
The Internal Radiation Hazard

- Routes of Entry
- Modelling and dose coefficients
- Methods of protection
 - facility design
 - containment
 - area designation
 - procedures
 - PPE
- Contamination monitoring
- Personal monitoring

Routes of Entry

Note that only some nuclides e.g. tritium can be absorbed through the skin Puncture – can be accidental – wounds or intentional – medical treatment e.g. I-131 for overactive thyroid Will concentrate on inhalation and ingestion

Inhalation

- From airborne contamination
- Proportion of radioactive material is deposited in the lungs and remainder is exhaled

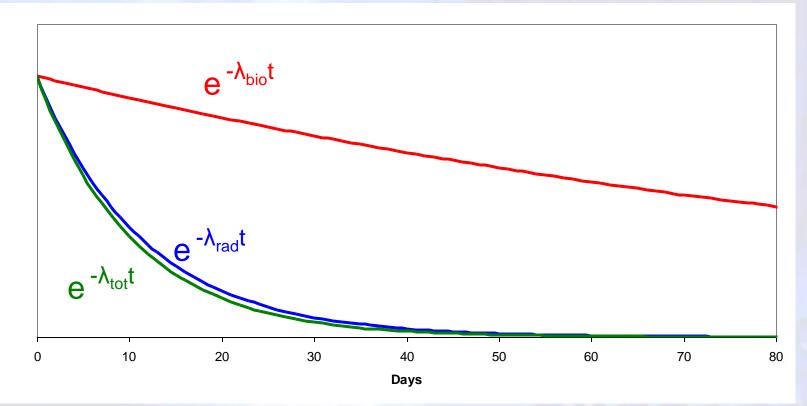
- Some of the material in the lungs is brought up and swallowed
- Some is absorbed directly from the lungs into the bloodstream and goes to target organs

Ingestion

- From contamination on foodstuffs, hands etc
- Some will be absorbed into the bloodstream and goes to target organs
- Remainder will be excreted in faeces

Modelling

- Dose received is dependent on:
 - Specific radionuclide
 - Intake pathway
 - Chemical and physical form
 - Particle size
- Effective decay constant in the body


 $\lambda_{\rm eff} = \lambda_{\rm rad} + \lambda_{\rm bio}$

 λ_{rad} = radioactive decay constant, λ_{bio} = biological decay constant

• Effective half life in the body $\frac{1}{t_{eff}} = \frac{1}{t_{rad}} + \frac{1}{t_{bio}}$

Some elements target specific organs e.g. iodine to thyroid, strontium to bones. Others e.g. hydrogen (tritiated water) are distributed throughout the body

Elimination Curve for I-131

Biological half life \approx 80 days Radiological half life \approx 8 days

Methods of Protection

- Eliminate use
- Minimize activity
- Containment
- Procedures
- Use of personal protective equipment (PPE)
- Good housekeeping

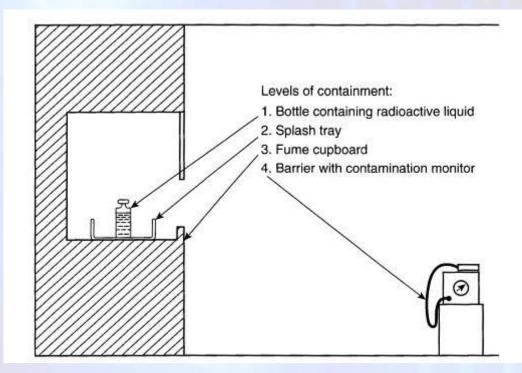
Facility Design

- New facilities should be designed to be easily decontaminated
 - Good clean finish with no gaps in which contamination can accumulate
 - Coverings at all angles to walls, ceilings to walls and floors to walls
 - Non porous materials gloss paint, sheet PVC
 - Work surfaces made of non-porous materials
 e.g. melamine, PVC, stainless steel

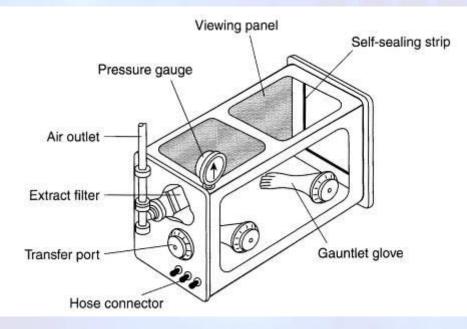
Facility Design

- Air flow from low contamination to high contamination
- Ventilation, use of HEPA filter units etc
- Gaseous discharges location of discharge
- Containment
- Work being done within the facility
- Decommissioning

Containment


- Fume cupboards
- Glove boxes
- Bespoke containment e.g. ModuCon[™] Modular Containment System
- Tented structures

Containment


 Facilities should be design with various levels of containment where practicable, especially if the radiation risks are significant

Schematic diagram showing four levels of containment

Containment – Glove Boxes

- Mainly used when working with alpha or beta emitters
- Maintained at lower pressure relative to main work area so that air flows inwards if a leak develops
- Filtered inlet and extract air

Schematic diagram of a glove box

Area Designation

- Uncontrolled (non-active)
 - No potential for radioactive contamination
- Supervised Contamination
 - Low potential for contamination but need to keep under review

- Controlled Contamination
 - Contaminated to greater or lesser extent and requiring appropriate precautions and protection measures

Procedures

- Radiation safety arrangements (rules) for working in contamination areas
 - No eating, drinking, smoking
 - Wounds to be covered before entering areas
 - Wounds sustained in area to be reported immediately and treated accordingly
- Barrier procedures
- Work procedures
- Pre work safety talks

Use of PPE

- Selection should be based on nature and amount of contamination and also the working environment

- Low risk lab coat, overshoes and gloves
- Medium risk coveralls, overshoes (taped), respiratory protection
- High risk pressurised suits

Contamination Monitoring

- Instruments need to be sensitive, generally use scintillation materials e.g. zinc sulphide for alpha, plastic phosphorus for beta
- Consist of a probe attached to a ratemeter - measure in counts per second (cps)

- Need to know conversion factors to go directly from cps to Bqcm⁻² when direct monitoring
- Beta probes respond to gamma radiation

Smear Surveys

- Used to:
 - Detect very low levels of contamination
 - Monitor for contamination in an area of high radiation background
 - Monitor for nuclides that are difficult to detect using direct methods e.g. H-3, C-14
 - Establish if contamination is loose or fixed
 - Monitor areas that are inaccessible with instruments

Smear Surveys

 If a filter paper is smeared over a specific area e.g 300 cm² or 1000 cm² and then counted in a detecting system of known efficiency the surface contamination level can be calculated

Contamination Level (Bqcm⁻²) = $C_c \times \frac{100}{E_c} \times \frac{1}{A} \times \frac{100}{E_F}$

where

 C_c = background corrected count rate (cps) E_c = percentage efficiency of the counting system A = area smeared (cm²) E_F = percentage pick up by paper, usually 10%

Air Monitoring

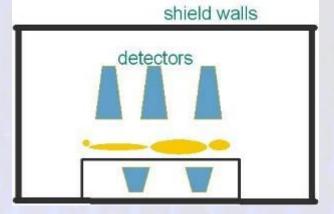
- Carried out in areas where airborne contamination may occur e.g. by:
 - Disturbing surface contamination
 - Allowing liquid contamination to dry out
 - Carrying out dry, dusty operations
 e.g. cutting, grinding

Air Monitoring

 If a known volume of air is sampled and the sample paper is counted in a detecting system of known efficiency the particulate airborne contamination level can be calculated

Contamination Level (Bqm⁻³) = $C_c \times \frac{100}{E_c} \times \frac{1}{V}$

where


 C_c = background corrected count rate (cps) E_c = percentage efficiency of the counting system V = volume sampled (m³)

Personal Monitoring

- May need to do in addition to area monitoring if:
 - the dose per unit intake is high e.g. plutonium
 - a nuclide is difficult to detect by monitoring
 - there is a significant risk that individuals could receive an intake
 - there has been an accident

Personal Monitoring

- Whole body monitoring for gamma emitters e.g. Co-60
- Can also target specific organs e.g. thyroid counter for I-131

- Excretion (urine or faecal) monitoring for alpha/beta emitters e.g. Pu-239
- Personal air sampling
- Can also take nasal swabs following a suspected intake