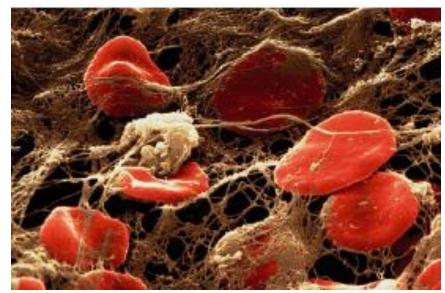
Pathology laboratory

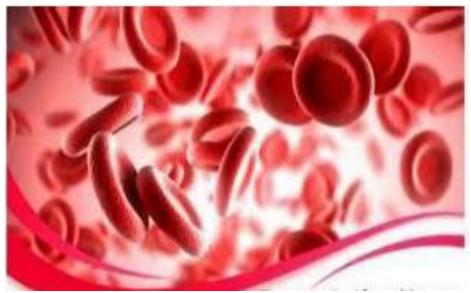
 A pathology laboratory is a place where tests are done on clinical specimens in order to get information about the health status of a patient as pertaining to the diagnosis, treatment, and prevention of disease.

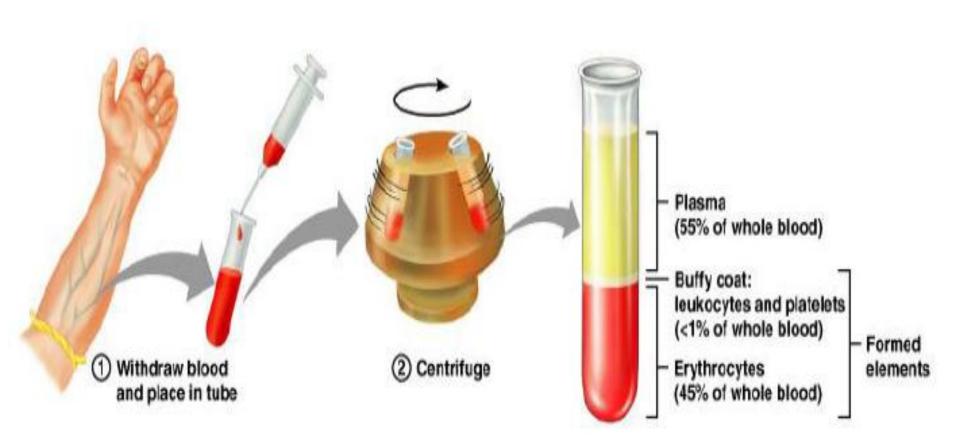
ORGANIZATION OF THE PATHOLOGY LABORATORY

Normally a Pathology Laboratory is allocated an area that is proportional to its scope and work load.

Laboratory is generally divided into following sections


- 1. Administrative office
- 2. A reception unit for registering patients, collection of specimens from the patients and delivery of final laboratory reports.
- 3. The laboratory area is organized into various sub-units.
- Normally following major disciplines (units) are created for:
 - a. Hematology
 - **b.** Clinical biochemistry
 - c. Microbiology
 - d. Histopathology
 - e. Virology
 - f. Immunology
 - g. Tissue Typing/HLA
 - h. Medical supply stores


Responsibilities of each unit


- The following is a detailed breakdown of the responsibilities of each unit:
- Director Lab
- Lab Manager
- Technical supervisor
- Technologist
- Technician

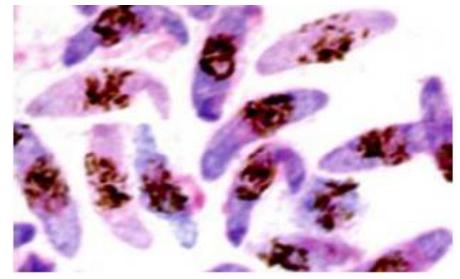
a) Hematology

- Hematology: works with whole blood to do full blood counts (CBC), blood films, bone marrow as well as many other specialized tests.
- Coagulation tests requires citrated blood samples to analyze coagulation profile (PT, APTT) and coagulation factors.

Hematology analyser (black), Centrifuge machine.

b) Clinical Biochemistry

 Clinical Biochemistry: usually receives serum or plasma. They test the serum for substances/chemicals etc present in blood.
These include a wide array of substances, such as lipids, blood sugar, enzymes, and hormones.



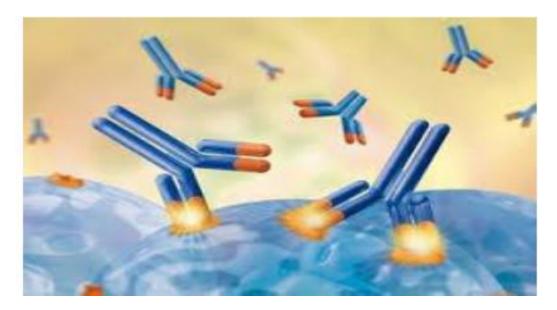
c) Microbiology

- Microbiology: receives almost any clinical specimen, including swabs, feces, urine, blood, sputum, cerebrospinal fluid, synovial fluid, as well as possible infected tissue.
- The work here is mainly concerned with cultures, to look for suspected pathogens which, if found, are further identified based on biochemical tests.
- Also, sensitivity testing is carried out to determine whether the pathogen is sensitive or resistant to a suggested medicine. Results are reported with the identified organism(s) and the type and amount of drug(s) that should be prescribed for the patient.

Parasitology

 Parasitology: is a microbiology unit that investigates parasites. The most frequently encountered specimen here is faeces. However, blood, urine, sputum, and other samples may also contain parasites.

Virology

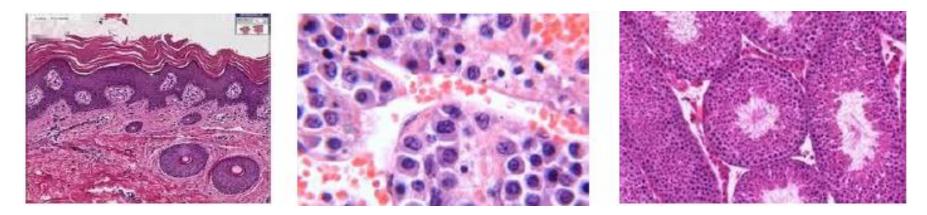

 Virology: is concerned with identification of viruses in specimens such as blood, urine, and cerebrospinal fluid.

d) Immunology/Serology

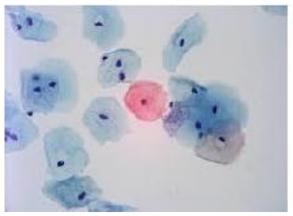
 Immunology/Serology: uses the concept of antigen-antibody interaction as a diagnostic tool. Compatibility of transplanted organs (tissue typing) is also determined.

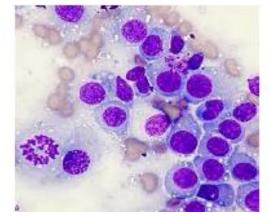
e) Blood Bank

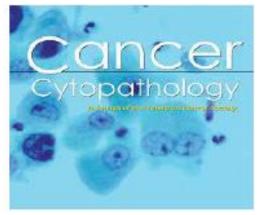
- Immunohematology, or Blood bank: determines blood groups, and performs compatibility testing on donor blood and recipients.
- It also prepares blood components, derivatives, and products for transfusion. Regulated by the FDA since giving blood is considered a drug, this unit determines a patient's blood type and Rh status, checks for antibodies to common antigens found on red blood cells, Rh. antibodies titer



f) Histopathology

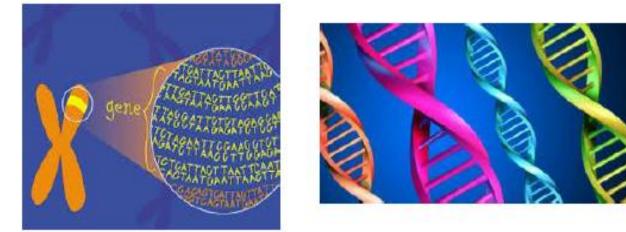


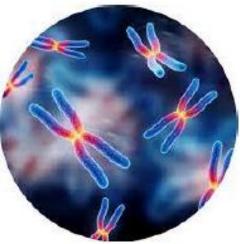

- Histopathology: processes solid tissue removed from the body (biopsies) for evaluation at the microscopic level.
- Surgical pathology examines organs, limbs, tumors, fetuses, and other tissues biopsied in surgery such as breast mastectomy.



Cytopathology

- Cytopathology examines smears of cells from all over the body (such as from the cervix) for evidence of inflammation, cancer, and other conditions.
- Electron microscopy prepares specimens and takes micrographs of very fine details by means of TEM and SEM.



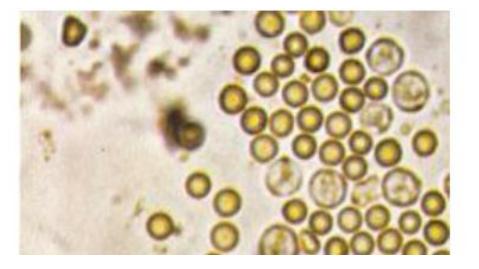


g) Genetics

- Genetics: mainly performs DNA analysis.
- Cytogenetics involves using blood and other cells to get a karyotype. This can be helpful in prenatal diagnosis (e.g. Down's syndrome) as well as in cancer (some cancers have abnormal chromosomes).

h) Toxicology

 Toxicology mainly tests for pharmaceutical and recreational drugs. Urine and blood samples are submitted to this lab.



i) Urinalysis

- Urinalysis tests urine for many analytes. Some health care providers have a urinalysis laboratory, while others don't. Instead, each component of the urinalysis is performed at the corresponding unit.
- If measuring urine chemicals is required, the specimen is processed in the clinical biochemistry lab,
- but if cell studies are indicated, the specimen should be submitted to the cytopathology lab, and so on.

