
6 Laboratory testing of rocks

6.1 Introduction The mechanical properties of a piece of rock depend on its mineral composition,
the arrangement of the mineral grains, and any cracks that may have been
introduced into it during its long geological history by diagenesis or tectonic
forces. Consequently, the mechanical properties of rock vary not only between
different rock types but also between different specimens of the nominally same
rock. Hence, unlike “reproducible” engineering materials such as steels, for
which property values can be measured on standard specimens and listed in
handbooks, only very rough approximate values of the mechanical properties of
a given rock can be estimated from tabulated handbook data. For this reason,
laboratory testing necessarily plays a large role in rock mechanics.

In this chapter we describe the basic types of laboratory measurements that
are routinely conducted to measure the mechanical properties of rocks. Each
particular experimental apparatus and/or procedure subjects the rock specimen
to a certain state of stress. The chapter is structured in such a way that successively
more complex stress states are considered in each subsequent section. We start in
§6.2 with a discussion of hydrostatic tests that can be performed on porous rocks.
Uniaxial compression tests are discussed in §6.3. Traditional triaxial compression
tests, in which the two lateral stresses are equal to each other and less than the
axial stress, are discussed in §6.4. The effect of the mechanical stiffness of the
testing machine is examined in §6.5. True-triaxial, or polyaxial tests, in which
three different stresses may be applied to the sample, are discussed in §6.6. In all
of the aforementioned tests, the stress state induced in the sample is nominally
homogeneous.

There are several other important test configurations in which an inhomo-
geneous state of stress is induced in the rock. The so-called “Brazilian test,”
which is used to create a tensile stress within a rock, is described in §6.7. Tor-
sion of a cylindrical specimen is discussed in §6.8, along with the mathematical
solution for the stresses and displacements. Bending of a beam-like specimen is
treated in §6.9, again along with a brief mathematical derivation of the stresses
and displacements. Finally, compression tests on hollow cylinders are discussed
in §6.10.

In each case, the discussion will be quite general, focusing on the salient
features of the experimental apparatus, the state of stress involved in the tests,
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and the interpretation of the test results for the purpose of extracting numerical
values of the relevant rock properties. More specific details of the design of the
apparatuses, and other technical issues that arise during these tests, can be found
in several major review articles, such as Tullis and Tullis (1986). Specifications
of standard testing procedures and practices, such as specimen size, suggested
strain rates, etc., can be found in the various “ISRM Suggested Methods,” which
are prepared under the authority of the International Society for Rock Mechanics
and published in the International Journal of Rock Mechanics and Mining Sciences.

Although the focus will be on describing the measurement systems and pro-
cedures, some representative data will be discussed. Many data sets on rock
deformation were originally measured using British Imperial units, with stresses
measured in pounds per square inch (psi). Such units are still used in some coun-
tries and within the petroleum industry. Geophysicists, on the other hand, usually
quantify stresses in units of bars. Modern scientific convention, as codified in the
Système Internationale (SI), requires stresses to be measured in Pascals, defined
by 1 Pa = 1 N/m2. Conversion between these units can be achieved through the
relations 1 psi = 6895 Pa, 1 bar = 105 Pa.

6.2 Hydrostatic
tests

The simplest type of boundary traction that can be applied to the outer boundary
of a piece of rock is a uniform normal traction, such as would be exerted if the
boundary of the rock were in contact with a fluid. In a homogeneous solid,
such boundary conditions would give rise to a state of uniform hydrostatic stress
throughout the body. The ratio of the magnitude of the stress to the volumetric
strain of the sample would then, according to (5.7), give the bulk modulus K of
the rock.

This type of test can be conducted in a pressure vessel filled with a pressurized
fluid (Fig. 6.1). The pressurizing fluid is connected to a pump or piston located
outside the pressure cell. The pressure of the fluid, also referred to as the confining
pressure, is measured by a manual pressure gauge or electronic pressure trans-
ducer. As there will be no pressure gradient in the fluid, aside from a negligible
gravitational gradient, the pressure gauge or transducer can be located outside
the vessel.

The rock sample is usually machined into a cylindrical shape. In order to pre-
vent the pressurizing fluid from entering the pore space of the rock, the specimen

Fig. 6.1 Schematic
diagram of typical
experimental system
used to measure
compression of a
porous rock subjected
to hydrostatic confining
pressure and pore
pressure (after Hart and
Wang, 2001).
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must be covered with a tight-fitting, impermeable sheathing, such as heat-shrink
tubing. The volumetric strain of the specimen can be measured by strain gauges
glued onto the sides. If the rock is isotropic, the radial, circumferential, and axial
strains should all be equal. Nevertheless, it is advisable to measure the strains in
more than one direction.

If the rock is porous and permeable, a variable pore pressure can also be applied
to the specimen. Furthermore, other poroelastic parameters, described in §7.2,
can be measured under these hydrostatic conditions. In a typical configuration
(Fig. 6.1), the two flat faces of the cylindrical specimen are fitted with metal end-
caps, which have small holes drilled into them, through which the pore fluid can
flow. The pore fluid is collected outside the pressure vessel in a piston-like device
that allows the pore fluid pressure, and the extruded volume of the pore fluid,
to be controlled and monitored. Such experimental configurations are described
in more detail by Zimmerman et al. (1986), Hart and Wang (2001), and Lockner
and Stanchits (2002).

As discussed in §7.2, a poroelastic rock has four fundamental compressibilities,
which relate changes in the hydrostatic confining stress and pore pressure to
the resulting pore or bulk strains. The bulk compressibility Cbc can be found
by measuring the bulk strain that occurs in response to a change in confining
pressure, with the pore pressure held constant. The other bulk compressibility,
Cbp, is found from the bulk strain that occurs when the pore pressure is changed
and the confining pressure is held constant. These two measurements pose no
major difficulties.

The pore compressibility Cpc quantifies the pore strain that results from chang-
ing the confining pressure, with the pore pressure held constant. If the pore
pressure is constant, then the volume of pore fluid in the system is constant,
and so the change in the pore volume of the rock is exactly equal to the vol-
ume of pore fluid that enters or leaves the pore pressure piston device. Hence,
measurement of Cpc poses no fundamental difficulty.

Measurement of the other pore compressibility, Cpp, which quantifies the
change in pore volume caused by a change in pore pressure, with the confining
pressure held constant, is not so straightforward. As the pore fluid is varied, the
total volume of pore fluid will change, through the relation �Vf = −Cf Vf �Pp,
where Cf is the compressibility of the pore fluid. Some of this volume change
will occur in the pore space of the rock, some will occur in the tubing leading
from the specimen to the pore pressure piston, and some will occur within the
piston itself. Specifically,

�Vfluid = �Vpore + �Vtubing + �Vpiston. (6.1)

The term �Vpiston is measured directly, whereas the desired quantity is �Vpore.
Estimation of the actual pore volume change therefore requires knowledge of
the other two terms in (6.1). This can in principle be achieved by first performing
calibration tests, for example using an effectively rigid specimen such as one made
of steel, to determine the compliance of the tubing and the total storativity, Cf Vf ,
of the pore fluid. However, the two unwanted terms in (6.1) are generally at least
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as large as the change in pore volume, rendering the estimation of the pore
volume change quite problematic (Hart and Wang, 1995).

Another related “hydrostatic” elastic parameter of a porous rock is Skempton’s
B coefficient (Skempton, 1954). This parameter is defined, in (7.28), as the ratio
of the pore pressure increment to the confining pressure increment, when the
confining pressure is varied under “undrained” conditions, in which no fluid is
permitted to leave the specimen. However, in a configuration such as that of
Fig. 6.1, some pore fluid must indeed leave the specimen in order to enter the
piston device. If the piston is replaced by a pressure transducer, it is nevertheless
true that the pressure response of the pore fluid is influenced by both the compli-
ance of the pore space of the specimen and by the compliance of the tubing and
transducer. These effects can again in principle be accounted for by proper cali-
bration, but in practice, this is quite difficult to achieve accurately, as the system
compliance may be of the same magnitude as that of the pore space. Accurate
measurements of B can presumably be obtained by placing a “zero volume”
pressure transducer in immediate contact with the specimen, inside the pressure
vessel (Hart and Wang, 2001), thus eliminating the effects of system compliance.

6.3 Uniaxial
compression

The uniaxial compression test, in which a right circular cylinder or prism of
rock is compressed between two parallel rigid plates (Fig. 6.1), is the oldest
and simplest mechanical rock test and continues to be widely used. This test is
used to determine the Young’s modulus, E, and also the unconfined compressive
strength, Co.

In the simplest version of this test, Fig. 6.2a, a cylindrical core is compressed
between two parallel metal platens. Hydraulic fluid pressure is typically used to
apply the load. The intention of this test is to induce a state of uniaxial stress in
the specimen, that is,

τzz = σ , τxx = τyy = τxy = τyz = τxz = 0. (6.2)

The axial stress σ is the controlled, independent variable, and the axial strain
is the dependent variable. The longitudinal strain can be measured by a strain
gauge glued to the lateral surface of the rock. Alternatively, the total shortening
of the core in the direction of loading can be measured by an extensiometer that

Fig. 6.2 Unconfined
uniaxial compression of
a rock: (a) standard
configuration, with
failure initiating at the
corners, (b) conical
end-pieces to eliminate
frictional restraint,
(c) tapered specimen,
(d) matched end-pieces. (a) (b) (c) (d)
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monitors the change in the vertical distance between the platens. In this case, the
longitudinal strain is calculated from the relative shortening of the core, that is,
ε = −�L/L. If the stress state were indeed uniaxial, then the Young’s modulus
of the rock could be estimated from E = σ/ε. The stress can be increased slowly
until failure occurs, as discussed in §4.2. The stress at which the rock fails is
known as the unconfined, or uniaxial, compressive strength of the rock.

Unfortunately, the actual state of stress in the rock core, in a configuration such
as that of Fig. 6.2a, will not be a homogeneous state of uniaxial compression. This
is due primarily to the constraining influence of the frictional forces acting along
the interface between the core and the platens. A true uniaxial stress state would
lead to lateral expansion associated with the Poisson effect, (5.12). But this lateral
expansion is hindered at the platens due to friction. A more realistic boundary
condition to assume for the rock core is that of uniform vertical displacement
and no lateral displacement (Filon, 1902; Pickett, 1944; Edelman, 1949). Hence,
in a testing configuration such as shown in Fig, 6.2a, the rock core would bulge
outward away from the end platens, but would be constrained against such
bulging at the platens, thereby taking on a barrel-shape.

This lack of homogeneity in the stress state has implications both for the
measurement of the elastic modulus and the compressive strength. Although
the stress state indeed approaches that of uniaxial stress away from the platens,
in the middle of the core, it is much more complex and inhomogeneous at the
ends. Hence, it is not obvious that −σL/�L will yield a correct estimate of
E. Chau (1997) presented an accurate approximate solution to this problem, for
the case in which the friction between the end platens and the rock is sufficiently
large that no lateral motion of the rock can occur at the two boundaries. He
expressed his results in terms of a parameter λ, defined as the ratio of the “true”
Young’s modulus to the “apparent” value estimated from E = −σL/�L. As
would be expected, this factor approaches unity as the Poisson ratio goes to
zero, since in this case the tendency for lateral expansion does not arise. For
cores in which the length is at least as large as the diameter, and for which the
Poisson ratio is less than 0.3 (which will usually be the case), the factor λ was
found to lie in the range 0.97–1.0. Greenberg and Truell (1948) carried out a
similar analysis for a rectangular prism compressed in plane strain conditions,
with a Poisson ratio of 0.33, and found λ = 0.96. Hence, as far as the calculation
of E is concerned, the issue of friction along the rock/platen interface is probably
not of engineering significance.

Nevertheless, this frictional restraint leads to a stress concentration at the cor-
ners of the rock core, at the points where it meets the platen. This causes a shear
fracture to initiate at that point, as shown in Fig. 6.2a, at an applied (nominal)
stress σ that is actually less than the “true” uniaxial compressive strength. Several
methods have been proposed to avoid this problem. One suggested approach is to
machine the specimens to have hollow conical ends and then to compress them
between conical end-pieces, the surfaces of which are inclined to the diameter of
the specimen at the angle of friction (Fig. 6.2b).

Barnard (1964), Murrell (1965) and others have used shaped specimens that
have a smaller diameter in the necked midregion than near the ends (Fig. 6.2c).
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The shape of the specimen is carefully chosen, based on photoelasticity studies
or finite element analysis, so that the stress distribution is uniform across the
section in the neck. This permits the true Young’s modulus to be calculated from
the longitudinal strains measured in the neck with strain gauges, and also avoids
the problem of shear fractures initiating at the point of the stress concentration
near the platens. These shaped specimens are difficult to prepare, however, and
tend by necessity to have short necked regions.

Another approach to mitigating the problems of stress concentrations at the
platens is to compress the rock core between metal end-pieces that have the
same diameter as the core and are made of a metal that has the same ratio of
ν/E as does the rock (Fig. 6.2d). In this case, the lateral expansion of the rock
at its ends should match that of the platens, eliminating the unwanted stress
concentrations. This approach has been used by Cook (1962) and others.

Labuz and Bridell (1993) carried out compression tests on granite cores, with
various lubricants applied between the core and the platens. Radial strains were
measured near the ends and in the central portion of the core, to investigate the
barreling effect. In the absence of lubrication, the radial hoop strains were as
much as 50 percent higher in the central region of the core than near the ends.
By testing various lubricants, including graphite and molybdenum disulfide,
they found that this stress inhomogeneity could essentially be eliminated by the
application of a mixture of stearic acid and petroleum jelly to the rock-platen
interface.

6.4 Triaxial tests One of the most widely used and versatile rock mechanics tests is the traditional
“triaxial” compression test. Indeed, much of the current understanding of rock
behavior has come from such tests. Despite the name, which would seem to
imply a state of three independent principal stresses, in a triaxial test, a rock
specimen is subjected to a homogeneous state of stress in which two of the prin-
cipal stresses are of equal magnitude. Typically, all three stresses are compressive,
with the unequal stress more compressive than the two equal stresses, so that
σ1 > σ2 = σ3 > 0.

The restriction of traditional triaxial tests to stress states in which two of
these stresses are necessarily equal in magnitude is imposed by experimental
limitations. Consequently, despite the ubiquitous nature of triaxial tests and
triaxial compression data on rocks, it should not be erroneously concluded that
stress states in which two principal stresses are of equal magnitude are particularly
common in the subsurface. Indeed, there is no particular reason for σ2 and σ3 to
be equal, either in undisturbed rock or in the vicinity of an excavation.

A triaxial stress state can be achieved by subjecting a cylindrical rock specimen
to uniaxial compression by a piston, as described in §6.3, in the presence of
hydrostatic compression applied by a pressurized fluid, as described in §6.2.
Depending on the experimental configuration, the hydrostatic pressure may act
in all three directions or only over the two lateral surfaces of the rock. In either
case, the value of the two equal lateral stresses, σ2 = σ3, is known in this context
as the confining stress and the other principal stress is referred to as the axial
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stress. The difference between the axial stress and the confining stress, σ1 − σ3,
is referred to as the differential stress.

The classic triaxial compression tests on a rock were those performed by von
Kármán (1911) on specimens of Carrara marble, using an apparatus that can
be said to have served since as the prototype for triaxial testing machines. His
machine and procedure, along with subsequent improvements, are described
in detail by Paterson (1978, Chapter 2), upon which some of the following
discussions are based.

Triaxial tests are usually conducted with cylindrical specimens having a length-
to-diameter ratio of between 2:1 and 3:1. It is imperative that the flat surfaces of
the specimen be as nearly parallel as possible, to avoid bending of the specimen
under the axial stress. The core is jacketed in rubber or thin copper tubing so
that the confining fluid does not penetrate into the pore space (Fig. 6.3a). If the
effect of pore pressure is to be investigated, pore fluid would be introduced into
the rock through a small hole in one of the end-pieces, as described in §6.2.

A simple triaxial apparatus is the one developed at the US Bureau of Recla-
mation (Fig. 6.3b). A spherical seat is used on one end-piece to correct for the
possibility that the platens are not parallel. However, this apparatus has two dis-
advantages. Firstly, the confining pressure acts against the loading piston, so that
the applied axial force must be large enough to overcome this force, in addition
to creating the axial stress. Secondly, as the specimen compresses, the volume
of the confining fluid in the cell decreases, making it difficult to control the
confining pressure. This effect can be greatly diminished by having the pistons
and end-pieces be of the same diameter as the specimen and by minimizing the
volume available to the confining fluid (Donath, 1966).

Griggs et al. (1960) and Paterson (1964) avoid interaction between the axial
displacement of the end-pieces and the confining pressure completely, by using
two pistons connected by a yoke, only one of which applies load to the specimen.
This arrangement allows the volume of confining fluid to remain constant as the
axial load is increased. It also allows the confining fluid pressure to act in the axial
direction, not only in the lateral directions, so that the loading piston needs only

Fig. 6.3 Triaxial
testing apparatus:
(a) jacketed cylindrical
rock specimen with
end-pieces and
provision for pore fluid,
(b) US Bureau of
Reclamation cell,
(c) central portion of a
constant-volume
triaxial cell. (a)
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to supply enough force to create the differential load and to overcome friction,
but does not need to overcome the confining pressure (Fig. 6.3c).

The variables that must be measured in a triaxial test include the confining
stress, the axial stress (or the differential stress), the axial strain, and the lateral
strain. The confining stress acting on the rock is easily measured by measuring
the pressure of the confining fluid with a pressure gauge or an electronic pressure
transducer, which may for convenience be placed outside the cell. The axial stress
can be calculated from the pressure of the oil in the loading jack, after correcting
for the area ratio, although such a calculation ignores friction along the sides
of the piston. Alternatively, the axial load can be measured by placing in series
with the rock specimen a load cell, which is essentially a metal element of known
elastic modulus to which strain gauges are attached (Davis and Gordon, 1968).
The axial (εzz) and lateral (εθθ ) normal strains of the rock are most accurately
measured by strain gauges glued to the outer face of the cylindrical rock core.
To avoid end effects, these gauges are usually placed midway between the two
end-pieces.

If the axial stress is smaller in magnitude than the two lateral stresses, but
nevertheless still compressive, the resulting state of stress, σ1 = σ2 > σ3 > 0,
is referred to as triaxial extension (Heard, 1960). Such tests are useful in test-
ing Mohr’s assumption that failure is not influenced by the magnitude of the
intermediate principal stress. Triaxial extension tests are readily conducted in a
triaxial testing apparatus, provided that the piston can be suitably attached to the
end-pieces.

6.5 Stability and
stiff testing
machines

As discussed in §4.2, many rocks exhibit a postpeak, strain-softening regime in
which the tangent modulus, Etan = dσ/dε, is negative. This does not conform
to one of the basic assumptions of the theory of elasticity, which is that the
elastic modulus should be positive in order for the stored strain energy function
to be positive-definite; see §5.8. Although positivity of E is not required by any
thermodynamic law, a negative tangent modulus can, under certain situations,
give rise to unstable behavior. This has important implications during laboratory
compression tests.

To understand the inherent instability of a rock having a negative tangent
modulus, consider a cylindrical rock specimen of length L and cross-sectional
area A, compressed under a weight, W , as in Fig. 6.4a. The stress–strain behavior
of the rock will be represented in the idealized form of Fig. 6.4b, in which a
linear elastic regime with modulus E is followed by a strain-softening regime
with modulus Etan = −|Ess|, where this notation is used to underscore the fact
that the tangent modulus is negative in this regime.

Imagine that the load W is precisely large enough so that the rock is loaded
to its elastic limit, denoted by point B in Fig. 6.4b. At this point, the stress in
the rock is σ = W/A, the strain is ε = W/AE, and the stored strain energy
is = W2L / 2AE. Now imagine that the rock somehow compresses by an
additional amount �z, without the introduction of any additional energy into
the system, so that it moves to point C on the stress–strain curve. The change in
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Fig. 6.4 (a) Rock
cylinder loaded by a
weight, W ; (b) idealized
stress–strain curve of a
rock exhibiting
strain-softening
behavior; (c) work done
on rock by additional
compression from
B to C.
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the total energy of the system must be zero, that is,

� = � elastic + � gravitational + � other = 0, (6.3)

where other represents energy that may be available to cause additional damage
to the rock in the form of microcracking, etc. The gravitational potential energy
of the load decreases by W�z, so � grav = −WL�ε. The strain energy stored
in the rock, per unit volume, increases by an amount equal to the shaded area in
Fig. 6.4c. This area is equal to the area of the rectangle of height σ and width
�ε, minus the area of the small triangle having base �ε and height |Ess|�ε. After
multiplying by the volume of the rock,

� elastic = AL[σ�ε − 1
2
|Ess|�ε2] = WL �ε − AL

2
|Ess|�ε2. (6.4)

From (6.3), the change in the “other” energy that is available to further degrade
the rock will be

� other = −� elastic − � grav

= −WL�ε + AL
2

|Ess|�ε2 − (−WL�ε) = AL
2

|Ess|�ε2 > 0. (6.5)

Hence, a small additional compression of the rock will liberate a positive amount
of energy, which will be available to cause further microscale degradation of the
rock, thereby causing further softening of the tangent modulus, etc. It is clear
that this is an unstable process that will inevitably lead to complete disintegration
of the specimen.

If the tangent modulus were positive at point B, the quadratic term in (6.4)
would be positive, and (6.5) would show the energy available for cracking the
rock to be negative, which by definition is not possible. In this case, the additional
compression of the rock would not spontaneously occur without the addition of
external energy to the system (such as by increasing the load, W). Hence, a
negative tangent modulus is necessary for this type of instability to occur.

Having established that a negative value of the tangent modulus may lead
to instabilities under certain experimental conditions, we now consider a more
realistic model for a traditional rock-testing machine, as used in uniaxial compres-
sion tests, by considering the effect of the compliance of the machine (Salamon,
1970; Hudson et al., 1972; Hudson and Harrison, 1997, pp. 89–92). Consider a
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Fig. 6.5 (a) Simplified
model of a testing
machine used to
compress a rock. (b)
Idealization in which
the machine stiffness is
represented by a spring
km and the rock is
represented by a
(nonlinear) spring, k.
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rock-testing apparatus such as shown in Fig. 6.5a. As the rock specimen is com-
pressed by the hydraulic jack, the jack exerts a downward force F on the rock,
and, according to Newton’s third law, the rock exerts an upward force F on the
jack. As the load F increases, additional elastic energy is of course stored in the
rock, but it is also stored in the hydraulic system, the platens, the vertical bars
C and D, and other parts of the apparatus. For conceptual simplicity, the entire
loading system can be represented by an elastic spring of stiffness km, defined
such that if the load is F , the energy stored in the loading system is F2/2km. The
rock specimen can also be thought of as a spring, with stiffness k = EA/L. At
equilibrium, the two springs are subjected to the same force, F , so they can be
assumed to be in series (Fig. 6.5b).

Assume again that the system is in equilibrium, with the rock compressed to
point B in Fig. 6.4c. In this state, the compressive force in both springs is F . Now
imagine that the rock spontaneously undergoes an additional small compression,
moving to point C on its stress–strain curve. With respect to the spring model in
Fig. 6.5b, point B is displaced downward by an amount �zB. If this occurs without
the addition of any energy to the system, this is equivalent to specifying that no
displacement can occur at point A in Fig. 6.5b. By definition, no displacement
occurs at point O.

Following the same argument as was used to derive (6.4), but replacing the
load W with F , and noting that �ε = �z/L, the change in the amount of strain
energy stored in the rock specimen is

� specimen = F�zB − 1
2

A|Ess|
L

(�zB)
2. (6.6)

For a small displacement �zB, this term is clearly positive, reflecting the fact that
the rock continues to absorb energy, even as it deforms into its strain-softening
regime. A similar argument for the elastic energy stored in the testing machine
gives

� machine = −F�zB + 1
2 km(�zB)

2. (6.7)

The energy stored in the testing machine decreases, as the machine is undergoing
unloading in this regime. This can be seen from Fig. 6.5b, where a downward
displacement of point B will decrease the amount of compression in the spring
representing the testing machine. Hence, the amount of additional energy that
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is liberated, and is therefore available to cause further degradation of the rock, is

� other = −� specimen − � machine = 1
2

[
A|Ess|

L
− km

]
(�zB)

2. (6.8)

If this term is positive, the system will be unstable, as this energy will cause
further microcracking of the rock, etc. Hence, the condition for stability is that
the stiffness of the testing machine, km, be greater than A|Ess|/L, where A is the
cross-sectional area of the specimen, L is its length, and Ess is the slope of the
stress–strain curve of the rock in the strain-softening regime. A testing machine is
categorized as being stiff or soft, with respect to a given rock specimen, depending
on whether or not it satisfies this criterion.

The condition for the onset of instability of this system can also be derived by
the following simple argument (Salamon, 1970). At equilibrium, the compressive
forces in the two springs in Fig. 6.5b are equal, so km(zA−zB) = k(zB−zO) = kzB,
where the displacements of each of the three points (A, B, O) are measured
starting from their values at F = 0. Let the force F be increased slightly by
�F . If we require that the system move to a new equilibrium state, then the
displacements must satisfy the constraint of force equilibrium, and so km(�zA −
�zB) = k�zB. In general, k = EtanA/L, and so, since �zB = L�ε, this relation
can be solved to give

�ε = km

Lkm + AEtan
�zA. (6.9)

In the elastic regime of the rock’s behavior, Etan will be positive, and (6.9) can
be solved to uniquely determine the additional incremental strain in the rock.
However, if the rock softens sufficiently that Etan = −Lkm/A, there will be no
finite solution to (6.9), implying that the rock cannot deform to a new equilibrium
state – it will fail catastrophically. As was the case for the derivation based on
energy considerations, the condition for stability is km > A|Etan|/L.

In reality, the transition from a positive tangent modulus to a negative tangent
modulus occurs gradually, not abruptly as in Fig. 6.4b. If a rock is compressed
in a “soft” machine, unstable disintegration of the rock will commence when
the slope of the stress–strain curve first becomes sufficiently negative that |Etan|
equals Lkm/A. This will typically occur at a point very near the peak of the stress–
strain curve; the rock will fail abruptly and explosively, and it will not be possible
to observe and measure the strain-softening portion of the stress–strain curve.
An understanding of the role of machine compliance in obscuring the softening
portion of the stress–strain curve was first developed by Whitney (1943) and
others in the context of concrete testing, but was not fully appreciated in the
field of rock mechanics until the 1960s (Hudson et al., 1972).

There are many sources of elastic compliance in a testing machine, such as
the hydraulic system, the vertical columns (C and D in Fig. 6.5a), the crossheads
(A and B), etc. As each of these are subject to the same load, the compliances
are additive. The individual stiffnesses ki are therefore combined by adding their
reciprocals, so that km = [	(1/ki)]−1. One approach to solve this instability
problem is to minimize the individual sources of elastic compliance in the system.
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The largest contributions to the compliance typically come from the hydraulic
system and the columns (Cook and Hojem, 1966). Cook and Hojem constructed
a machine with a stiff frame and minimized the compliance of the hydraulic
system by using for the hydraulic system a short column of mercury with a large
cross-sectional area. This apparatus was used by Crouch (1970,1972) to study the
compressional behavior of quartzite and norite.

A quite different approach to stiffening a testing machine is to add a stiff
element in parallel with the rock specimen, so that the stiffener and the specimen
undergo the same displacement. In this case the overall stiffness will be the sum of
that of the machine and that of the stiffener. Cook (1965) stiffened a conventional
testing machine by loading a steel ring in parallel with the rock specimen and
was able to significantly reduce the explosive nature of the failure of a specimen
of Tennessee marble. Bieniawski et al. (1969) used a similar apparatus to study
the compression of sandstone and norite.

A third approach is to use the thermal expansion/contraction of the columns
in the testing machine to supply the force needed to compress the rock. Cook
and Hojem (1966) constructed a testing machine in which a hydraulic jack was
used to prestress the specimen and the remaining displacement was induced by
thermal contraction of the vertical columns.

Each of the proposed solutions to the machine stiffness problem has seri-
ous drawbacks, however. There are practical limits to the extent to which one
can eliminate sources of compliance within a testing machine. Adding a stiffen-
ing element in parallel has the unwanted effect of decreasing the effective load
capacity of the system, as much of this capacity will be used to compress the
stiffening member. Finally, it is very difficult to control the rate at which the
load is applied when thermal contraction of the columns is used to compress
the rock.

The unstable collapse and disintegration of the specimen are caused by the
rapid flow into the specimen of some of the energy that had been stored in the
machine. Much of this energy is stored in the hydraulic system. If, for example,
fluid could be drawn out of the hydraulic system rapidly and in a controlled
manner, this problem could be avoided. This can indeed be achieved with servo-
controlled testing machines (Bernhard, 1940; Rummel and Fairhurst, 1970). A
main idea behind the performance of these machines is that, to trace out the
full stress–strain curve beyond the point of peak strength, the strain in the rock
specimen must be the controlled variable. With regards to the loading platens,
this implies that the displacement, rather than the load, is the variable that must
be controlled. In a servo-controlled testing machine, the deformation of the rock
is monitored and then compared to the desired strain. Any difference between the
desired and current strain is used to create a “correction signal” that adjusts the
hydraulic pressure so as to bring the actual strain closer to the desired value; see
Hudson et al. (1972) and Hudson and Harrison (1997) for details. The response
time of such systems is in the order of a few milliseconds, which is sufficiently
rapid to be able to arrest the unstable disintegration of the rock (Rummel and
Fairhurst, 1970). Thus, the full stress–strain curve can be obtained, provided that
the strain increases monotonically.
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Fig. 6.6 Class I and
Class II stress–strain
curves.
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Some rocks, however, exhibit a complete stress–strain curve in which neither
the stress nor the strain increases monotonically. For such rocks, denoted by
Wawersik and Fairhurst (1970) as “Class II,” the stress and strain each decreases as
the rock begins to fail (Fig. 6.6). This occurs as the rock continues to deteriorate
on a microscopic scale and is fundamentally different from elastic unloading
with hysteresis. Okubo and Nishimatsu (1985) showed that by using a linear
combination of stress and strain as the feedback signal in a servo-controlled
testing machine, the complete stress–strain curves of both Class I and Class II
rocks can be obtained.

6.6 True-triaxial
tests

Traditional “triaxial” compression tests, such as described in §6.4, involve states of
stress in which σ1 > σ2 = σ3 > 0. Such tests are incapable of probing the effects
of the intermediate principal stress. In order to investigate rock behavior over the
full range of stresses that may occur in the subsurface, it would be desirable to
conduct tests in which all three principal stresses may have different (compressive)
values. Such tests have sometimes been referred to as “polyaxial,” although this
name has the disadvantage of not being self-explanatory. More recently, the term
“true-triaxial,” which is inelegant but less open to misinterpretation, has gained
acceptance.

Several researchers have constructed testing cells that attempt to produce
states of homogeneous stress in which the three principal stresses, σ1 ≥ σ2 ≥
σ3 ≥ 0, are independently controllable (Fig. 6.7a). Although the designs differ in
various ways, in each case a “rectangular” (i.e., parallelepiped-shaped) specimen
is used, in contrast to the cylindrical specimens used in traditional triaxial tests.
Hojem and Cook (1968) constructed a cell in which the two lateral stresses σ2 and
σ3 were applied to the specimen by two pairs of thin copper flat jacks and the axial
load was applied by a traditional loading piston. However, it was difficult to apply
high lateral stresses with this apparatus, thus limiting its range of usefulness.

Mogi (1971) built an apparatus in which the minimum stress, σ3, was applied
by a pressurized fluid, and the two other stresses were applied by opposing sets
of flat jacks (Fig. 6.7b,c). The choice of having the minimum stress applied by
fluid pressure was made so that this stress could be measured with the greatest
accuracy. The specimen was in the form of a rectangular prism, 1.5 cm × 1.5 cm
in cross section and 3.0 cm long in the σ1 direction. The steel end-pieces over
which σ1 was applied were connected to the specimen by epoxy, whereas the
end-pieces over which σ2 was applied were coupled to the specimen through
thin rubber lubricating sheets. The sides of the specimen were jacketed with
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Fig. 6.7 (a) True-
triaxial state of stress
applied to a cubical
specimen; (b) view
along the σ 3 direction
of the apparatus used by
Mogi (1971); (c) view
along the σ 1 direction. (a) (b)
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thin copper sheets to prevent the rubber from intruding into the rock, and a
silicon rubber jacket was used to prevent the pressurizing fluid from entering the
pores of the rock. Mogi used this apparatus to investigate the influence of the
intermediate principal stress on the yield and fracture of several rock types.

Haimson and Chang (2000) built a compact and portable true-triaxial cell based
on Mogi’s design. Their apparatus can subject a specimen to values of σ1 and σ2
as high as 1600 MPa and σ3 as high as 400 MPa. Normal strains in the direction of
maximum and intermediate stress were measured with strain gauges glued to the
respective faces of the specimen, whereas the third strain was measured with a
beryllium-copper beam fitted with a strain gauge. The center of the beam makes
contact with a pin affixed to the face of the specimen, and as the rock expands
in the σ3 direction, the beam bends outward, and its deflection is measured by
the strain gauge. This apparatus was used to investigate the influence of the
intermediate stress on the failure of Westerly granite, which was found to be
significant. No such effect of σ2 was found for a hornfels and a metapelite from
the Long Valley caldera in California (Chang and Haimson, 2005).

Hunsche and Albrecht (1990) describe an apparatus that uses three pairs of
double-acting pistons to apply three independently variable normal stresses to
the faces of a cubical specimen. Heaters placed between the specimen and the
pistons allowed the rock to be heated to 400◦C. The forces applied by each pair
of pistons were calculated from pressure gauges in the hydraulic lines. Deforma-
tion of the specimen in the three directions was measured with linear variable
displacement transducers (LVDTs), which essentially measure the change in the
distance between the opposing platens. Paraffin wax (at room temperature) and
graphite (at elevated temperatures) were used as lubricants between the platens
and rock. This apparatus was used to study the deformation of rock salt, and it
was found that the observed strength of the rock, defined as the maximum value
of the octahedral shear stress, depended sensitively on the ratio of specimen size
to platen size. Sayers et al. (1990) describe a similar apparatus that is fitted with
ultrasonic transducers in each end-piece, so as to be able to measure shear and
compressional wavespeeds under states of true-triaxial stress.

6.7 Diametral
compression of
cylinders

The difficulties associated with performing a direct uniaxial tension test on rock
have led to the development of a number of “indirect” methods for assessing the
tensile strength. Such methods are called indirect because they do not involve
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Fig. 6.8 (a) Cylinder
compressed between
parallel surfaces by a
line load W (per unit
length into page);
(b) typical fracture
pattern resulting from
this loading. (a)
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the creation of a homogeneous state of tensile stress in rock, but rather involve
experimental configurations that lead to inhomogeneous stresses that are ten-
sile in some regions of the specimen. The precise value of the tensile stress at
the location where failure initiates must be found by solving the equations of
elasticity.

The most popular of these tests is the so-called Brazilian test, developed by
the Brazilian engineer Fernando Carneiro in 1943 for use in testing concrete.
A thin circular disk of rock is compressed between two parallel platens, so that
the load is directed along the diameter of the disk (Fig. 6.8a). As the platens are
relatively rigid compared to the rock, they can be assumed to apply a point load
W (per axial length of the cylinder) to the two opposing loading points. With the
coordinate system taken as in Fig. 6.8a, the stresses along this vertical diameter
are, by (8.165),

τxx = −W
πR

, τyy = W(3R2 + x2)

πR(R2 − x2)
, (6.10)

whereas along the y-axis, perpendicular to the load, the stresses are

τxx = −W(R2 − y2)2

πR(R2 + y2)2 , τyy = W(R2 − y2)(3R2 + y2)

πR(R2 + y2)2 . (6.11)

By symmetry, these stresses are principal stresses. The largest and smallest
principal stresses occur on the vertical axis, through which the load passes. The
minimum principal stress, τxx in (6.10), is uniform and tensile along this entire
axis. The maximum principal stress, τyy in (6.10), is compressive and becomes
unbounded near the platens, but varies only weakly near the center of the disk.
At the center of the disk, the two principal stresses are, by setting x = 0 in (6.10),

τxx = −W
πR

, τyy = 3W
πR

. (6.12)

As the disk is in a state of plane stress, the third principal stress, normal to the
plane of the disk, is zero, and consequently is the intermediate principal stress.

When a cylindrical rock specimen is compressed in this way, failure typically
occurs by an extension fracture in, or close to, the loaded diametral plane, at
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some value of the applied load W , as in Fig. 6.8b. It is generally assumed that the
failure is the result of the tensile stress τxx = τθθ = −W/πR, and so the tensile
strength is given by the value of W/πR at failure. Tensile strengths measured
in this way are very reproducible and are in reasonable agreement with values
obtained in uniaxial tension. The Brazilian indirect tension test has been used to
determine the tensile strength of coal by Berenbaum and Brodie (1959), and of
various sandstones and siltstones by Hobbs (1964).

If the applied load is actually a uniform normal stress of magnitude σ , dis-
tributed over a small arc of angle 2α, then the state of stress near the points of
contact will be a uniform compression of magnitude σ . This will decrease the
likelihood of failure by shear fracture at the contact points, but has virtually no
effect on the stresses near the center of the disk. Hence, Brazilian tests conducted
with loads distributed over a narrow arc, such as 15◦, yield values of the tensile
strength that are little different from those obtained using line loads and give rise
to similar diametral extension fractures.

If jacketed cylinders are subjected to confining pressure p applied by a pres-
surized fluid, as well as to diametral compression, then at the center of the disk
a hydrostatic stress p would be added to the three principal stresses discussed
above, leading to

σ1 = (3W/πR) + p, σ2 = p, σ3 = p − (W/πR). (6.13)

This configuration gives a means of studying failure in situations where all three
stresses are compressive, but σ3 is small, as is often the case near an underground
excavation. The three principal stresses will be connected by the relation

σ1 − 4σ2 + 3σ3 = 0, (6.14)

so this test will determine a curve defined by the intersection of the failure
surface with the surface defined by (6.14). Jaeger and Hoskins (1966a) found that
the values of σ1 and σ3 obtained from these tests, using (6.13), agreed reasonably
well with those obtained in standard triaxial compression tests, although the
values of σ1 tended to be consistently higher than those measured in the triaxial
tests for the same value of σ3. They attributed this to the strengthening effect of
the intermediate principal stress, as discussed in §4.8.

The analysis presented above assumes that the rock is isotropic, which may not
be the case. Chen et al. (1998) developed a mathematical solution for the diame-
tral compression of a thin disk of rock that is transversely isotropic in the plane
of the disk. In this case, the analysis of the results is complicated by the fact that
the two principal stresses at the center of the disk depend, in a complicated and
implicit manner, on the values of the elastic moduli. Claesson and Bohloli (2002)
analyzed this solution further and derived accurate approximate expressions for
these stresses. Lavrov and Vervoort (2002) presented a solution that accounts for
the influence of transverse tractions applied at the rock–platen interface, caused
by friction, and showed that such tractions would have little effect on the stresses
at the center of the disk and hence little effect on the interpretation of tests in
which failure initiated at or near the center.
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6.8 Torsion of
circular cylinders

As discussed in §6.3, Young’s modulus, E, can be measured by subjecting the rock
to a state of homogeneous uniaxial compression. The shear modulus, G, could in
principle be measured by inducing a state of homogeneous shear stress in a rock
specimen. The shear modulus would be found from the ratio of the shear stress
to the shear strain. However, it is not easy to induce a homogeneous state of
shear in a piece of rock. But an inhomogeneous state of shear can be induced in
a circular cylinder by subjecting it to torsion. Analytical solution of the elasticity
equations for this configuration yields a simple relationship between the applied
torque, the angle of twist, and the shear modulus. Hence, measurement of the
applied torque and the resulting angle of twist will permit G to be calculated.

In a torsion experiment, loads are applied to the two ends of a cylindrical spec-
imen of radius a and length L, so as to create a torque M about the longitudinal
axis (Fig. 6.9a). It is convenient to imagine that the z = 0 face is fixed and that the
z = L face rotates within its plane by an angle α. A reasonable assumption for
the displacement field within the cylinder is that each plane normal to the axis
of the cylinder also rotates, by an angle that increases linearly from 0 at z = 0 to
α at z = L. In cylindrical coordinates, this displacement field is

u = 0, v = αrz/L, w = 0. (6.15)

From (2.275) and (2.280), the stresses and strains associated with these
displacements are

εzθ = εθz = αr/2L, τzθ = τθz = Gαr/L, (6.16)

with all other stress and strain components vanishing. It is easy to verify that
these stresses satisfy the equations of stress equilibrium, (5.107)–(5.109), and also
give zero tractions along the outer surface of the cylinder, r = a. The total
moment applied to the end of the cylinder, about the z-axis, is found from

M =
a∫

0

2π∫
0

τzθ r2drdθ = 2πGα

L

a∫
0

r3dr = πGa4α

2L
. (6.17)

Hence, measurement of M and α will allow G to be found.
Elimination of G between (6.16) and (6.17) yields τzθ = 2Mr/πa4, which

shows that the shear stresses within the cylinder vary from 0 at the center of

Fig. 6.9 (a) Torsion
of a circular cylinder by
moments applied over
the opposing faces;
(b) view of the z = L
face, showing rotation
of point A to point B by
angle α. (a)
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the cylinder, to a maximum of τzθ = 2M/πa3 at the outer surface. At the outer
surface, the principal stresses are, from (2.37)–(2.38), seen to be ±2M/πa3.

More complex, but predictable, stress fields can be obtained using hollow
cylinders. Talesnick and Ringel (1999) developed an apparatus that can apply
torsion to a hollow cylinder, superposed on a traditional triaxial stress state, and
used it to determine the five independent elastic moduli of several transversely
isotropic rocks: Loveland sandstone, Indiana limestone, Lac du Bonnet granite,
and Marasha chalk. Paterson and Olgaard (2000) developed an apparatus that
is capable of combining traditional triaxial stresses with large-angle torsion and
used it to study the rheological properties of Carrara marble under large shear
strains.

6.9 Bending tests Bending is used in rock testing, for measurement of E and for tensile strength
(Pomeroy and Morgans, 1956; Berenbaum and Brodie, 1959; Evans, 1961;
Coviello et al., 2005). It is also a very sensitive method for studying creep and
transient behavior (Phillips, 1931; Price, 1964). This type of loading produces
regions of tensile stress and compressive stress in the rock. The stress and dis-
placement distributions can be found from elementary beam theory, as outlined
below.

Consider first a rectangular beam of width b, height h, and length L, as in
Fig. 6.10. A moment of magnitude M is applied to the beam about the x-axis.
According to the classical Euler–Bernoulli theory, each planar section in the
x–y plane remains planar, but rotates about the x-axis, as shown in Fig. 6.10b.
Lines of constant-y in the y–z plane, which were initially horizontal, now form
circular arcs with C at their center. The upper fibers of the beam, y > 0, are in
compression, and the lower fibers, y < 0, are in tension. The so-called neutral
axis, y = 0, is neither in tension nor compression, so the deformed length of OO′
is L and the radius of curvature of the neutral axis is R = L/θ . The deformed
length of the upper face of the beam, BB′, is (R − h)θ , and its original length was
L = Rθ , so the longitudinal compressive strain in the upper fibers is εzz = h/R.
Similarly, the strain of the lowermost fibers is εzz = −h/R. The same analysis for
an arbitrary value of y shows that, in general, εzz = y/R, and so the longitudinal
stress is τzz = yE/R.

Fig. 6.10 Bending of
a prismatic beam by
moments applied at its
ends: (a) cross section
normal to the z-axis;
(b) side view, normal to
the x-axis.
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The total moment about the x-axis is given by

M =
h/2∫

−h/2

b/2∫
−b/2

τzzydxdy = bE
R

h/2∫
−h/2

y2dy = bh3E
12R

≡ EI
R

, (6.18)

where I = bh3/12 is the moment of inertia of the cross section, about the x-axis.
Measurement of the applied moment and the radius of curvature of the deformed
beam therefore provides a value for E. The greatest tensile stress, which occurs
at the lower face of the beam, is equal to

τzz(tensile max) = −hE/2R = −Mh/2I. (6.19)

If the moment is increased until failure occurs, this relation can be used to give
the tensile strength.

In practice, the applied loading is somewhat different from the case of pure
bending by end-couples. To treat the loading configurations actually used in the
laboratory, the following generalization of (6.18) is needed. For small deforma-
tions, the radius of curvature can be approximated as 1/R = d2y′/dz2, where y′
is the deformed position of the neutral axis. The initial position of this axis was
y = 0, so y′ = v, where v is the y-component of the displacement of the neutral
axis, in which case (6.18) can be written as

M = EI
d2v
dz2 . (6.20)

This form of the equation can be used for cases in which the moment M varies
along the z-axis. The following two cases are of importance in rock mechanics
testing.

6.9.1 Three-point loading

Consider a beam that is simply supported at its two ends and loaded by a point
load F at its center (Fig. 6.11a). It will be convenient to place the origin at the
midpoint of the beam and denote the total length by 2L. By symmetry, the
reaction forces at the two ends will each have magnitude F/2. By performing a
moment balance on a segment of the beam located between some generic point
0 < z < L and the right edge of the beam, it follows that the internal moment
acting along the face of the beam, normal to the z-axis, must be

M(z) = 1
2 F(L − z). (6.21)

The maximum tensile stress occurs again at the lower face of the beam, where
it is given by (6.19). According to (6.21), this will occur at the midpoint of the
beam, where z = 0 and Mmax = FL/2. Hence, the greatest tensile stress will be

τzz = −hFL
4I

. (6.22)
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Fig. 6.11
(a) Three-point loading
and (b) four-point
loading of a beam.
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The differential equation (6.20) for the deflection of the beam becomes

EI
d2v
dz2 = 1

2
F(L − z). (6.23)

Integration of (6.23), using the boundary conditions v = 0 and (from symmetry)
dv/dz = 0 when z = 0, gives

v = F
12EI

(3Lz2 − z3). (6.24)

The displacement at z = L represents the deflection of the midpoint of the beam
in the direction of the applied force F :

vmax = FL3

6EI
. (6.25)

This relation provides a means to estimate E from the deflection of the beam.

6.9.2 Four-point loading

An objection to the use of the three-point loading configuration to estimate
tensile strength arises from the fact that the maximum stress (6.22) occurs imme-
diately beneath the point of application of one of the loads, and it is not reasonable
to expect elementary beam theory to be very accurate at such locations. This
problem can be avoided by using four-point loading (Fig. 6.11b), in which two
loads of magnitude F are applied at z = ±a, for some value 0 < a < L. By
symmetry, the reaction forces at the two ends will each have magnitude F . In
this case, taking a moment balance for a segment of the beam to the right of the
midpoint yields

M = F(L − a) for 0 < z < a, (6.26)

M = F(L − z) for a < z < L, (6.27)

with similar expressions for the region z < 0. Hence, the moment is uniform and
equal to F(L − a) throughout the entire region −a < z < a. So, the magnitude
of the maximum tensile stress is

|τzz|max = Mh
2I

= Fh(L − a)
2I

. (6.28)
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In particular, this stress will occur at the midpoint of the beam, z = 0, which is
not located immediately under any of the concentrated loads.

The maximum deflection of beam can be calculated in this case to be

vmax = F
6EI

(2L3 − 3a2L + a3). (6.29)

The theory described above assumes linear elastic behavior of the rock.
Exadaktylos et al. (2001a,b) gave an analysis of bending that accounted for non-
linearity in the stress–strain behavior and also for the possibility that the elastic
modulus E may be different in tension than in compression. The model was
applied to three-point bending tests conducted on a Dionysos marble, for which
Ec = 0.8Et . They found that tensile failure occurred at the lower edge of the
beam, at a (local) stress that was consistent with the tensile strength measured
under direct uniaxial tension.

6.10 Hollow
cylinders

A hollow cylinder subjected to an axial load and an external or internal fluid
pressure along its curved surfaces provides a ready method for studying the
strength and fracture of rock under a variety of principal stresses. Among the
earliest tests on hollow cylinders of rock were those of Adams (1912), who
observed failure by spalling at the inner surface of the cylinder. His results,
along with some of their geological implications, were discussed by King (1912).
Robertson (1955) used cylinders of rock with different ratios of their inner and
outer diameter, stressed by fluid pressure applied to their ends and outer sur-
faces. He discussed his results, in which failure started at the inner surface,
in terms of elastic–plastic theory. Hollow cylinders subjected to axial load and
external fluid pressure have been used since then on a variety of rock types
(Hobbs, 1962; Obert and Stephenson, 1965; Santarelli and Brown, 1989; Lee
et al., 1999).

The solutions for the stresses in a pressurized hollow cylinder are given in §8.4.
Consider first the case of a hollow cylinder of inner radius, a, and outer radius,
b, subjected to a compressive axial stress, σ , and an external fluid pressure, po.
At the inner surface, the three principal stresses will be

τzz = σ , τθθ = 2po/(1 − ρ2), τrr = 0, (6.30)

and at the outer surface, the principal stresses will be

τzz = σ , τθθ = po(1 + ρ2)/(1 − ρ2), τrr = po, (6.31)

where ρ = a/b. The axial stress is the same at both surfaces, and as ρ < 1
by definition, it follows that the maximum and minimum principal stresses will
always occur at the inner surface, where the minimum principal stress is zero.
Depending on the numerical values of σ and po, the maximum principal stress
may be either τzz or τθθ . According to the common failure theories discussed in
Chapters 4 and 10, this specimen would be expected to fail at its inner surface,
at a value of the maximum principal stress that differs from the uniaxial strength



166 Chapter 6

of the rock by the strengthening influence, if any, of the intermediate principal
stress.

If σ > 2po/(1 − ρ2), then the principal stresses at the inner surface of the
cylinder are

σ1 = σ , σ2 = 2po/(1 − ρ2), σ3 = 0. (6.32)

For relatively small values of the outer confining pressure po and the inner radius
a, failure will occur much as it does for a solid cylinder under triaxial compression,
forming a single shear fracture across the entire cylinder at some small angle to
the longitudinal axis (Fig. 6.12a). For larger values of po and a, failure will
occur in the form of a conical fracture whose axis lies along that of the cylinder
(Fig. 6.12b). The conical fracture surface will be tangential to the direction of the
intermediate principal stress (i.e., the θ direction).

If σ < 2po/(1 − ρ2), then the principal stresses at the inner surface of the
cylinder are

σ1 = 2po/(1 − ρ2), σ2 = σ , σ3 = 0. (6.33)

In this case, failure occurs by spiral fractures that are parallel to the axis of the
cylinder and consequently parallel to the direction of the intermediate principal
stress (Fig. 6.12c).

Consider now a hollow cylinder subjected to an internal pressure pi along its
inner surface and an axial stress σ . If σ < pi, the principal stresses at the inner
surface are

σ1 = τrr = pi, σ2 = τzz = σ , σ3 = τθθ = −pi(1 + ρ2)/(1 − ρ2), (6.34)

and failure usually occurs as a planar, diametral extension fracture. If σ > pi, the
principal stresses at the inner surface are

σ1 = τzz = σ , σ2 = τrr = pi, σ3 = τθθ = −pi(1 + ρ2)/(1 − ρ2). (6.35)

In this case the intermediate principal stress is radial and helicoidal fractures are
observed.

In the general case, both internal and external pressures can be applied to
the cylinder, along with an axial stress. By using various combinations of σ , pi,

Fig. 6.12 Different
systems of fracture in a
hollow cylinder
subjected to axial stress
and external pressure
(see text for details).
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and po, large regions of the failure surface σ1 = f (σ2, σ3) can be probed. Alsayed
(2002) modified a traditional Hoek triaxial cell (Hoek and Franklin, 1968) so as to
accept hollow cylinders and used it to study the behavior of Springwell sandstone
under a variety of stress conditions. Hollow cylinder tests such as those described
above are of particular value in the analysis of borehole stability problems (Ewy
et al., 2001).


