react oxygen with silicon at 298K, we can heat these
materials to a high temperature, 1800K for example. Quartz
forms rapidly at this temperature. Once the reaction is com-
plete, the quartz can be cooled to 298K. Thus, the temperature
of the starting materials and end product will both be 298K,
even though the reaction took place at 1800K. The enthalpy
change between starting materials and end product at 298K
will be the same whether the reaction proceeded directly at
298K or followed the high-temperature path. These two pos-
sible ways of carrying out this reaction can be illustrated as
follows:

ð1800KÞ Sicrystal þ O2 gas ����!
ΔH�f ;1800;Q

SiO2 Q

ðH�1800 �H�298ÞSi " ðH�1800 �H�298ÞO2
" # �ðH�1800 �H�298ÞQ

298 Kð Þ Sicrystal þ O2 gas  ����
ΔH�f ;298;Q

SiO2 Q

Because enthalpy is a state property, its integral around a
cyclic process must be zero. Thus, if we were to heat Si and
O2 from 298 K to 1800 K, react them together to form quartz,
cool the quartz to 298 K, and then break down the quartz to
form Si and O2 again, the sum of the enthalpy changes of all
of the steps around this cycle would be zero; that is,

H�1800 �H�298
� �

Si þ H�1800 �H�298
� �

O2
þΔH�f ;1800;Q

þ � H�1800 �H�298
� �

Q

h i
þ � ΔH�f ;298;Q

� �h i
¼ 0

By rearranging this, we obtain the standard heat of formation
of quartz at 298 K,

ΔH�f ;298;Q ¼ΔH�f ;1800;Q � H�1800 �H�298
� �

Q

þ H�1800 �H�298
� �

Siþ H�1800 �H�298
� �

O2

h i
(7:10)

Most of the enthalpy data presented in Table 7.1 have been
collected at temperatures other than 298 K and have had to be
corrected to this standard temperature. Moreover, many of the
reactions have followed more complicated paths than ones
simply requiring heating and cooling. Some have involved
dissolving the elements andminerals in acid or high-temperature
metallic melts. The heats of solution in these solvents
have then been used to calculate the ΔH�f ;298. Again, because
enthalpy is a state function, the actual path taken in the
reaction does not affect the enthalpy change of the overall
reaction, which depends only on the initial and final states.

The enthalpy data presented in Table 7.1 are normally used
to calculate the enthalpy of formation of a mineral at a partic-
ular temperature of interest. For example, we might wish to
know the enthalpy of formation of quartz at 1800 K and 105 Pa
pressure. This can be determined by rearranging Eq. (7.10) and
inserting the value for the heat of formation of quartz at 298K
obtained from thermodynamic tables. This gives

ΔH�f ;1800;Q ¼ ΔH�f ;298;Q þ H�1800 �H�298
� �

Q

� H�1800 �H�298
� �

Siþ H�1800 �H�298
� �

O2

h i
(7:11)

High-temperature heats of formation can also be read
directly from thermodynamic tables, but care must be exer-
cised in doing this. Enthalpy data are commonly presented in
two different ways. One lists values calculated according to
Eq. (7.11) (Robie et al., 1978). The other also uses Eq. (7.11),
but the enthalpy terms for the elements (those in square
brackets) are dropped (Helgeson et al., 1978); enthalpies
calculated this way are referred to as apparent enthalpies of
formation from the elements. A simple example will illustrate
the justification for dropping these terms. To determine the
enthalphy change associated with the transformation from
low to high quartz at 848 Kwe need know only the difference
in the heats of formation from the elements of these two forms
of quartz at this temperature. Values obtained from Eq. (7.11)
for the two polymorphs will have identical terms for the
elements (those in brackets) because the same elements are
involved in both minerals. These terms, therefore, cancel
when we take the difference in the enthalpies of formation
of the two polymorphs. The same argument applies to other
more complicated reactions, because the same elements are
present on both sides of the reaction.

To calculate a high-temperature heat of formation from
Eq. (7.11), the change in enthalpy associated with changes in
temperature (e.g. H�1800 �H�298

� �
Q in Eq. (7.11)) must be

evaluated. This can be determined from the heat capacity of
the mineral at constant pressure (CP), because

ðH�T
H�298

dH ¼
ðT
298

CP dT (7:12)
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Table 7.1 Molar thermodynamic data for common minerals at standard temperature and pressure, i.e. 298.15 K and 105 Pa (1 bar)

Mineral Formula Formula wt (kg) Volume (J bar−1) ΔHo
f (kJ) S° (J K−1) ΔGo

f (kJ) a (kJ K−1) b × 105 (kJ K−2) c (kJ K) d (kJ K−1/2)

Acmite NaFeSi2O6 0.23101 6.459 −2586.65 170.6 −2419.31 0.3071 1.6758 −1685.5 −2.1258
Akermanite Ca2MgSi2O7 0.27264 9.254 −3866.36 212.5 −3668.89 0.3854 0.3209 −247.5 −2.8899
Albite NaAlSi3O8 0.262224 10.006 −3934.56 210.1 −3711.91 0.452 −1.3364 −1275.9 −3.9536
Almandine Fe3Al2Si3O12 0.49775 11.511 −5263.52 340 −4939.8 0.6773 0 −3772.7 −5.044
Analcite NaAlSi2O6·H2O 0.220155 9.74 −3309.9 232 −3090.97 0.6435 −1.6067 9302.3 −9.1796
Andalusite Al2SiO5 0.162046 5.153 −2588.8 92.7 −2440.97 0.2773 −0.6588 −1914.1 −2.2656
Andradite Ca3Fe2Si3O12 0.505184 13.204 −5768.13 318 −5424.33 0.6386 0 −4955.1 −3.9892
Annite KFe3(AlSi3O10)(OH)2 0.51189 15.432 −5151.67 418 −4796.02 0.8157 −3.4861 19.8 −7.4667
Anorthite CaAl2Si2O8 0.27821 10.079 −4233.48 200 −4007.51 0.3716 1.2615 −4110.2 −2.0384
Anthophyllite Mg7Si8O22(OH)2 0.780872 26.54 −12069.2 536 −11342.22 1.2773 2.5825 −9704.6 −9.0747
Antigorite Mg48Si34O85(OH)62 4.536299 175.48 −71424.31 3591 −70622.39 9.621 −9.1183 −35941.6 −83.0342
Aragonite CaCO3 0.100089 3.415 −1207.58 89.5 −1128.03 0.1923 −0.3052 1149.7 −2.1183
Brucite Mg(OH)2 0.058327 2.463 −924.92 64.5 −834.31 0.1584 −0.4076 −1052.3 −1.1713
Calcite CaCO3 0.100089 3.689 −1207.47 92.5 −1128.81 0.1409 0.5029 −950.7 −0.8584
Carbon dioxide CO2 0.04401 2478.920 −393.51 213.7 −394.3 0.0878 −0.2644 706.4 −0.9989
Carbon monoxide CO 0.02801 2478.920 −110.53 197.67 −137.13 0.0457 −0.0097 662.7 −0.4147
Chloritoid (Fe) FeAl2SiO5(OH)2 0.25191 6.98 −3215.38 155 −2973.74 0.4846 −1.3808 −198.9 −4.7622
Chloritoid (Mg) MgAl2SiO5(OH)2 0.22037 6.875 −3551.42 140 −3313.56 0.4644 −1.2654 −1147.2 −4.341
Chrysotile Mg3Si2O5(OH)4 0.277134 10.746 −4359.03 221.3 −4030.75 0.6247 −2.077 −1721.8 −5.6194
Clinochlore Mg5Al2Si3O10(OH)4 0.48777 21.09 −8912.41 430.5 −8263.35 1.1618 1.0133 −7657.3 −9.6909
Clinozoisite Ca2Al3Si3O12(OH) 0.622882 13.63 −6898.15 301 −6502.98 0.567 1.8063 −7034 −2.603
Coesite SiO2 0.060085 2.064 −905.47 40.8 −850.89 0.0965 −0.0577 −444.8 −0.7982
Cordierite Mg2Al3(AlSi5O18) 0.584969 23.322 −9163.37 407.5 −8653.24 0.8213 4.3339 −8211.2 −5.00
Cordierite hydrous Mg2Al3(AlSi5O18).H2O 0.602984 23.322 −9446.98 487.3 −8891.08 0.8697 5.1995 −7723.7 −5.2512
Corundum Al2O3 0.101961 2.558 −1675.25 50.9 −1581.72 0.1395 0.589 −2460.6 −0.5892
Cristobalite SiO2 0.060085 2.61 −905.99 46.5 −853.12 0.0979 −0.335 −636.2 −0.774
Daphnite Fe5Al2Si3O10(OH)4 0.64548 21.34 −7134.85 565 −6535.56 1.2374 1.3594 −3743 −11.25
Diamond C 0.012011 0.342 2.07 2.3 3.13 0.0243 0.6272 −377.4 −0.2734
Diopside CaMg(SiO3)2 0.21656 6.619 −3202.76 142.7 −3027.8 0.3145 0.0041 −2745.9 −2.0201
Dolomite CaMg(CO3)2 0.184411 6.434 −2324.43 156 −2161.51 0.3589 −0.4905 0 −3.4562
Enstatite Mg2(SiO3)2 0.200792 6.262 −3090.47 132.5 −2915.53 0.3562 −0.299 −596.9 −3.1853
Epidote Ca2FeAl2Si3O12(OH) 0.651747 13.91 −6463.21 328 −6076.41 0.5446 2.4781 −11230 −1.1921
Fayalite Fe2SiO4 0.203778 4.631 −1478.15 151 −1378.98 0.2011 1.733 −1960.6 −0.9
Ferrosilite Fe2(SiO3)2 0.263862 6.592 −2388.63 190.6 −2234.53 0.3987 −0.6579 1290.1 −4.058
Forsterite Mg2SiO4 0.140708 4.366 −2172.2 95.1 −2052.75 0.2333 0.1494 −603.8 −1.8697
Gehlenite Ca2Al2SiO7 0.274205 9.024 −3986.88 202 −3784.82 0.4057 −0.7099 −1188.3 −3.1744
Glaucophane Na2Mg3Al2Si8O22(OH)2 0.78355 26.05 −11969.47 535 −11233.99 1.7175 −12.107 7075 −19.272
Graphite C 0.012011 0.53 0 5.85 0 0.051 −0.4428 488.6 −0.8055
Grossular Ca3Al2Si3O12 0.450454 12.535 −6644.15 255 −6280.94 0.626 0 −5779.2 −4.0029
Hedenbergite CaFe(SiO3)2 0.248106 6.795 −2844.16 174.2 −2680.39 0.3402 0.0812 −1047.8 −2.6467
Hematite Fe2O3 0.159692 3.027 −825.71 87.4 −743.73 0.1639 0 −2257.2 −0.6576
Hercynite FeAl2O4 0.173809 4.075 −1959.15 107.5 −1843.85 0.2833 −0.5376 609.8 −2.7136
Hydrogen H2 0.002016 2478.920 0 130.7 0 0.0233 0.4627 0 0.0763
Ilmenite FeTiO3 0.151745 3.169 −1231.3 108.9 −1154.63 0.1389 0.5081 −1288.8 −0.4637
Jadeite NaAl(SiO3)2 0.20214 6.04 −3027.85 133.5 −2849.1 0.3011 1.0143 −2239.3 −2.0551
Kalsilite KalSiO4 0.158167 6.04 −2121.92 134 −2005.98 0.242 −0.4482 −895.8 −1.9358
Kaolinite Al2Si2O5(OH)4 0.258161 9.934 −4122.18 203.7 −3801.72 0.4367 −3.4295 −4055.9 −2.6991
Kyanite Al2SiO5 0.162046 4.414 −2593.11 83.5 −2442.59 0.2794 −0.7124 −2055.6 −2.2894
Laumontite CaAl2Si4O12·4H2O 0.470441 20.37 −7268.47 457 −6707.45 1.0134 −2.1413 −2235.8 −8.8067
Lawsonite CaAl2Si2O7(OH)2·H2O 0.3142 10.132 −4869.14 230 −4513.04 0.6878 0.1566 375.9 −7.1792
Leucite KAlSi2O6 0.218248 8.828 −3029.16 200 −2866.19 0.3698 −1.6332 684.7 −3.6831
Magnesite MgCO3 0.084321 2.803 −1111.36 65.1 −1027.74 0.1864 −0.3772 0 −1.8862
Magnetite Fe3O4 0.231539 4.452 −1115.51 146.1 −1012.31 0.2625 −0.7204 −1926.2 −1.6557
Margarite CaAl2(Al2Si2O10)(OH)2 0.398187 12.964 −6241.23 267 −5856.99 0.7444 −1.68 −2074.4 −6.7832
Merwinite Ca3Mg(SiO4)2 0.328719 9.847 −4546.42 253.1 −4317.73 0.4175 0.8117 −2923 −2.3203
Methane CH4 0.016043 2478.920 −74.81 186.26 −50.66 0.1501 0.2062 3427.7 −2.6504
Microcline KAlSi3O8 0.278337 10.892 −3975.11 216 −3750.19 0.4488 −1.0075 −1007.3 −3.9731
Monticellite CaMgSiO4 0.156476 5.148 −2253.05 108.1 −2134.63 0.2507 −1.0433 −797.2 −1.9961
Muscovite KAl2(AlSi3O10)(OH)2 0.398313 14.083 −5984.18 292 −5603.71 0.7564 −1.984 −2170 −6.9792
Nepheline NaAlSiO4 0.145227 5.419 −2095.08 124.4 −1980.35 0.2727 −1.2398 0 −2.7631
Oxygen O2 0.031999 2478.920 0 205.2 0 0.0483 −0.0691 499.2 −0.4207
Paragonite NaAl2(AlSi3O10)(OH)2 0.382201 13.211 −5946.34 276 −5565.09 0.803 −3.158 217 −8.151
Pargasite NaCa2Mg4Al(Al2Si6O22)(OH)2 0.835858 27.19 −12720.65 601 −11986.81 1.2802 2.2997 −12359.5 −8.0658
Periclase MgO 0.040311 1.125 −601.6 26.9 −569.34 0.0605 0.0362 −535.8 −0.2992
Phlogopite KMg3 (AlSi3O10)(OH)2 0.417286 14.964 −6219.16 328 −5837.42 0.7703 −3.6939 −2328.9 −6.5316
Prehnite Ca2Al(AlSi3O10)(OH)2 0.412389 14.026 −6203.18 292.8 5825.13 0.7249 −1.3865 −2059 −6.3239
Pyrope Mg3Al2Si3O12 0.40313 11.318 −6284.72 266.3 −5933.62 0.6335 0 −5196.1 −4.3152
Pyrophyllite Al2Si4O10(OH)2 0.360316 12.81 −5640.64 239.4 5266.87 0.7845 −4.2948 1251 −8.4959
Pyroxene Ca–Al CaAl2SiO6 0.218125 6.356 −3307.03 138 −3129.29 0.3476 −0.6974 −1781.6 −2.7575
Quartz SiO2 0.060085 2.269 −910.83 41.5 −856.46 0.1107 −0.5189 0 −1.1283
Rutile TiO2 0.079899 1.882 −944.18 50.6 −888.92 0.0904 0.29 0 −0.6238
Sanidine KAlSi3O8 0.277337 10.9 −3964.96 230 −3744.21 0.4488 −1.0075 −1007.3 −3.9731
Silica liquid SiO2 0.060085 2.64 −920.85 16.5 0.0825 0 0 0
Sillimanite Al2SiO5 0.162046 4.986 −2585.68 95.5 −2438.93 0.2802 −0.69 −1375.7 −2.3994
Spessartine Mn3Al2Si3O12 0.40313 11.792 −5646.4 367 −5326.31 0.5846 −0.1593 −7516.7 −2.7501
Spinel MgAl2O4 0.142273 3.978 −2300.72 81.5 −2175.64 0.2427 −0.6037 −2315.1 −1.6781
Staurolite (Fe) Fe4Al18Si7.5O48H4 1.69170 44.88 −23753.93 1010 −22282.23 2.88 −5.6595 −10642 −25.373
Stishovite SiO2 0.060085 1.401 −875.63 24.5 −816.2 0.0681 0.601 −1978.2 −0.0821
Talc Mg3Si4O10(OH)2 0.379289 13.625 −5897.1 260 −5516.73 0.6222 0 −6385.5 −3.9163
Tremolite Ca2Mg5Si8O22(OH)2 0.81241 27.27 −12310.38 550 −11581.42 1.2602 0.383 −11455 −8.2376
Tridymite SiO2 0.060085 2.7 −906.69 46.1 −853.69 0.0979 −0.335 −636.2 −0.774
Ulvöspinel Fe2TiO4 0.22359 4.682 −1497.49 175 −1401.79 −0.1026 14.252 −9144.5 5.2707
Wairakite CaAl2Si4O12·H2O 0.434411 19.04 −6666.42 375 −6220.05 0.8383 −2.146 −2272 −7.2923
Water (steam) H2O 0.0180153 2478.920 −241.81 188.8 −228.59 0.0401 0.8656 487.5 −0.2512
Wollastonite CaSiO3 0.116164 3.993 −1634.06 82.5 −1548.47 0.1593 0 −967.3 −1.0754
Zoisite Ca2Al3Si3O12(OH) 0.622882 13.575 −6898.61 297 −6502.25 0.5957 6.2297 −5921.3 −3.3947

The coefficients a, b, c, and d are from the heat capacity polynomial Cp = a + bT + cT−2 + dT−1/2 (Note that values of b have been multiplied by 105. The unit of volume, J bar−1 = 10 cm3=10−5 m3).
From Holland and Powell (1998) and from the Thermocalc web page at www.earthsci.unimelb.edu.au/tpg/thermocalc.
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Heat capacities, however, vary with temperature; thus CP

must be expressed as a function of T before Eq. (7.12) can
be integrated. Variations in the heat capacity of most minerals
can be fitted to an expression of the form

CP ¼ aþ bT þ c
T2 þ

d
T1=2

(7:13)

Values of these coefficients are given in Table 7.1 for the
common minerals (note that the values of b in Table 7.1 have
been multiplied by 105). Substitution of Eq. (7.13) into Eq.
(7.12) gives, on integration,

H�T �H�298 ¼ a T � 298ð Þ þ b
2

T2 � 2982
� �

� c
1
T
� 1
298

� �
þ 2d T1=2 � 2981=2

� �
(7:14)

Calculation of the high-temperature enthalpy of formation
of a mineral is therefore a simple matter using Eqs. (7.11) and
(7.14) and the data in Table 7.1 (Problem 7.3). Because the
calculations are tedious, they are best carried out by com-
puter; they can be handled easily on the simple spreadsheet.

The actual reactions involved in forming minerals from
the elements are of little interest in themselves, as most do not
occur in nature. Elemental silicon, for example, is never
found reacting with oxygen to form quartz. The enthalpies
of these reactions, however, can be used to calculate the
enthalpies of reaction (ΔH�r ) between other minerals, and
herein lies the value of the standard heats of formation. To
illustrate this, consider the petrologically important reaction
of olivine with quartz to form orthopyroxene:

+

ΔH °

ΔH°

(kJ mole–1)

(Forsterite)

Mg2SiO4

↑
–2172.2

|
2Mg + Si + 2O2

|

(Quartz)

SiO2

↑
–910.83

Si + O2

(Enstatite)

Mg2Si2O6

|

3090.47

↓

2(Mg + Si + 
3 O2)
2

r, 298

f , 298

For each of these minerals it is possible to write a reaction for
their formation from the elements. The enthalpies of these
reactions are obtained directly from Table 7.1. These reac-
tions provide another path between the reactants and prod-
ucts. Enstatite, for example, could be broken down into its
constituent elements; these elements could then be recom-
bined to form forsterite and quartz; reaction of forsterite with
quartz returns us to enstatite. Because enthalpy is a state
property, its integral around this cycle must be zero. We can
determine the enthalpy change of the reaction (ΔH�r;298),
then, by summing all of these terms as we proceed around
the cycle in one direction – clockwise, for example. In doing
this, care must be taken to keep the signs of the enthalpy
changes correct. Table 7.1 indicates that the enthalpy of
formation of a mineral from the elements is negative; that
is, heat is liberated into the surroundings when elements are
combined to form the mineral. If the reaction takes place in

the opposite direction, that is, the mineral breaks down into
the elements, the enthalpy change must be positive. For this
cycle we can write

ΔH�r;298 þ 3090:47þ ð�910:83Þ þ ð�2172:2Þ ¼ 0

from which it follows that ΔH�r;298 = −7.4 kJ mol−1 of olivine.
The enthalpy change of this reaction at higher temperatures
can be calculated using the enthalpies of formation of the
minerals at higher temperatures (Problem 7.4).

7.5 SECOND LAW OF THERMODYNAMICS

Determination of the enthalpy change accompanying a reac-
tion is the first step to understanding the conditions under
which a reaction will take place. There remains the important
question of the direction of the reaction. Will mineral A
change into B, or will B change into A? We know from
experience that many everyday processes have a definite
direction to them. When cream is stirred in coffee, mixing
occurs; if the direction of stirring is reversed, the coffee and
cream do not unmix. It is therefore a matter of experience
that the process of stirring results in mixing; the opposite is
never observed. This implies that some fundamental principle
governs the direction of the process. If this principle can be
determined, it could be used to indicate the directions of
reactions with which we do not have everyday experience,
such as those occurring in the Earth. This principle is embod-
ied in the second law of thermodynamics, and it involves an
obscure property of material known as entropy (S).

In discussing the first law of thermodynamics it was
emphasized that the heat involved with a change from one
state to another has no definite value unless the path is
specified. This can be illustrated by considering different
ways in which a gas can be expanded from one state to
another. Imagine that this is done reversibly, although we
know, in reality, such a process would take infinite time.
Consider first the isothermal expansion of the gas from an
initial state A to a final state B (Fig. 7.4). During this expan-
sion a quantity of heat,Q4, is absorbed from the surroundings
in order to keep the temperature constant. If the temperature is
not maintained constant during the expansion, many other
paths can be followed between A and B. For example, the gas
could expand in an insulated container where no heat would
be absorbed from the surroundings, and as a result its temper-
ature would fall, for example to T1 (C in Fig. 7.4). Such a
change, in which no heat is transferred in or out of the system,
is adiabatic. From pointC, the gas could expand isothermally
to point D with the absorption of a quantity of heat Q1.
Adiabatic compression would then take the gas to point B.
The expansion of the gas from A to B could also involve
several isothermal steps, such as the path AEFGHB, in which
two quantities of heat, Q3 and Q2, are absorbed along the
isothermal lines T3 and T2, respectively. Even when the path
does not follow adiabatic or isothermal lines, as along the
irregular curve in Figure 7.4, the path can be treated as a large
number of infinitesimal adiabatic and isothermal steps, with
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each of the latter involving the absorption of a quantity of
heat, đQ, so that the total heat absorbed between A and B isÐ B
A �dQrev. The subscript rev indicates that the process takes
place reversibly.

Each one of the paths between A and B in Fig. 7.4 involves
a different quantity of heat; that is,

Q4 6¼ Q1 6¼ Q3 þQ2ð Þ 6¼
ðB
A

�dQrev

Because the amount of heat involved in the change from A to
B depends on the path followed, heat cannot be a state
property. If, however, the various quantities of heat are
divided by the absolute temperatures at which the heat
absorption takes place, a function is created that is independ-
ent of the path followed. This function must, therefore, be a
state function. Thus,

Q4

T4
¼ Q1

T1
¼ Q3

T3
þQ2

T2
¼

ðB
A

�dQrev

T

This state property is given the name entropy and symbol S. It
is defined by the equation

dS � �dQrev

T
(7:15)

As with any state property, the total change in entropy
accompanying a reversible cycle is zero; that is,
þ
dS ¼

þ
�dQrev

T
¼ 0

A reversible cycle, however, is not a natural one. In an
irreversible or natural cycle the amount of heat generated in
the surroundings is greater than in a reversible one (review
the sign convention in Fig. 7.1). Consequently, we can write

þ
�dQirrev

T
5

þ
�dQrev

T
¼

þ
dS ¼ 0 (7:16)

or in general form

dS � �dQ
T

(7:17)

where the equality sign applies to the reversible case and the
inequality sign to the irreversible one. For a real reaction to
take place (irreversible), đQ/T must be less than dS. Also, for
a process taking place in an isolated system, đQirrev must be
zero, and therefore dS > 0. That is, for a real reaction to occur
in an isolated system entropy must increase. The reaction
will continue until equilibrium is attained, at which point dS
becomes zero and the entropy is a maximum. This statement
is but one of many different ways of expressing the second
law of thermodynamics.

It is important to emphasize that in Eq. (7.15), entropy is
defined using the heat involved in a reversible reaction. The
fact that a reversible reaction is not possible does not invalid-
ate the definition. Entropy is a state function, and therefore
its change in value depends only on the initial and final states
and not on the path of the reaction or whether it was carried
out reversibly or irreversibly. All natural reactions are irre-
versible, and this simply means that đQirrev/T < dS.

We will see later how entropy can be measured. But first,
we will investigate the physical significance of entropy.

7.6 ENTROPY

Thermodynamic terms such as pressure, work, and heat are
familiar from everyday experiences, but entropy, despite its
importance, is not. But our expectations that stirring cream in
coffee will cause mixing, or that oxygen in the air is unlikely
suddenly all to move to one end of a room, or that heat will
flow from high to low temperatures, are based on processes in
which entropy strives for a maximum. This suggests that
entropy is a measure of the degree of randomness in a system.
This relation was first formalized by the Austrian physicist
Boltzmann, who showed that entropy can be defined in terms
of the number of possible arrangements of the particles con-
stituting a system. Entropy, so defined, is given by

S ¼ k lnΩ (7:18)

where k is the Boltzmann constant (gas constant per mole-
cule, R/N0 = 1.3806 × 10−23 J K−1) and Ω is the number of
possible arrangements. From this relation, entropy is clearly
related to the amount of disorder or randomness in a system.

To illustrate this relation, we will consider the entropy
change accompanying the transformation from low- to
high-temperature albite. Albite is a framework silicate with
four asymmetric tetrahedral sites, three occupied by silicon
and one by aluminum. In the low-temperature form, alumi-
num enters one specific site, but at high temperature,
it may be in any of the four sites. Consequently, the high-
temperature form has a greater capacity for randomness and
should therefore have the higher entropy.
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Fig. 7.4 Various paths that can be followed by a gas changing its pressure
and volume from state A to B. The curves labeled T1 to T4 are isothermal
lines arranged in order of increasing temperature, whereas the steeper
curves are adiabatic lines.
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In low-temperature albite, the atoms can be arranged in
only one way. Admittedly, the silicon atoms could be
switched around in the silicon sites, but silicon atoms are
indistinguishable, and thus this would not result in distin-
guishable arrangements. The entropy due to occupancy of the
tetrahedral sites in low albite is therefore

SLowAb ¼ k ln1 ¼ 0

At high temperature, the aluminum can enter any of the
tetrahedral sites. But 1 mole of albite (NaAlSi308) contains
N0 (Avogadro’s number = 6.022 × 1023) atoms of aluminum
and 3N0 atoms of silicon that must be distributed over 4N0

tetrahedral sites. The number of possible ways of arranging
these is

Ω ¼ 4N0ð Þ!
N0ð Þ! 3N0ð Þ!

Hence,

SHighAb ¼ k½lnð4N0Þ!� lnðN0Þ!� lnð3N0Þ!�

Because N is very large, we can use Stirling’s approximation,
that is,

lnN! ¼ N lnN �N

The entropy of the high-temperature form is then

SHighAb ¼ kNo½4 ln 4� 3 ln 3�

but kN0 =R, the gas constant (8.31443 J K
−1 mol−1), so that

SHighAb ¼ 18:70 J mol�1 K�1

Therefore, the entropy change due to the disordering of the
aluminum and silicon in the tetrahedral sites is SHighAb –

SLowAb, which is 18.70 J mol−1 K−1.
It should be emphasized that this calculated entropy

change is a maximum because no account is taken of any
crystal chemical restrictions on the possible groupings of
ions. In addition, this calculation pertains only to the change
in the configuration of the aluminum and silicon in the
tetrahedral sites. The albite structure may have other sources
of randomness that contribute to the absolute entropy of this
mineral (see Problem 7.5).

7.7 THIRD LAW OF THERMODYNAMICS AND
THE MEASUREMENT OF ENTROPY

The third law of thermodynamics states that the entropy
of a pure, perfectly crystalline substance is zero at the abso-
lute zero of temperature. The entropy of such a substance at
temperature T is then

ST ¼
ðT
0

�dQrev

T
¼

ðT
0

Cp

T
dT (7:19)

where Cp, the heat capacity at constant pressure, is a readily
measured physical property. Entropy is normally determined
by graphically evaluating the integral in Eq. (7.19). This is
done by plotting Cp/T versus T and measuring the area under
the curve (Fig. 7.5).

The terms pure and perfectly crystalline in the third law
are very important. Substances such as glass or intermediate
composition plagioclase would still have entropy at absolute
zero because of their randomness in structure (configura-
tional entropy). For any substance, the entropy can be
thought of as consisting of two parts, one thermal and the
other configurational; that is,

S ¼ Sthermal þ Sconfigurational

The Sthermal becomes zero at the absolute zero of temperature
for all substances, but the Sconfigurational becomes zero at this
temperature only for pure, perfectly crystalline substances.
This need not concern us, however, for the entropy data at
298 K in Table 7.1 take this into account.

The entropy of a substance at high temperature and 105 Pa
pressure can be calculated from the data in Table 7.1 through
the following relation:

So
T ¼

ðT
298

Cp

T
dT þ So

298 (7:20)

The heat capacities at high temperatures, however, are given
by Eq. (7.13), with the coefficients being listed in Table 7.1.
Integration of Eq. (7.20), therefore, gives

So
T ¼ a lnT þ bT � c

2T2 �
2d
T1=2

� 	




T

298
þSo

298 (7:21)
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Fig. 7.5 The entropy of a substance is given by the area under the curve in
a plot of Cp/T versus T. Entropies of substances at 298 K and 105 Pa (1 bar)
pressure (stippled area) are listed in Table 7.1. Higher temperature
entropies can be obtained by adding the area under the higher-
temperature part of the curve (darker shaded area).
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7.8 GIBBS EQUATION: THERMODYNAMIC POTENTIALS

The first law of thermodynamics gives the relations between
the various forms of energy, whereas the second law gives the
sense of direction for reactions by introducing the concept of
entropy, which is given absolute values by the third law.
These can now be combined into a general relation governing
reactions and equilibrium.

Rearranging Eq. (7.5) gives

� dE � �dW þ �dQ ¼ 0

From the second law (Eq. (7.17)) T dS ≥ đQ; hence,

� dE � �dW þ TdS � 0

The work can be expressed as work of expansion (P dV) plus
any other form of work (dU). Thus,

� dE � PdV � dU þ TdS � 0 (7:22)

This is a general relation indicating that at equilibrium, which
is equivalent to the reversible situation, the left-hand side of
the equation must be zero, and for a spontaneous reaction, it
must be greater than zero.

Let us consider a reaction that takes place under constant
pressure and constant temperature, a common condition
encountered in petrologic problems. In this case, PdV and
TdS can be written as d(PV) and d(TS). Equation (7.22)
therefore becomes

� dE � dðPVÞ þ dðTSÞ � dU

or

� dðE þ PV � TSÞ � dU (7:23)

The combination of terms (E + PV − TS) is a state variable
and is given the name Gibbs free energy (G); that is,

G � E þ PV � TS ¼ H � TS (7:24)

Equation (7.23) becomes

� dG � dU

and in the case where only work of expansion is done, which
is the most common geological situation,

� dG � 0 (7:25)

Thus, for a spontaneous reaction (irreversible) to occur at
constant P and T, −dG must be positive; that is, the free
energy must decrease. The reaction will proceed until equili-
brium is attained (reversible), at which point −dG= 0, and the
free energy is a minimum.

Although various forms of energy are transferred during a
reaction proceeding at constant P and T, it is the Gibbs free
energy that controls the feasibility and direction of the reac-
tion. This is illustrated graphically in Figure 7.6. The change
in internal energy (ΔE) accompanying a reaction taking place
at a particular pressure and temperature consists of the work

done on the system (−PΔV) and the enthalpy change (ΔH).
The enthalpy change can be further subdivided into thermal
energy due to the entropy change (TΔS) and the change in
free energy (ΔG). As the reaction proceeds, entropy is always
increasing and striving for a maximum consonant with the
state of the system; hence, TΔS is also increasing and does so
at the expense of ΔG. The free-energy change is therefore that
part of the heat removed from the surroundings that can be
used to increase the randomness of the system. As the reac-
tion proceeds and the system becomes more random, this
fraction of the enthalpy change decreases and becomes zero
at equilibrium. At this point it is clear from Figure 7.6 that
TΔS =ΔH. This also follows directly from Eq. (7.24), which,
for an infinitesimal change, would be

dG ¼ dE þ PdV þ VdP� TdS � SdT (7:26)

But, if P and T are constant,

dG ¼ dE þ PdV � TdS

which, from Eq. (7.8), gives

dG ¼ dH � TdS

which, in turn, for a finite change, becomes

ΔG ¼ ΔH � TΔS (7:27)

At equilibrium ΔG= 0; hence,

TΔS ¼ ΔH

or

Tequil ¼ ΔH=ΔS (7:28)

Equation (7.28) gives a simple means of determining the
equilibrium temperature for a reaction. Consider, for example,
the reaction of cristobalite melting at 105 Pa pressure to form
silica liquid. Data for this reaction at high temperature indi-
cate that ΔH is +8071 J mol−1 and ΔS is +4.05 J mol−1 K−1.
Therefore, the equilibrium temperature or melting point would
be Tequil =ΔH/ΔS=1993 K or 1720 °C.

The equilibrium temperature for any reaction, such as that
for the melting of cristobalite, is the temperature at which
ΔG= 0. This is shown in Figure 7.7 as the point of intersec-
tion of the free-energy curves for cristobalite and silica liquid
(glass at low temperature). At higher temperatures, ΔG is

Δ E

–P Δ V –P Δ V

T Δ S

Δ G

Δ H

Fig. 7.6 Energy changes involved with a reaction at constant pressure
and temperature. The reaction continues spontaneously until ΔG is
reduced to zero.
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negative; hence, the reaction proceeds with the melting of
cristobalite. Below this temperature, ΔG is positive, so the
reaction can proceed only in the opposite direction, causing
cristobalite to crystallize. The most stable form is always the
one with the lowest free energy. Of course, thermodynamics
indicates only what the equilibrium state should be, but
kinetic factors may prevent this from being achieved.
Volcanic glasses, for example, could lower their free energy
by crystallizing, but the kinetics of this process are slow at
low temperatures.

For many petrologic problems, we need to calculate theΔG
of reaction under conditions different from those for which
the data in Table 7.1 are applicable. To do this it is necessary
to know how free energy changes with temperature and pres-
sure. From Eq. (7.22) it is clear that for a reversible reaction
involving only work of expansion, dE is equivalent to TdS −
PdV, which can be substituted for dE in Eq. (7.26), giving

dG ¼ TdS � PdV þ PdV þ VdP� TdS � SdT

which reduces to

dG ¼ �SdT þ VdP (7:29)

In a closed system – that is, one in which no matter is trans-
ferred in or out – G is a function only of temperature and
pressure [G= f (T, P)]. We can express the total change in G
(dG) resulting from a change in T and P as the sum of the
change due to T and the change due to P. This is known as a
total differential of the function, and it is represented as
follows:

dG ¼ @G
@T

� �
P
dT þ @G

@P

� �
T
dP (7:30)

The terms in parentheses are known as partial derivatives, as
they denote the variation in G with respect to only one of the

two variables, while the other variable, shown as a subscript
outside the parentheses, is held constant. Comparison of Eqs.
(7.30) and (7.29) reveals that

@G
@T

� �
P
¼ �S (7:31)

and

@G
@P

� �
T
¼ �V (7:32)

The bar over the �V signifies molar volume. This is introduced
because values of G are typically given as molar quantities.
Because all substances have positive entropy, free energy
always decreases with increasing temperature at constant
pressure, and because liquids have higher entropies than
corresponding solids, their free energy decreases more rap-
idly than that of solids (Fig. 7.7). Molar volumes are also
always positive, therefore increasing pressure at constant
temperature causes the free energy to rise.

Similar relations can be derived for the free-energy change
of a reaction. The change in the ΔG of a reaction with temper-
ature is

@ΔG
@T

� �
P
¼ �ΔS (7:33)

and the change with pressure is

@ΔG
@P

� �
T
¼ ΔV (7:34)

In these cases, the change in the ΔG of the reaction is deter-
mined by the entropy change and volume change of the
reaction. Both of these terms can be either positive or neg-
ative, so generalizations about the variation of the ΔG of a
reaction cannot be made. However, in the case of reactions
that evolve a gas such as many metamorphic reactions, ΔS
and ΔVwill both be positive, and therefore the ΔG of reaction
will decrease with increasing temperature and increase with
increasing pressure.

Other useful relations can be derived from Eq. (7.30)
simply by utilizing two properties of a total differential, that
is the cross-derivative rule and the cyclic rule. We have seen
by comparing Eqs. (7.29) and (7.30) that

@G
@T

� �
P
¼ �S and

@G
@P

� �
T
¼ �V

If we take derivatives of these expressions with respect to the
variable held constant, we obtain

@

@P
@G
@T

� �
P

� 	
T

¼ � @S
@P

� �
T

and

@

@T
@G
@P

� �
T

� 	
P

¼ @V
@T

� �
P

But, from the cross-derivative rule for a total derivative that is
exact,

G

T (K)

1993

Δ G > 0

Δ G < 0

Cristobalite Liquid

Cristobalite

SiO
2  Liquid

M
el

tin
g 

po
in

t

Fig. 7.7 Free energy versus temperature plots at constant pressure for
cristobalite and silica liquid. The intersection of the two curves is the
melting point of cristobalite. Below the melting point, cristobalite has a
lower free energy than does the silica liquid and is therefore the stable
phase; above the melting point, the liquid has a lower free energy and is
therefore stable.
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@

@P
@G
@T

� �
P

� 	
T

¼ @

@T
@G
@P

� �
T

� 	
P

(7:35)

Therefore,

� @S
@P

� �
T
¼ @V

@T

� �
P

but from Eq. (2.2), @V=@Tð ÞP ¼ αV , where α is the isobaric
coefficient of thermal expansion. Therefore,

@S
@P

� �
T
¼ �αV (7:36)

This allows us to evaluate the variation in entropy with
pressure from two easily measured physical properties, α
and V.

Similarly, by differentiating Eq. (7.32) we obtain

@2G
@P2

� �
T
¼ @V

@P

� �
T

but from Eq. (2.8) @V=@Pð ÞT ¼ �βV , where β is the iso-
thermal coefficient of compressibility. Therefore,

@2G
@P2

� �
T
¼ �βV (7:37)

And by differentiating Eq. (7.31) we obtain

@2G
@T2

� �
P
¼ � @S

@T

� �
P

but @S=@Tð ÞP ¼ Cp=T . Thus,

@2G
@T2

� �
P
¼ �Cp

T
(7:38)

The cyclic rule for total differentials states that if any three
variables, x, y, and z, for example, are connected by a func-
tional relation, then the three partial derivatives satisfy the
following relation:

@x
@y

� �
z

@y
@z

� �
x

@z
@x

� �
y
¼ �1 (7:39)

This rule is easily remembered by writing the three variables
in any order in a row, and then repeating them below so that
none of the vertical columns match. These vertical pairs give
the partial derivatives, with the subscripted variable, which is
held constant, being the third variable. For example,

z y x
x z y

becomes
@z
@x

� �
y

@y
@z

� �
x

@x
@y

� �
z
¼ �1

If the cyclic rule is applied to the three variables P, T, and
V, we obtain

@P
@T

� �
V

@T
@V

� �
P

@V
@P

� �
T
¼ �1 (7:40)

But from Eq. (2.2), @V=@Tð ÞP ¼ αV , and from Eq. (3.1),
@V @P=ð ÞT ¼ �βV , which, when substituted into Eq. (7.40),
give

@P
@T

� �
V

1
αV

� �
�βVð Þ ¼ �1

Hence,

@P
@T

� �
V
¼ α

β
(7:41)

Thermodynamic relations, then, can be manipulated with the
cyclic and cross-derivative rules into useful forms for specific
applications.

7.9 FREE ENERGY OF FORMATION AT ANY
TEMPERATURE AND PRESSURE

Finally, we will derive an expression for the free energy of
formation of a phase at any temperature and pressure. We
define the molar free energy of formation of a phase from the
elements at 298.15 K and 105 Pa (1 bar) as

Free energy of formation ¼ Δ�G�f ;298
¼ ΔH�f ;298 � 298 ΔS�298 (7:42)

The ΔS in this expression refers to the difference in entropies
of the phase and its constituent elements in their standard
states Sphase �

P
Selements

� �
. Values of Δ�G�f ;298 in column 7

of Table 7.1 are calculated according to Eq. (7.42). In Section
7.4 it was shown that if the ΔH�r is used to calculate the ΔH of
a reaction between phases, the terms for the enthalpy of the
elements on the reactant and product sides of a reaction
cancel. The same is true for the entropies of the elements,
and in some compilations of thermodynamic data, ΔG�f ;298 is
calculated ignoring the entropies of the elements. A value
calculated in this manner is known as the apparent free
energy of formation; it is given by

Δ�G�f ;298 ¼ ΔH�f ;298 � 298:15� S�298 (7:43)

where S�298 is the entropy of the phase only. For example, the
reaction to form quartz from the elements in their standard
states is

Si þO2 ! SiO2

According to Eq. (7.42), the Δ�G�f ;298 for quartz would be

Δ�G�f ;298 ¼ ΔH�f ;298 � 298:15 S�298;Qtz � S�298;Si þ S�298;O2

� �� �

¼ �856:46 kJ

The apparent free energy of formation (Eq. (7.43)) would be

Δ�G�f ;298 ¼ ΔH�f ;298 � 298:15� S�298;Qtz ¼ �923:06 kJ

Readers should take care to ascertain which type of free
energy of formation is being used when they consult other
texts.
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The reason for using the apparent free energy of formation
is that it reduces the amount of calculation necessary when
determining the free energy of formation of a phase at ele-
vated temperatures and pressures. It eliminates having to
calculate the changes in the enthalpies and entropies of the
elements when the temperature and pressure are raised above
standard conditions. We will illustrate this by deriving the
expression for the apparent free energy of formation of a
phase at any temperature T (K) and pressure P (Pa).

We first determineΔ�G�f ;298 at standard conditions from Eq.
(7.43). If the temperature is to be raised, appropriate terms
must be added for changes in enthalpy,

Ð
dH (Eq. (7.12)), and

entropy,
Ð
dS (Eq. (7.20)). If the pressure is to be changed, the

free energy must also be adjusted according to Eq. (7.32).
Combining all these terms into one expression gives

Δ�Gf ;T ;P ¼ ΔH�f ;298 þ
ðT
298

CpdT
� �

� T S�298 þ
ðT
298

Cp

T

� �
dT

� �
þ
ðP
105

VdP (7:44)

Substituting the polynomial expression for Cp (Eq. (7.13))
and integrating, we obtain

Δ�Gf ;T ;P ¼ ΔH�f ;298 � TS�298 þ a T � 298ð Þ þ b
2

T2 � 2982
� �

� c
1
T
� 1
298

� �
þ 2d T1=2 � 2981=2

� �

� T a ln
T
298

� ��
þ b T � 298ð Þ

� c
2

1
T2 �

1
2982

� �
� 2d

1
T1=2

� 1
2981=2

� �	

þ
ðP
105

VdP (7:45)

If a computer has not yet been used in solving problems in
this text, Eq. (7.45) will rapidly convince the reader of its
advantages. The last term in this equation has not been
integrated. If pressure remains constant, the term becomes
zero. Because the compressibilities of minerals and magmas
are extremely small, V can be considered a constant, so when
pressure does vary, this term becomes V(P − 105). But for a
gas, V is certainly not a constant, and the variation of Vwith P
must be known before we can integrate this term. This prob-
lem is dealt with in Section 8.3.

7.10 PROBLEMS

7.1 If the molar volume of a peridotite is 5 × 10−5 m3, and its
volume increase on totally melting is 10%, how much
work is done when 1 mol of peridotite melts at a depth
where the pressure is 2 GPa? Note that the system being
considered is the 1 mol of rock. Be certain to get the sign
convention correct (see Fig. 7.1).

7.2 If the molar volume of granitic magma is 7 × 10−5 m3,
and on crystallizing it decreases by 10%, compare the
work done by magma crystallizing near the top of a
batholith, where the pressure is 0.05GPa, with magma
crystallizing near the base of the batholith, where the
pressure is 0.5 GPa. Be careful of the sign convention.

7.3 From data in Table 7.1, and using Eq. (7.14), determine
the enthalpy of formation of kyanite and andalusite at
466 K and 105 Pa (1 bar). If kyanite were to change into
andalusite under these conditions, what would be the
enthalpy of reaction? Is the reaction exothermic or endo-
thermic? (Be careful of the sign convention; write the
reaction kyanite → andalusite, then ΔHr is the final
enthalpy minus the initial.)

7.4 Using the ΔH�f at 298.15 K and heat capacity data in
Table 7.1, calculate the enthalpy of reaction at 105 Pa and
1500 K for the reaction forsterite + quartz → enstatite.

7.5 In dolomite, calcium has two different possible sites to
occupy at high temperatures, but at low temperatures
it preferentially enters one of these sites, and magne-
sium occupies the other. Calculate the configurational
entropy associated with the complete disordering of
dolomite.

7.6 If entropy is a function of temperature and pressure, that
is, S= S(T,P), (a) write the total differential of S(T,P), and
(b) show that the total differential of S(T,P) is given by

dS ¼ Cp

T

� �
dT � αVdP

where α is the coefficient of thermal expansion
(Eq. (2.2)). [Hint: Use derivatives of G(T,P).]

7.7 Convection within the mantle or within a magma cham-
ber causes the thermal gradient to approach the adia-
batic gradient (đQ = 0 and dS = 0). Using the expression
for dS in Problem 7.6b, along with the cyclical rule for
partial derivatives, show that the adiabatic gradient is
given by

@T
@P

� �
S
¼ T �Vα

Cp

7.8 The granitic magma in Problem 7.2, which has a molar
volume of 7 × 10−5m3, has a molecular weight of
0.168 kg (ρ = 2.4Mgm−3), a coefficient of thermal
expansion, α, of 2 × 10−5 K−1, a heat capacity, Cp, of
0.8 kJ kg−1 K−1, and a temperature of 900 °C (1173 K).
(a) If magmatic convection has established an adiabatic

temperature gradient within the body, calculate the
value of @T=@Pð ÞS from the relation in Problem 7.7.
(Note 1 J = 1 Pa m3.)

(b) Using the relation dP = ρg dz (Eq. (1.1)), calculate
the adiabatic temperature gradient, @T=@zð ÞS , in
this convecting body of magma, and compare this
value with a typical geothermal gradient in the upper
continental crust.

7.9 From the data in Table 7.1 and using Eq. (7.21), calculate
the entropies of kyanite and andalusite at 466 K and
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105 Pa. What entropy change accompanies the change
of kyanite to andalusite under these conditions?

7.10 Using the results for ΔH� and ΔS� from Problem 7.3
and 7.9 respectively, calculate the free energy change,
ΔGr (Eq. (7.27)), for the reaction of kyanite to andalu-
site at 466 K and 105 Pa. From the value of the ΔG�r ,
what can you conclude about this reaction under these
conditions of temperature and pressure?

7.11 For the reaction kyanite→ andalusite at 466 K and 105

Pa calculated in Problem 7.10, determine the change in
the ΔGr if the pressure is increased to 108 Pa at 466 K.
Which of the minerals will be more stable under these
new conditions? (Recall that 1 J = 1 Pa m3.)

7.12 For the reaction kyanite → andalusite calculated in
Problem 7.11, calculate how much the temperature
would have to be increased at a pressure of 108 Pa in
order to return the value of ΔGr to zero, that is, to
reestablish equilibrium. Assume that the entropy
change for the reaction remains constant and is equal
to the value calculated in Problem 7.9.

7.13 Using Eq. (7.45), calculate the ΔGf of calcite and of
aragonite at 800 K and 105 Pa. Which phase is more
stable under these conditions?

7.14 Using Eq. (7.45), calculate the ΔGf of calcite and of
aragonite at 298.15 K and 0.5 GPa. Which phase is
more stable under these conditions?
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