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Rock Testing

7°1, Introduction

When a rock is being used for engineering structures there may
be two possibilities of using it.

(a) Rock on/in which construction will be made ;
(b) Rock with which construction will be made.
s

{Counstruction of dams, tunnels, underground power houses etc.
come under the first category. Dam is supported on the rock mass,
tunnels and underground power houses are made making cavities
or openings through the rock mass. Similar case is there when mine
shafts are made into the rock mass.)

Examp!es of construction, pertammg to the second category
are seen where rock mass in the form of aggregates are used for cons
truction of structures such as masonry dams, quay walls, jetties etc.
‘In such cases. properties of rock aggregates such as crushing strength,
impact values, soundaess etc, are determined in a laboratory and
-these are discussed in text books of concrete and roads.

In reck mechanics, we are mainly concerned with the strength
properties of the rock mass on which construction is to take place.
“When the load will be applied due to the construction of a structure
-it is to be seen as to how a rock mass will behave ; how much stress

:it can take and how much deformation in the rock mass will be there.

Engineers are mainly concerned with these informations, because
-after knowing these parameters only, they will be able to design the
structure. They will be able to fix the dimensions of different compo-
-nents of the strucrure.

Therefore, the mechanical or engineering properties of a rock
-mass which are to be investigated for designing foundations, hydrau-
ilic!structuces, underground openings etc. are—
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(i) Strength ; and

(ii) Elastic constants.

With strength properties, we can ascertain whether a particular
rock mass is suitable for a particular stress system or not. The-
strength properties, which are investigated for rock mass, are—

(@) Uniaxial compressive strength,

. (b) Uniaxial tensile strength,

(c) Flexural strength,

(d) Shear strength,

(e) Triaxial strength.

Elastic constants relate different types of stresses with the corres—
ponding strains. Sometimes, stress measurement in the rock mass-

is difficult especially in case of ‘in-situ’ conditions. But the measwme-

ment of deformatians can be done easily. In such cases, necessity of”
elastic constants arise. Therefore, a knowledge of measurement of:
elastic constants is also necessary for an engineer dealing with prob~
lems of rock mechanics. The important elastic constants-are—

(i) Modulus of elasticity, .. :

(ii) Poisson’s-ratio, . -,

- (iii) . Modulus of rigidity,

(iv} - Bulk modulus,

(v) "Lame’s constants. . .
7'2. Sampling PRER

The ‘behaviour of rock mass id-situ conditions are ‘not “gover--

‘ned by the materials of compositions but by the defects existing in:
the rock mass. Because on application of a load, the weakest plane

will be the joints, fissures, faults etc. along which the failure will.
start before propagation of failure in the body of the rock material.
That is why, great importance has been given to the methods of
“In-situ testing” in rock mechanics. But, always ‘in-situ’ tests may

not be possible. Sometimes, finance may be limited or heavy equipment:

may not be available. In such cases the engineer has to ascertain the
_behaviour of the rock mass with testing rock samples in the labora-
tory. Hence, great importance has been given to “‘Sampling” in rock.
mechanics. Rock mass in general is non-homogeneous and the pro-
perties of the samples taken from one portion of the rock mass may’
be different from those taken from amother portion. Therefore,.
samples collected must truly represent the rock mass, the properties-
of which are to be determined. To ensure proper sampling, following.
points should be kept in mind.

(i) Lithoiogical studies—so that regions may be identified:

which differ in their mineral compositions, nature of
cementing material and texture ;
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(if) Existence of bedding planes and their identification ;

(iii) Presence of planes of weaknesses such as cle

S avage '
joints, cracks etc, ; g¢ planes,

(iv) Presence of faults, dykes, folds if any, because rock pro-
perties in these regions vary much.
72’1, Sample Preparation '

Samples for laboratory testing are collected .in the form of
large blocks from the ficld. Out of these samples, test specimens are

prepared for a particular type of testing. While taking samples . from -

field following care should be.taken.

(i) Samples of hard rocks are taken by drilling closely spaced
overlapping holes or chiselling, if drilling equipment is no t
available ; ' ' S

(if) Samples from soft rocks should e taken with care. They
may be cut: by a rock saw ; Lt

(iii) 'Sometimes hard rock samples are taken after blasting.
Blasting, of course, should, be avoided. If at all it is.
necessary, care should be taken that high intensity of

_:blasting should not be-used. High blasting may produce
cracks in the rock mass due to which test result may be.
misleading ;

(iv) Sampies from greater depths may be obtained in the form
of cores by diamond drilling ;

(v) If irregulac specimens are to be tested then - sampling by
blasting should be -avoided because in case of blasting"
weaker portion of the rock may be brokea into very small
pieces aud while making specimen they may be left .over.

Therefore, in such cases, care should be taken that blas- -

ting intensity should not be too high. To overcome the
difficulty, sometimes a bigger block is broken manually
and spacimens are taken.

(vi) The collected samples should be marked on the map to
indicate their original position and orientation ia the
parent rock mass.

. 7'3. Specimen

When the rock samplzs are brought from field to the labora-
tory, the test spscimen are required to be prepared for a particular
test. The shape and size of speciman depznd upon the tyoe of the
test to be conducted. Ths specimen may be of regular or irregu lar
shape. Irregular shapes are ussd for spec_iﬁc tests but most of the
specimen for mech 1nical properties aie of regular shape.

Regular shapsd specimen are
(@) Cylindrical. .
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(b) Prismatic,
{¢) Cubical.

Most of the specimens for tests to determine mechanical pro-
perties are cylindrical. Since, they are obtained by drilling the bore
holes at different depths, they are used with minimum specimen
preparation formalities. Typical diameter range used for cylindrical
samples is 25 mm to 50 mm. Diameter of the specimen generally
coincides with the diameter of core samples from the bore holes.

Length to diameter ratios for different types of tests are &s .

follows.
Compressive strength test 1 2to3
.. Bending test . 1 3t07
Brazilian test : 05t01°0

(For tensile strength)

© To avoid the stress concentration at the time of testing it
should be seen that both the ends of the specimen should be perfectly
plane, parallel to each other and normal to the axis of the specimen.
Stress concentration causes the sample to fail at a smaller load.

To avoid surface irregularity the specimen should be cut by

disc saw and finished by a surface grinder.

In addition to cylindrical shapes, specimens are of prismatic or
cubical shapes also. From the irregular rock samples, first plates are
‘cut out. Next from plates bars and finally prism shaped specimens
are prepared as per requirement. At the time of cutting water is
continucusly poured to dissipate the heat generated which may cause
cracks in the specimen due to rise of temperature.

The result obtained from testing a single specimen may not
represent the property of the parent rock mass yet the result will be
pearer to the absolute value, if a large number of specimens are
tested. But unlimited number of specimens cannot be tested to get
an absolute value. To limit the testing work, it is necessary to ascer-
tain the minimum number of specimen to be tested without sacrific-
ing the reliability of the test result.

7'3'1. The minimum number of specimen to be tested depends
upon

(a) Variability of the test results,

{b) Desired accuracy.

The variability depends upon non-homogeneity of a rock mass
and the size of specimen. The smaller the size of the ‘specimen the
larger will be the variance.

Desired accuracy depends upon the importance of a structure
and the stage of investigation. . :
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The following relation from statistical theory gives the number
of specimen n to be tested. (Vutukuri et al 1974)

( 100+ -"—V_—)
B A n )
= "/ (71
( loo_i”_)
N
where V =coefficient of variation
p= a number
V=:;—>< 100%
where ¥=the mean value
- Zx,
N

s=standard deviation

_,\/{ Z (x;—x)’ }

The value of & depends upon the des;red confidence interval
and the number of specimen tested in N preliminary experiments.
The value p depends upon the permissible deviation. For perm:smbfe
deviation of 4 207 the mean value for p is 1°5.

For strength (compressive and tensile) determination, literatures

report that for marble 2 to 3, shale 5, sandstone 5 to 10, granite,
andesite and sandy tuff 10 or more number of specimen are required

to be tested. '_ . @’YK‘Q’% + @-Mw*\’)

7'4. Uniaxial Compressive Strength Test

In case of underground mines, rock columns support the
roof. Similarly, for other situations also, rock mass has to support
loads. For stability of columns and other supporting structures,
it is necessary to kmow the compressive strength of the rock
material.

The specimens to be tested are either cylindrical or cubical in
shape. But cylindrical samples are more common. The cylindrical
samples are cut to size by a diamond saw and surface irregularities

if any, are smoothened by a surface polishing machine. The length

of the specimen preferable should be 2'5 times the diameter. Other-
wise L/D ratio may be 2 to 3. The ends of the specimen should be
parallel to each other and normal to the axis of the specimen.

The Committee of International Society for Rock Mechanics
(I.S.R.M.) on Laboratory Tests (1972) has recommended the follow-
ing tolerance on dimensions of cylindrical specimen for compressive
strength test.

(@) The ends of the specimen shall be flat to 0'02 mm.

(5) The ends of specimen shall be perpendicular to the axis

of the specimen within 0°001 radian (3'5 minutes).

i
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(¢) The sides of the specimen shall be smooth and free. of
abrupt irregularities and straight to within 03 mm over
the full length of the specimen. .
Other type of specimen for test is cubical which has L/D
ratio 1.
' The specimen is kept between two Ioadmg platens of a com-
. pression testmg machine. "The applied load is read in the proving

AL ELLLL L Ll Ll

PROVING RING.

LCADING PLATENS
o CYLINDRICAL
QOCK SFECIMEN.:

Ed

. Fig. 7 1. Setup for umamal compressive strength test, ., _
rmg as shown in Fig. 7'1.. After putting the specimen it is seen thdt

the specimen is:in full contact with the loading platens. If there is-
some gap, the surfaces should be:

T - polished. If full contact is not
_ i there, the application of load will
' be on a lesser area and the sample

4_...;3-30 will fail earlier. Sometimes, the

: crushed piece may fly off the
H sample due to which some acci-
% dent may occur. To prevent this
!

the specimen is enclosed in some
flexible wire or piastic mesh.

_.-....—...._

) The Joad skould be applied

14-1-——-—-0-!"—-'1“

1
| .
- L i__ - at the rate of 0’3 to 1'0 MPa/sec’

- (=35 to 10 kgTjcm®) so that failure
. occurs in 5 to 10 miputes of time
tig. 71 (a) ‘Raie of loading is an important

factor for testing because strength depends on the rate of loading also.-
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Knowing the failure {oad and cross sectional area of a sample,
compressive strength of the specimen can be known which will be
equal to failure load divided by cross-sectional area of the
-sample. . _ :

If the specimens of different lengths are there, then the values
.canlﬁad}usted for D/L ratio of 1 by the formula suggested by
ASTM.

Cult

‘where o =Computed ultimate compressive strength of an

. (12)

equivalent cubical or cylindrical specimen whose

D/L ratio is 1. This value is also termed as adjus-
ted compressive strength.
our; = Ultimate compressive strength of the test specimen
whose length L is greater than its diameter D.
D=Dia. of a cylindrical sample and the side length in
case of a cubical sample.
L=Length or height of the sample.
In addition_to the rate of loading and specimen sizg, other
factors on which compressive strengt shape,

surface quality of Toading platens, rock Specimen_Surface, porosity
-and moisture confent of the rock. Compressive strength of a rock.
" decreases with an increase in its porosity. Water in rock pores reduces

‘the magnitude of internal friction of roCK resulting in a decreasé of
1ts strengih. Heénce increase in moisture content of the rock reauc_es
1is strength. The ratio of dry to wet strength of rock is known as its

-softening factor. For most of the cases this value is found to be

nearer to 3, which means that a wet sample has its strength one
third of a dry sample.

7’5, Tensile Strength Tests

Tensile strength may be defined as the maximum stresses deve-
loped in a specimen in a tension test performed to rupture it. In rock
‘mechanics a knowledge of tensile strength of rock is important in
.designing roofs and domes of underground openings. A rock slab
or beam subjected to bending also experiences a tensile stress.
Although rock is weak in tension, an average tensile strength of
rock has been found to be one tenth of its compressive strength.

Although the principle of measurement of tensile strength is to

A

Fig. 7-2. Shape of a specimen for tensile test. »
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" apply an axial tensile force to a rock specimen the method is not
successful due to difficulties in making specimen of rock samples for
the test. For a grip at the two ends, the shape of the specimen has to
be as shown in Fig. 7°2. With rock, it is very difficult to make speci-
men of such a shape, An alternative is to grip the cylindrical sample
at two ends with some fixing material, and then to apply the tensile

force at the two ends. Due to the gripping difficulties, the tensile
strength of rock is estimated by following two indirect methods.

(a) Brazilian test, _
- (b) Flexural strength or Bending test.
" 7'5'1, Brazilian Test

Thin discs are cut out of the cylindrical cores by a diamond-saw
in order to have L/D ratio as 0°'5. The periphery of the specimen
should be smooth.

This specimen is placed between the loading platens of the
compression testing machine as shown in Fig. 7°3. A compressive
load is applied to the specimen slowly till failure ‘takes place. The
rate of loading is nmormally 200 Nfsec (220 kgf/sec) so that failure-
takes place in about 5 minutes time. The test may be stress
controlled or strain controlled. If a loading frame is used which
works on an electric motor the test will be strain controlled. Because
speed of machine, thus rate of lifting of loading platen is controlled.
The tensile strength is given by the equation 7°3.

:-r’*—v.

LOATIG PLATEN

'T_- ‘

SAMPLE -

(@ Fig. 7-3
_ 2F
*= DL
where o1=tensile stress at failure in kg/cm®

F=failure load in kg,
D=diameter of the specimen in cm,
L=length of the specimen in cm.

_ Failure takes piace by splitting 2long a vertical diameter of the
specimen. . '

sl R S gt
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7°52. Bending Test

With a_diamond saw, a beam is cut out of the rock sample.

-The specimen is supported at two ends as shown in Fig. 7'4.

At the ceatre of the support a concentrated load is applied, The load
is increased till failure takes place. :

Tensile strength is obtained from equation 7'4.

— . 1 772 B
—— e — - —] @ 4
__A_ . __-Q_ T
Fig: 7'4. Bending tes_t. =
=M
“ In
_ P2
R
3 bd®(n
6 Pln '
=& ~(14)
where ar=Tensile streagth ia kg/cm?, .
: / M=Bending moment, '
P=Applied load in kg, ’
I=Length between supports,

B=Widih of the spcimesn,
d=Depth (thickness) of the specimen,

n==Distance from the neutral axis to the
farthermost fibre. - ' '

7'6. Flexural Strength Test

Test is also known as a modulus of rupture test or simple
bending test. Object of this experimant is to ascertain the strength
of rock in bending. Despending upon loading arrangement the test
is designed as

(@) Three point load test,

(b) Four point load test.

The specimen is prepared in a rectangular prism form so that
the cross-section of the spscimen is rectangular. Thickness is geaerally

more than the width. Length of the specimzn is gzanerally 10 times
the thickness.

e e —_p L& = A o8 R =
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Three Point Load Test

Ina three point loading method, the sample is supported at
two ends as shown in Fig, 7'4. At the.middle poiat of the span, a
concentfatcd load is. appi:ed till failure takes place. The. ﬁexural

i strength is obtained by equation 7°S.
42 pﬁ i

N 1 Y

) (—
B |

Fig. 7°5. Three point load test.
S : .(1°5)

|

2 bd®

where P =Failure load in kg,
I=Length berween supports,
b=Width of the specimen,
d=Thickness of the specimen.
. If the specimen does not fail exactly under the load, then flexu-
ral streugth is calculated by the formula
3 P.a
bd*.
where .. a=the average:distance of the failure line

|@' =

from the pearest support as shown in

Fl“ 7°5.
Four Point Load Test

In the three point loading merhod the failure occurs due to
1P _ bending as well as shear. For

' ' determination of flexural strength

I « S ' the failure = should be only
'T,—““T"“ by bending. For causing fallure

' ! of the beam by bending only,

i  the four point loading arrange-

VAN ! i /- ment is shown in Fig. 7°6. When
! 4 ,{ Ty failure takes place within middle

¢ i
lf'" "‘ v third of the span the flexural
_ : strength o7 is given by ‘equation
Fig. 7°6. Four point load test. 7.
op= —LL | A TT)

bd?

oo d -
LT Ot O T

(76)
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And if the failure is beyond the middle third it is obtam*d by
equation 7°6.

77. Shear Strength Test

A knowledge of shear strength of a rock is necessary to deal
with the situation where the rock mass is subjected to shear, A few
-problems dealing with shear stress are the stability of rock slopes,
stability of a structure against sliding on its base etc.

In general there are two methods of test-for evaluation of shear
-strength of rocks.
(a) Direct shear strength test.

() Indirect shear test which popularly ‘is known as punch
shear test.

Direct shear strength test further is done by two methods.
(i) Shear box test.
{if) Shear test on rock cubes:

7T 1. Shear Box Test .

A rock specimen in the form of a rectangular prism is made of
the standard size. Standard size _means that the a1men510ns of the
prism should be such in the shear box. The box
corsists of two parts—an upper_and a Jower part. e lower part

moves over rollers w_hileﬂfrough the upper part a fixed normal load”
1S_applied. Failure plane is defined in this test which is along meeting
plane of the two halves. Hence while preparing a specimen, care
should be taken that weakest plane of the rock mass specimen lies
.along the pre-determined plane of failure.

Aftei putting the speci in the shear box, a fixed pormal
load isapplied on thc sample through a loading pad orizonta

-Shear force is X. _The horizontal force 1S (ncreased -

Gan Ay

1040

Figz. 77. Shear box test.
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p
Normal stress  on= -A—
. T
and shear stress =T _
where . '~ A=Cross-sectional area of the sample,

P=Normal load,
T=Horizontal or shea: load.

If the normal stress aa on the sample is same as that expected
on the rock mass in the field then shear stress = at failure will be-
equivalent to shear strength of the rock mass.

If several tests are done at differeat normal loads then a " graph.
is plotted between normal stress and the corresponding . shear stress.
The line joining the points is the coulomb failure line and its inter-

cept with ¥ axis gives the cohesion value ¢ and its inclination with.

horizontal i.e. X axis gives the angle of internal friction ¢ which are
known as_shear strength parameters The relation is expressed in
‘equation 7°8.

T=c+0a tan ¢ . . -(7'8)-

It ' c=0,
then : T=S§=0n tan ¢ ' .« (7°9)~

772, Dlract Shear Test on Rock Cubes

The test is carried on a rock cube of a standard dimension. The-
length of the cube varies from 5 cm to 15 cm.

e
e ”

L

[ e A . Erl Lo 8 A
— e L T TITIIT

Fig. 7-8: Block shear test.
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The cubical sgecimen is placed in the holder diagonally at _ap
angle of 457 with the horizontal as shown in Fig. 78. The cube with
The Rolder is placed between two Joading platens of a compression:
machine The Joading device transfers the vertical IEHTEThk-

specimen forcing the rock cube to shear along the predetermined
place.

oe o
The normal stress on= !ii}—g—- - (7T10)
o .
Shear stress = _P_cgi_fﬁ_ (T1L)

7'7'3.* Punch Sheaf Test

In this test, the ghear strength of a specimen is. evaluated by
punching shear. The sample is taken in the disc form of thickness t

The test equipment consists of a piston shaped cylindrical jig
having projected end. This cylindrical jig fits in a hollow cylindrical
block, The disc shaped sample is placéd at the bottom of the cylindri--

cal block aud thie piston is put over the sample. Now whole arrange-
ment is put between the platens of a loading machine and the load

ied. TheToad Pt h tt is .
applied e Toad P to punch the sample is noted

The punching shear strength s is calculated from equation 7°12.

SPECIMEN

HOLDER ROCK SPECIMEN

N\
\

M
(a) (b)
Fig. 7°9. Punch shear test.
P P 71
s= A=;E}_ ..-(’:'lr 12}
where : A=Circumferential shear area

t=Thickness of the disc
d=Diameter of tbe puncher.



Punching shear strength of dry rock specimen is appr ately,

_ @mm of w rock specimen.  Although results vary
widely from 287, to = 37),, the test is done due to its .
- simplicity. '
- . 78. Test for Elastic Constants’

~ Different types of Elastic constants have been named earlier in
this chapter. We know that within elastic range these canstants help
in the determination of stresses within the body of the rock” mass if

- corresponding strains are known.

¥ _ . When a tensile or compressive stress is applied to a specimen,
within the range of elastic limit the ratio of stress to strain in the

- direction of applied stress is known as Young’s modulus of elasticity
or simply in short form “Modulus of elasticity”. It is designated by
letter “E”’ universally. ' .

: If-a.shear load is applied to- a specimen, then the ratio of -
i - shear stress to the corresponding shear strain is known as the shear
|- modulus or the modulus. of rigidity and is commonly designated by
the letter G. : '

When a specimen is loaded, axial strain takes place and this
axial strain is accompanied by a lateral strain. If compressive load
is applied to.the specimen the specimen expands laterally and hence

- the lateral strain ; ., positive whereas in case of a tensile load on the
.~ specimen, an ext ension of the specimen takes place and the specimen
. stretches due to 'which there is a shortening of its dimension in the
lateral direction. Hence, the lateral strain in this case is negative.
B The ratio of lateral strain to axial strain is known as Poisson's Ratio
' and generally, it is denoted by symbol “v”’. ‘

In general, the elastic constants can be measured by two
methods,

" 104 :
' 124 ROCK MECHANICS FOR-ENGINEERS -
t

,i

(i) Static methods, (ii) Dynamic methods.
781, Static Methods

The basic requirement for the evaluation of elastic constants is to
-stressing a test spscimen and then to measure -the corresponding
strain. At the time of loading, care should be taken that the load
being applied should not be so much,
: : r that specimen may .cross the elastic
A : — limit. Hence, the elastic constants r ay
: T Mo p = ““": I be obtained by simple compression
| |
- L
Sg I

on test, Direct tension test, Brazilian
test or Bending test. -

1
1
'| -
! If a prismatic specimen, of cross-
T DR sectional area A4 and length [ is loaded
._l_ LS Dy with a compressive force P uniformly
1 R distributed over the area, them there
e shall be a contraction in its length
Lo paralle! to the load and expansion at
right angle to the load axis.
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Axial strain e=-OL
L
and lateral strain = —‘%)—

where D is the diameter of the specimen,

Assuming the material to be linearly elastic, tke modulus of

elasticity in compression

_ Stress "¢ _
Strain € .- -
__Pl4 _ PL '
T ALILT AL4 . (T13)
i ’ i _€¢ AD/D
and Po:sso_n s ratio v =" NS
ADL _ .
= ALD . w(7°14) -

Measurement of Elastic constants involves a measurement of

stress and -the corresponding s_trains._ Stress can be known by the
load applied and area of specimen-on-which the load is acting. Strain

is known by knowing the original length of the specimén and the
change in length due to the application of load. Change in-length -

(i.e. deformation) measuring instruments are of three different  types,

Their grouping is done on the method of principle of their working. -

They are grouped as
(a) Mechanical strain gauges,
(k) Optical strain gauges,
(¢) Electrical strain gauges.

The basic requirement of strain gauges are that they should be -

able to measure strain with an accuracy of lux. The gauge size

should be small so that mounting on a small specimen may also be -

doné easily. The response of the gauge should be linear to the defor-
mation it measures. It should have remote reading facility. Electrical
-strain gauges satisfy all these requirements and hence, are mostly
used for strain measurements.

7:8'1'1, Test Procedure

Value of the elastic constant is evaluated by an uniaxial com-

pression, uniaxial tensile or flexural strength test. The choice depends

on the tvpe of loading expected on the rock mass in the actual field
condition. .

~ The specimen for the test is preferrably cylindrical and
it is preparec in the same way as that for uniaxial compression
test. '
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The specimen is kept between two platens of the loading
-machine. For measurement of a strain, the most suitable method is
-to affix electrical strain gauges on the specimen, but the easiest
method is to put dial gauges one vertically and the other laterally to
measure the vertical and the lateral deformations respectively. To
.account for unequal deformation more than one gauge may be put
both vertically and laterally and average values are taken. The
arrangement is shown in Fig. 7°11. If the loading arrangement is

~PROVING™
RING

- _ROCK
/SPEdMEN

DIAL GAUGEZE.

T FOR LATERAL

_ _ DEFORMATIELS

_Fﬂ=___'-'®3 . c@ =]

\

1\

[

d B
I~ DIAL GAUGE - -
: \-_.__{Fdﬁavgukw
= DEFORMATIGRR

==

A

Fig.7'11. Set up for measurement of vertical and lateral deformations.

.stress controlled, then the rate of loading should be 05 to 1 MPa/
-sec (=5 to 10 kgf/sec). Im strain controlled test the rate of loading
.should be less. During plastic deformation, the strain increases at
even a constant load. Hence, a strain controlled loading is
-preferable. o

After the test has been done, strains at different stages of load-
ing are calculated and stress or strain curve is drawn. If dial gauges
‘have been used for the measurement of deflection, calculation of
.strains are done with deflection readings. In case the electrical strain
gauges have been used, the strains at different stages will be obtained
.directly.

- The portion “I” of the total length of the specimen L, over
which the change in length is measured, is known as base-length.
When change in length is not measured along full length, or along
width of the specimen but only over a limited portion, then only this
;limited length is taken as the base length in the calculation of strain.
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“The modulus of elasticity (E) is obtained by stress-strain graph in one
of the following methods.

(¢) The ratio of an ultimate compressive strength to the
corresponding strain .

o
ie. E=-—"%
€
Lyipp=—=—-
T Qar ===~ '
‘]',\ }'
1
) sl
n | LINE TORGENT T0 THE Tt b=
0 0y b - A curve 4T pe Pis0% g ) L
& " . . / l
[V TR
i 1
f/ 1
0 1 -
FRATE(E) &>
STRAIN (8) — . STRATECE)

Fig. 712

(b) By noting down slope of the line which is tangent to the
stress-strain curve (tangent modulus) at the 50% of the
ultimate compressive strength.

(¢) By secant modu_his at 507 of ultimate compressive strength -

which means that the slope of the line which joins the

point corresponding to 5074 ultimate strength on tbe curve
to the origin.

The modulus ratio is defined as the ratio of the tangent
.modulus at 50% ultimate 'strength to the ultimate .strength.
‘Description of a rock mass is also done on the basis of modulus
tatio. '

_ __Lateral strain
Longitudinal strain
€a

El

Poisson’s ratio

7812, Young's Modulus ‘by Brazilian Test

Modulus of elasticity and Poisson’s ratio can be evaluated by
‘Brazilian test also. At the centre of the sample, two electrical strain
gauges—one in vertical (in line ofloading) direction and the other
in horizontal direction—are put respectively. Otherwise a 90° strain
gauge rosette is put at the centre of the specimen. The foad and
corresponding vertical and horizontal strain readings are noted. E and
4 can be cbrained with following relations.

g ———— 14 i
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‘For a'plane stress case

- 3entev . .
v (3w+m ) . - (7°15)
E=— GP_(]'_—?....)___ '. ---(7'16)‘

| n Dt (ev+em)

For a plane strain case,

—— {_ff3e= ) :
v { 2 (ev—exn) -m(? 17
__[6Pa—w(1=2y) o
| E [ ~D? (vemt(1—v)ev) J - (T'18)
where - . .P=Applied vcrtzcal Ic-ad _ . '

D=Diameter of the test specxmen, c

t=Thickness of the specimen,

ev==Strain at the centre along -the verticak
axis, . .

ex=Strain " at’ the centre along honzontal
axis.

‘For an accuracy Wlthln SA, the gauge length shouid not be:
more than 007D, - : )

7 813, Young s Modulus by Bendn;ingest o

.i - The value of Young’s modulus'can be . known by bending test
also The loading may be- three-point or-four-point as -shown in
Frg 7°5 and.-7°6 respectively. yAs discussed earlier, four point loading
is a case of pure bending and hence this method gives a more
accurate result. Deflection at the centre of the beam is measured by

a dial gauge ‘

Fig. 7'13. Four point [oading.
For a three point loading,

e 3
. E= Zf‘lz;? o (T'19)

and for a four-point loading
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3 pI®
E= W -(7°20)
whsre P=Vertical applied load,

b=Width of the specimen,
d=Thickness of the specimen,
/=Span of the beam (specimen)
and y=Deflection of the beam at the centre.
For the same rock, modulus of elasticity depends on the type
of loading by which it has been determined. Hence, modulus of
elasticity in compression, tension and bending tests differ. They have

been related by equation 7'21 which was proposed by Adler
(Adler 1970).

_ 4E:E:
 WE.AHA E
where E», Ec and E: are modulus -of elasticity in bending, com-
pression and tension respectively.

782, Dynamic Methods

By - (7°21)

Sometimes, the rock-mass is subjected to .a .transient .dynamic.

loading also. To know its-behaviour or response for such .a load-
ing, it is -negessary -to know .the elastic constants by  dynamic
metheds. Then only its reaction to dynamic stresses can be ascer-
tained.

The dynamic elastic constants are calculated by measurement
of velocities of elastic waves. Details about different types of
elastic waves have been discussed in the chapter dealing with dyna-
mic properties of rocks. In a broad sense elastic constants of rock
mass can be determined in field as weall in laboratory also. Needless
to say that field measurements are more realistic. However for a
preliminary work or an approximate analysis, the laboratory methods
can be used. The methods used to determine dynamic elastic cons-
tants in laboratories are

(i) The resonance method,
(ii) The tltrasonic pulse method.
7821, Resonance Method

When a cylindrical or prismatic bar is given a longitudinal
vibration, the length of the bar (specimen) contains an integral
number 7 of half-wave lengths. If / is the length of the specimen and:
A wave length of vibration, then

nA
=5
l
wave velocity V=Af= 27 .(T22)
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[ is the resonant frequency of any mode of vibration.
The modulus of elasticity E is obtained by equation 723

_1rars ] .
E=— [_; o - (7723)
where n=Number of modes of vibration

p=Density of specimen

k=Correction factor which depends on
shape, size and Poisson’s ratio of the
specimen gnd wave length

A typical set up for the resonant method is shown in Fig.
714, : , '
. The sine wave oscillator and exciter are tuned to the resonant
frequency of the rock. Mechauical “vibrations are induced in the
specimen and the specimen is caused to vibrate as a whole in one of
its natural frequency modes. Mechanical vibrations of thé specimen
are converted to an electrical signal by the pick up and after amplifi-
cation through the preamplifier fed to the: oscilloscope.: The output
_ of the oscillator is directly fed to the oscilloscope also for a compari-

son of signal which passed’ through 'the specimen and after being
received by pick up is fed to the oscilloscope. By observing ampli-
. tude and Lissajous figures on the oscilloscope the resonant frequency °

2l .

S

OSCILLATOR OSCILLOSCOPE
; - ? ' . ? c r .\ [
i S— — _I‘

FREQUENCY !‘— '
"} COUNTER ! . . .k

| MATCHING
TRANSFORMER

Fig. 714

can be identified. When resouance occurs, the resonance frequency
can be read on a frzguency counter. Knowing resonant frequency f,

1

modulus of elasticity £ can be calculated by equation 723,

¥
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7822, Ultrasonic Pulse Method

In this methed a mechanical impulse is given to_the spedimen
~which is in the form of cylindrical or prismatic bar. Time ¢ required

for the pulse to traverse through length / of the specimen is noted
and;velocity ¥ of wave is calculated by the usual relation

V=It

The modulus of elasticity and Poisson’s ratio are calculated by
equation 7°24.and 7'25. '

E= g Vs® (3V!2—4V32)

Vit=Vs? ~(124)
__ VEZ"" 2V3?‘ h '
X5 (29
where p=Density of the rock mass

V1 =Longitudinal wave velocity
Vs==Shear wave velocity., '

The set up for the measurement is shown in Fig. 7'15. A pulse
generator which is also known as an exciter, generates a short dura-
tion electrical pulse and transmits it to the “driver” or “‘excitor”
transducer. By the excitor transducer the ¢lectrical pulse is converted
into a mechanical impulse which is transmitted to the specimen. The

PULSE GENERATOR

TLDIGITAL !

| PRINTER ,

GECH D o oe e O .

PO OPE S
L)
1

PRESIURE

L}
Fig, 7"15
pulse travels through the specimen and when it reaches at the other
end, it is picked up by “pick: up” transducer. The pick up transducer
acnin chavges the mechanical impulse to an electeicel signals which
after being amplified through 'the amplifier %5 fed to the cathode rav
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oscilloscope. The moment at which the wave reaches the oscilloscope.
can be known by its screen. By an automatic arrangement in timer the
time of starting of the pulse through the pulse generator and being
received at the uscilloscope (after passing through the specimen) is.
noted down automatically and recorded by the digital printer. Thus.
knowing the length of the specimen and finding out time for the
wave to travel through the specimen, velocity ¥ of the wave is obtai--
ned by relation }’=/jt. Then with help of equation 7°24 and 7°23-
modulus of clasticity and Poisson’s ratio is calculated.

Out of the two methods, the ultrasonic pulse method is better-
because it give a better result. :

‘In situ” method for determination of elastic constants will be
discussed in the chapter “Dynamic Properties of Rocks”.

W_'

N X
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Creep Behaviour and Rheological
Models

. 'W
81, Loading Diagrams

When a material is loaded, the stress-strain curve is linear initi-
ally and the path is reversible upto a particular limit, which is known
-as the elastic limit, beyond which if the material is loaded the curve
is not reversible. For example, consider the two curves of Fig. 8'1.

g Q o I ‘
-
l ’f t é !
! L] r{'E
=) L‘_;_ - ;’ JJi -
2 W
\ ’ - ¥
W d =
'&u_ fi n i
B A
't
J o] Z :
[ z STRAIN (&) — STRAIN (E) —»
(a) )

Fig. 81

Along the path OP, the behaviour is elastic i.e., path is reversible.
‘Once the point P is crossed i.e., ¢ > g, the path is no longer reversi-
ble. If the sample is unloaded, after reaching point @, then the un-
‘loading path is given by QS which is parallel to OP. After unloadiog,
the strain represented by OS is known as permanent strain and stress
a, is defined as the yield point. If the test sample is again loaded the
path is reversible along SQ. But once limit Q is crossed again it be-
comes irreversible. Stress at O represented by oq is defined as current
yield point. In figure (&) aq is a function of permanent strain OS and
illustrates work-hardening but in figure (b) the stress oq is a constant
and the material which shows such a property is known as perfectly
plastic. On set of plasticity is indicated by the irreversibility of the
path beyond the yield point P. Thus plasticity is said to occur if the
stress crosses the yield point, beyond which the permanent strain

.appears.

Most of the rocks exhibits both instantaneous and delayed des
formations when they are loaded, and therefore they are known a-
“‘viscoelastic™.

133
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82, | Creep ‘/
1§'(LCTWF' occurs due to plastic deformation. Hence, even at a cons-
tant load, there will be a deformation in the body with respect to
f

i

STRAIN ————>

. R
FPRIMARY | . STLOHDARY.

P i

/ TIME ———»

Fig. 82 -~

time. And this phenomenon of increase in strain during the course
of time under constant stress is defined as creep. Fig. 82 shows the
rESUTof @ oreep test in which stress increment is applied and held
constant for record of increment in strain with time. The curve has-
got three parts. The first part is primary creep which just follows.
after application of the load increment and the strain decreases with.
time. In the secondary creep which is 2nd part of the curve, the:
strain ratio is constant and in the third part of the curve, which is-
known as tertiary creep, the strain rate increases with time until the:
specimen fails or ruptures.

8'3. Creep in Rocks

The creep phenomenon in rock is explained due to two reason s
cracking and mass flow. In some types of rock (e.g. rock salt) it is
due to cracking while in some (e.g. uncemented clay rock), it is
due to a mass flow.

Because of the occurrence ot dislocations, every crystal of the
rock mass contains many microscopic regions of high internal stress.
Ifa load is applied, these regions move easily which results in a.
measurable plastic deformation. Rise in tempesature of rock facili-
tagtgidislocation movements because of thermally activated vibrations:
of atomic and ionic particles about their equilibrium position. Ata
high temperature, these vibrations becomes so strong that a constant
external load gives rise to a steady increasing deformation whieh is
known as creep.

Some rocks such as gabbros, granites etc. show little creep when
subjected to uniaxial compression, But in some rocks the creep strain
exceeds the instantaneous elastic deformations. An extreme example
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of such a type is rock salt. Inrock salt, creep i.e. deformation in
rock with time at constant load has been observed to take place up
to a considesrable long time. Even at a lesser stress there is creep in
rock salts. Hence, several research work has been reported for the
study of creep behaviour in rock salts. :

Some of the coacepts derived from investigations regarding creep
are summarised below :
1."-/l"he rate of creep for an openiog decreases with age.
247The rate of creep increases with the depth of the opening
from the surface of the earth.

3\./T1}° p_Iasticit_y of some of the rocks e.g., salt rock, increases
with increasing temperature, and, therefore, creep rate is
greater at higher temperature.

4;\,-/Fine grained materials are more creep resistant than coarse-
. p .
grained at a lower temperature, however it has been repor-

ted that elevation of temperature reverses the case.

5. Based on actual field data the creep rate in a mine has been
expressed by

de —kt '
7 Ae .(8°1)
where = =cregp rate
dt
A=constant
t=time.

Another equation based on triaxial extension creep test has bzen
given by Stag.
e=Ke™m™ .- (82)
where e=axial strain on a cylindrical test spscimen
c=stress difference in 1b/in®
t=time in hour
K, m and n==constants

For a particular test on salt rock the values of X, m and n have
beed reported as 1°87 X 1073, 036 and 2'98 respsctively.

831, Measurement of Creép

The measurement of creep for a rock specimza can be done by
subjecting a cylindrical specimen at a constant load and measuring
the strain at different time intervals till the time strain curve bscomes
asymtotic. The load is increased in stages and for each stage of
loading, strain is noted at different time intervals. Ths strain measure-
ment equipment should be very accurate in order to measure very [2ss
values which occur during the creep process.

|
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Measurement of creep has been done in field also. One of the
typical measurement in salt rock has been reported by Reynolds and

Gloyna (1961).

An opening of 105 m width and 7 m height as reported was
made in the mine (opening made for mining purpose may also be
used) and in this opening the creep measurement was done. For ver-
tical creep measurement following procedure was made.

The measuring equipment consisted of 2 measuring rod with a
dial gauge attached to one end and a standard-length reference rod
6'6 m long. Two pins were fixed at roof and floor of the opening
respectively just vertically to each other. The distance between two
pins was determined by comparing the dial gauge reading betweent
the pins to the reading for the standard length rod. Thesetups’
shown in Fig. 8 3. Observation of deflection in the dial gauge was
made at different time intervals (of course, in years).

MEASURING ROD

Mine floor Fig. 83 Mine opening

832, Estimation of Creep Deformation

If log of creep is plotted versus time on a semi-long plot the
equation 8'1 will give a straight line plot. The constant A in the
equation is the intersection of the line with y-axis and the rate cons-
tant k is the slope of the line divided by 0°434(1/2'232) to change the
base of log. The resulting equation for.the particular test which is
plotted in Fig. 8’4 is

_ de.
dt
=003 ¢705% ¢ C L (83)

Creep Rate
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An estimation of the tota_l amount of deformation which will
occur can be made by integrating eq. (8'3) between limits

=0
.and =,
Giving

=003 I (8*0-635 |) dt
t=0
=47%
“This corresponds to an ultimate reduction of 33 cm in the heigh
.of an opening which is 7 m heigh.

“The above procedure gives an idea of importance of creep study
~for rock masses. We have seen that creep isa response of strain
to stress which is a time dependent movement of rock under sustained
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Fig. 8'4

-oad and this occurs due to a plastic displacement. Hence for problem#
relating to openings in rock mass at deeper strata, or at great depths,
a knowledge of creep behaviour of rock mass is absolutely necessary.
Because, at great depths such as mines, the rock mass is considered to
be in plastic state due to huge overburden pressure and if an opening
is made, creep will occur and its estimation is necessary for perfect
design and performance.

e e g e e 4k
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It appears that no general equation exists which adequately de-
fines completely the creep properties of all types of rock mass. This
property varies from rock to rock and other factors also. Since the
process of creep is non-linear because therock behaviour is changed
by each new load increment and it order to calculate stresses and de-
formations in non-linear viscoelastic materials, the properties are
determined and used as functions of stress. There is no ideally visco-
elastic rock. However, theory of linear visco-elasticity are used in-
crementally to solve time dependent problems in a similar way as
theory of linear elasticity is used to calculate stress-strain for time:
independent problems. '

It is possible to fit creep curves empirically using exponential or
power functions. If creep data are fitted in models comprising of
springs and dashpots, the results of the solution can be used to a
great extent.

8'4. Rheology and Rheological Models |

Rheology is defined as the study of materials in a fluid state as.
a rate process. Hence rheological models are time-deformation-
dependent stress models. ' .

The simplest rheological model is the spring element or hookean
model which obeys Hook’s law. Itis shown in Fig. 8'5 (a). If the
extension of the spring under application of the applied stress is ins-
tantaneous, the relationship between stress and strain is described as
follows, :

a=ke - (L04)
where g=applied stress,
k=constant,
e=strain.
A
J W e
(a) Hookean. . (b) Newtonian.

a

] —T s
0 T;/;/;t;gv 7777

(¢) Yield stress.

Fig. 8'5. Elementary rheological models.
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If there is a dashpot analogous to the shock absorber in an
automobile, it is known as Newtonian model as shown in Fig. 8°5 (b).
For the stress-strain behaviour characterised by a constant rate of
strain under the applied stress, the model is best represented in terms-
of a dashpot.

The strain is related to the stress through the following relation. -

g=n-2c. .
dt - {8'5)
* where n=viscosity in units of stress X time.

The condition of a minimum stress level causing strain or slip’
can be represented by a model analogous to the block sliding down a
plane. Such a model is known as yield stress model as shown in
Fig. 8'5 (o).
o< oy for e=0
¢>0,  for finite movement of strain ¢
ag=frictional resistance
g==constant maximum value
The primary problem in the use of the elemzntary Hooken and’
Newtonian model is the choice of the coefficients. The spring cons-

tant in the Hookean model describes the elastic nature of the spring.
The choice of spiring constant becomes critical, since this should not

only describe the elastic deformation at loading but should also repre-

sent a linear stress-strain rebound.

" It is to be noted that behaviour of rock mass can not be des-
cribed by any of the models. Since there are no ideally linear visco-
elastic rock, their behaviour can be deseribed by composite models,
which are combinations of the fundamental models as decribed above.-
The degree of accuracy between predictions based upon mathema-
tical formulation and observed behaviour depends on the accuracy’
with which a composite model is selected.

8'5, Different Rheological Models
851, The 5t. Venant Model
St. Venant Model is obtained by combining the Hooken model

g E =Ga
. -~ m - [
1
TIiTy 7 0y £=_‘-’
(™

(a) Model Fig. 8'6  (:) Stress~Strain curve
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with Yield Stress model in series. The method of loading is such that :
spring can carry only a compression stress. ¢ can be increased linearly if;{
with corresponding strains until e=g,, when the yield point is reach- |
~ed. Fig. 86 shows the model. '
852. The Kelvin Model f

A parallel coupling of a Hooken and a Newtonian models
makes the Kelvin model as shown in Fig. 8'7. This model is also
“known as the Voigt model.

For the parallel coupling ' s
. €Hookean —€Navionian

..and G=0Hoksan~ TNewronfan

Hence, the mathematical formulation for stress would be

omketn . (8°6)
a __ k de .
.or ) = - e+-dr . (8'7)

The general form of solution of the differential equation

_ dx. . _ ' !
N=Mx+ —— isgiven'b )8
4y issivenby

: x=e—J-Mdy'(JLNe+J-Mdy +C )

Hence, solution of the. equation (8'7) is given by

s?e._.f%dr[j% e J'.,?ﬁ-dr +C :l +-(8'8)

e=(
~when t=0 for o
© "e=constant

=0gc

&

Te
or = ——
¢ k

Hence the eq. (8'8) can be written in general from as
—kt —kt

k k
-and for 6=0, z

{



CREEP BEHAVIOUR AND RHEOLOGICAL MODELS 1418

ke
T¢
‘=';r( 1=’ ) ~(89)
The strain-time curve for equation 8'9 is showa in Fig. 8'7. At
time ¢y, If o¢ is released then

€E=€y

and the equation for the relaxation curve is
—k(t—1)

e=eg e 1 -(8°10) -,

A suddenly applied constant shear stress causes shear strain at
an exponentially decreasing rate approaching zero as time increases.

*
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(a) Model.

STRAN RELEASE

{ VN RELEASED
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(b) Time-strain relationship.
Fig. 87
8'53. The Maxwell Model

The Maxwell model consists of a Hookean and a Newtonian
model in series as shown in Fig. 8'8. Since ¢ is common to both the

elements,
€Totar=¢cHookeon T €Nswionian

Putting values of strain
c ot
£=--k—+_;],_.. "-(8.11) .

The equation represents an instantaneous deformation due to
an applied load followed by a time dependent deformation given by
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.the dashpot. The strain-time diagram is shown in Fig. 88 (b).

v

(@) Model.
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"2
g Ry T §
L5 ] “T -
%%
]

TIMF () ——

(b) Time~~strain curve.
Fig. 8'8

8'5'4. The Bingham Model
If it is required to impose a restriction on the strain beyond the

~yield point stress, then a Newtonian model can be put in series with

‘St. Venant model. The resulting model is Bingham model as shown

Lio Fig. 8°9.
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(a) Model.
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(b) Time~strain curve.
Fig. §-9
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o
As long as ¢ < g, ==

g > gy and the friction block will move. But the dashpot will start
influencing the deformation. Ths strain now can be given by

€Total = €Hookean+ ENewtonion
or €T==€spring €Dashpot

- = 6 g (oot
—+

Uy €=
1

L]

-(812)
855, The Burger Model

The model is shown in Fig. 210, Since it combines the Kelvin

and Maxwell models in series, .h: solution of this rheological model
is the sum of the solutions cf the two models.

.k
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(2) Model.
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(b) Time~strain curve.
Fig.8'10

e=*§;+~-——- —[ = L'~-‘~]---(8_'13J

In view of the nature of the general creep curve shown in Fig.
82, the Burger Model is the sunp}ut mode! that can be used to gva-
luate t1¥ strain up to iite starting of tertiary crecp.  Other types of
models can alsa be tried but the Burger modzi describes most of the
practical cases in rock fiow problems.

Once the yield stress is reached

- e ——————



