> Theorem

Assume $\alpha \uparrow$ on $[a,+\infty)$. If $f \in R(\alpha;a,b)$ for every $b \ge a$ and if $\int_a^x |f| d\alpha$ converges, then $\int_a^x f d\alpha$ also converges.

Or: An absolutely convergent integral is convergent.

Proof

If
$$x \ge a$$
, $\pm f(x) \le |f(x)|$
 $\Rightarrow |f(x)| - f(x) \ge 0$

$$\Rightarrow 0 \le |f(x)| - f(x) \le 2|f(x)|$$

 $\Rightarrow \int_{a}^{b} (|f| - f) d\alpha \text{ converges.}$

Subtracting from $\int_{0}^{\infty} |f| d\alpha$ we find that $\int_{0}^{\infty} f d\alpha$ converges.

(: Difference of two convergent integrals is convergent)

> Note

 $\int_{0}^{\infty} f d\alpha$ is said to converge absolutely if $\int_{0}^{\infty} |f| d\alpha$ converges. It is said to be

convergent conditionally if $\int_{a}^{\infty} f d\alpha$ converges but $\int_{a}^{\infty} |f| d\alpha$ diverges.

> Remark

Every absolutely convergent integral is convergent.

> Question

Show that $\int_{0}^{\infty} e^{-x} \cos x \, dx$ is absolutely convergent.

Solution

$$|e^{-x}\cos x| < e^{-x}$$
 and $\int_{0}^{\infty} e^{-x} dx = 1$

... the given integral is absolutely convergent. (comparison test)

> Question

Show that $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^4}} dx$ is convergent.

Solution

$$e^{-x} < 1$$
 and $1 + x^2 > 1$

$$\therefore \frac{e^{-1}}{\sqrt{1-x^4}} < \frac{1}{\sqrt{(1-x^2)(1+x^2)}} < \frac{1}{\sqrt{1-x^2}}$$

Also
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\epsilon \to 0} \int_{0}^{1-\epsilon} \frac{1}{\sqrt{1-x^2}} dx$$

$$= \lim_{\epsilon \to 0} \sin^{-1}(1 - \epsilon) = \frac{\pi}{2}$$

$$\Rightarrow \int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^4}} dx \text{ is convergent. (by comparison test)}$$

Let $\phi(x)$ be bounded and monotonic in $[a, +\infty)$ and let $\phi(x) \to 0$, when $x \to \infty$. Also let $\int_a^x f(x) dx$ be bounded when $X \ge a$.

Then $\int_{a}^{\infty} f(x)\phi(x)dx$ is convergent.

> Example

Consider
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

$$\therefore \frac{\sin x}{x} \to 1 \text{ as } x \to 0.$$

.. 0 is not a point of infinite discontinuity.

Now consider the improper integral $\int_{1}^{\infty} \frac{\sin x}{x} dx$.

The factor $\frac{1}{x}$ of the integrand is monotonic and $\to 0$ as $x \to \infty$.

Also
$$\left| \int_{1}^{X} \sin x \, dx \right| = \left| -\cos X + \cos(1) \right| \le \left| \cos X \right| + \left| \cos(1) \right| < 2$$

So that $\int_{0}^{x} \sin x \, dx$ is bounded above for every $X \ge 1$.

$$\Rightarrow \int_{1}^{x} \frac{\sin x}{x} dx \text{ is convergent. Now since } \int_{0}^{1} \frac{\sin x}{x} dx \text{ is a proper integral, we see}$$
that
$$\int_{1}^{\infty} \frac{\sin x}{x} dx \text{ is convergent.}$$

> Example

Consider
$$\int_{0}^{\pi} \sin x^{2} dx$$
.

We write $\sin x^2 = \frac{1}{2x} \cdot 2x \cdot \sin x^2$

Now
$$\int_{1}^{\infty} \sin x^2 dx = \int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^2 dx$$

 $\frac{1}{2x}$ is monotonic and $\to 0$ as $x \to \infty$.

Also
$$\left| \int_{1}^{x} 2x \sin x^{2} dx \right| = \left| -\cos X^{2} + \cos(1) \right| < 2$$

So that $\int_{0}^{x} 2x \sin x^{2} dx$ is bounded for $X \ge 1$.

Hence
$$\int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^2 dx$$
 i.e. $\int_{1}^{\infty} \sin x^2 dx$ is convergent.

Since $\int_{0}^{1} \sin x^{2} dx$ is only a proper integral, we see that the given integral is convergent.

> Example

Consider
$$\int_{0}^{x} e^{-ax} \frac{\sin x}{x} dx$$
, $a > 0$

Here e^{-ax} is monotonic and bounded and $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent.

Hence
$$\int_{0}^{\pi} e^{-ax} \frac{\sin x}{x} dx$$
 is convergent.

> Question

Show that $\int_{0}^{\infty} \frac{\sin x}{(1+x)^{\alpha}} dx$ converges for $\alpha > 0$.

Solution

 $\int_{0}^{x} \sin x \, dx \quad \text{is bounded because } \int_{0}^{x} \sin x \, dx \le 2 \quad \forall x > 0.$

Furthermore the function $\frac{1}{(1+x)^{\alpha}}$, $\alpha > 0$ is monotonic on $[0,+\infty)$.

 \Rightarrow the integral $\int_{0}^{x} \frac{\sin x}{(1+x)^{a}} dx$ is convergent.