' Testing techniques

11.1 Rock properties

The term ‘rock properties’ refers here to those intact rock or rock
mass properties that are needed for engineering design purposes. For
example, the rock properties may be used to

« obtain a general impression of the mechanical nature of the rock
mass, e.g. the rock is strong because it has a compressive strength of
300 MPa,

« compare the rock properties with a previous project where the rock
properties were also obtained, e.g. this rock is stronger than the one
we had at the Golconda Mine,

» generate a rock mass classification scheme value, e.g. the RQD is
needed for the Rock Mass Rating (RMR) scheme, see Chapter 12, or

» support numerical modelling, e.g. the shear stiffness of fractures is
required for a distinct element numerical code.

Many of the required rock properties can be categorized according to the

subjects of the earlier chapters, as shown in Table 11.1.

Strictly speaking, in situ stress is a site property rather than a rock
property, but testing techniques are required to determine the in situ
stress and so it is one of the categories below. The ‘permeability’ could
be included as a separate item under each of the “intact rock’, ‘fractures’
and ‘rock mass’, but we prefer to consider the property in a separate
category because the subject involves the connectivity of the rock mass
fractures. In each case, there should be information about any variation
in these properties across the site, which was the theme of Chapter 10.

Table 11.1 Examples of rock properties measured in a site investigation programme

In sity stress Intact rock Fractures Rock mass Permeability
Magnijtudes and  Deformation, Geometrical Deformation, Nature of any
directions of the  strength and occurrence and  strength and flow through
three principal failure mechanical failure the intact rock

stresses properties properties properties and rock mass
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The structural geology and hydrogeological setting information will be
strategically helpful for this purpose.

The rock properties can be measured directly or indirectly. For ex-
ample, in Q10.3, the uniaxial compression test and point load test values
were compared. Because the uniaxial compression test provides a dir-
ect value for the compressive strength, it is a direct test. On the other
hand, because the point load test gives an index value which is used
to indicate the uniaxial compressive strength via a correlation factor, the
point load test is an index test. There are many possibilities for such
indirect tests in rock mechanics and an advantage of them is that they
can provide many more results than direct tests, more rapidly and more
cheaply. Their disadvantage is a possible lack of precision and knowing
whether or not there is any bias in the values. To make decisions about
which type of test to use, one has to recall why the rock properties are
required and the resources available, and hence whether direct tests,
indirect tests, or a mix of the two types are best suited to the project in
hand.

In the questions that follow in Section 11.2, we provide a flavour of the
nature of site investigation and how some of the testing problems are
solved. This chapter is the first where we link the rock mechanics with
the rock engineering. It is important when practising rock engineering
to understand the rock mechanics concepts first — which has been our
aim in Chapters 1-10. Now, we highlight the engineering thinking that
is required to assess and measure the rock properties.

11.2 Questions and answers: testing techniques

Q11.1 The section of site investigation borehole core shown in the
photograph on the next page is from a vertical borehole and con-
tains three stress-induced fractures. The top of the core is a stress
fracture of the same kind. The bottom end is a drilling break. As-
suming that the strip of translucent tape (adjacent to the numbers
written on the core in the p.hoio- Direction of drilling

graph) is on the northern side of |

the core, in which horizontal dir- —— —
ections do you think the major and

minor principal stresses act?

Al11.1 The three central fractures
and the top end of the core sec- o L & _ West
tion are all fractures caused by the

in situ stresses being concentrated at North Oy |

the end of the borehole during core i
drilling with a hollow drill bit, see Maximum principal
diagram to right (Haimson, 1997 }; stress | to b/h axis

! Haimson B. (1997) Borehole Breakouts and Core Disking as Tools for Estimating In
Situ Stress in Deep Holes, in Proc. of the Rock Stress Conference (K. Sugawara and Obara Y.,
eds). Balkema, Rotterdam, pp. 35-42.
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Bankwitz and Bankwitz, 19952). The direction of the trough in the disc
indicates the E-W direction of the oy major horizontal principal stress
because the discs form in a similar way to the Brazilian tensile test failure
— initiating on the diameter corresponding to the primary loading direc-
tion and propagating perpendicular to the least stress (which is vertical).
The saddle shape occurs because the failure propagation follows the
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Example of the relation be-
tween core disk thickness
(normalized by the core dia-
meter) and oy for given oy
and o,, from Haimson, 1997.

2 Bankwitz P. and Bankwitz E. (1995) Fractographic Features on Joints of KTB Drill
Cores (Bavaria, Germany), in Fractography, Fracture Topography as a Tool in Fracture Mech-
anics and Stress Analysis (M. S. Ameen, ed.). Geological Society Special Publication No. 92,

pp- 39-58.
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line of least resistance, rising towards the lower stressed region in the
drill core. Thus, the major principal stress, oy, acts E-W and the minor
principal stress, oy, acts N-S. The ratio of disc thickness to diameter
indicates (according to the diagram included above from Haimson, 1997)
that the local oy could be about 120 MPa.

Q11.2 With reference to fracture property measurements made dur-
ing a site investigation

- on borehole rock core,

- on the borehole walls, and

- on rock exposures.

Complete the table below indicating your opinion of how well you
think that the listed fracture properties can be measured or es-
timated. The first column of the table represents the ten fracture
measurements recommended by the ISRM, as in Fig. 7.7. Use the

letters G for Good, M for Medium, and P for Poor.

Characteristic | Measurement method | Core | B/H wall | Exposure
Orientation Compass-clinometer
Spacing Measuring tape

Persistence

Measuring tape

Roughness

Against reference chart

Wall strength

Schmidt hammer

Aperture Feeler gauge
Filling Visual
Seepage Timed observations

Number of sets

Stereographic projection

Block size

3-D fracture frequency

A11.2 The completed table follows. These measurements cover a wide
range of attributes — rock mass geometry, intact rock strength and

Characteristic Measurement method Core | B/Hwall | Exposure
Orientation Compass-clinometer M G G
Spacing Measuring tape G G G
Persistence Measuring tape P P G/M
Roughness Against reference chart M P G
Wall strength Schmidt hammer M P G
Aperture Feeler gauge P M G
Filling Visual P P G
Seepage Timed observations P P/M G
Number of sets | Stereographic projection M G G
Block size 3-D fracture frequency P P G
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hydrogeological properties. Also, some of the measurements are more
easily performed during one type of site investigation than another.
Although there is, therefore, some subjectivity in the G, M, P quality
coding, the completed table should be of this general form.

Q11.3 The results of a series of scanline surveys at a particular site
are as follows:

Scanline trend (°) 000 355 085 153 216 271
Scanline plunge (°) 920 35 28 51 05 12
Fracture frequency (m~') 5.54 7.93 6.02 7.00 6.99 7.65

Analysis of the fractures intersected by the scanlines has
shown that the rock mass contains four fracture sets, with orienta-
tions 145/08, 148/88,021/76 and 087/69 (given as dip direction/dip
angle). What is the best estimate of the frequency of each fracture
set?

AT11.3 For the situation when we know the orientation and fracture
frequency of each of the four fracture sets, then the fracture frequency
along a scanline in any particular direction, A, is given by (see A7.6)

As = X1|cosbs1| + Azfcos | + Az cosB| + Aqf cos By

where 6, is the angle between the normal to Set 1 and the direction in
which we are interested, and the other angles are similarly defined.

If we write out this equation for each scanline, and arrange the results
in matrix form, we obtain

(Al (Icoseul fcosbp| -+ [cosOul | | A
Ay [cosfy| |cosbyp| -+ |cosOul| (i
= . . . . or A= X
Ag |cosfg1] |cosBg| -+ |cosOgl AU

Hence, for the case when the vector A is known (i.e. the scanline
results) and the vector A is unknown (i.e. the fracture set frequencies),
we need to solve this matrix equation for A. However, as the matrix @
has more rows than columns, it cannot be simply inverted, and so the
best estimate for X is given by the least-squares solution,

r=(Q7-)7 (27 4).

In order to evaluate this equation, we firstly determine the angles
between the individual scanlines and the normals to the fracture sets.
These angles can either be computed using vector methods, or measured
on the hemispherical projection. Using the former method leads to the
following results for the angles:
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Set1l Set2 Set3 Setd

Scanline1l 80 8.0 760 690
Scanline2 482 415 1251 76.6
Scanline3 662 1126 1052 131.0
Scanline4 469 1268 534 877
Scanline5 876 111.7 173 519
Scanline6 734 573 680 9.8

and from this we obtain the matrix of | cos 8| values,
(0990 0.035 0.242 0.358 ]
0.667 0.749 0.576 0.232
0.403 0384 0.262 0.656
0.683 0.599 0.597 0.040
0.041 0.370 0.955 0.617
| 0.286 0.540 0.375 0.985 |
As a result, the frequencies of the fracture sets are found to be

A= (@ 9) (@7 4) =

2138 1268 1.283 1.108 20.457 3.42
1268 1.498 1454 1.222 19360 | |391] _
1283 1454 1867 1374|  |21200| |354|
1108 1222 1374 1.965 19.899 3.29

Knowing the fracture frequencies of the sets enables the calculation of
the fracture frequencies along lines of any orientation in a rock mass, as

required in the next question in which the fracture frequencies have been
slightly changed.

Q11.4 As part of a site investigation study, a rock mass was found to
contain four fracture sets with dip/dip direction and frequencies as
follows (see figure on next page):

Set 1: 08/145, 3.48/m

Set 2: 88/148,3.91/m

Set 3: 76/021, 3.58/m

Set 4: 69/087, 3.26/m
In order to establish in which directions through the rock mass an
excavation will encounter the minimal and maximal numbers of
fractures, the fracture frequency in different directions through the
rock mass, 15, was calculated using the formula A, = Y 7_;|}; cosd;|
(see Q7.6 and A7.6). The resulls are presented below on a hemi-
spherical projection, with the contouring corresponding to the frac-
ture frequency values in the different directions.

Explain from first principles why the directions of the minimal and
maximal frequencies occur where they do.
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Direction of
maximal
*Pole, i.e. set normalI frequency

Extreme values

© Local minimum

® Global minimum:3.36
© Local maximum

& Global maximum:8.86
Contour values
7.00
5.00
4.

o
[eYeloloTe]
SSO5S

Set normals
+ with set number

Direction of
minimal

: ' .0
_—:F frequency
min max

A11.4 Minimal value. In any given rock mass, the minimum fracture
frequency lies along a direction that is formed by the intersection of
two fracture sets. This is because no fractures from the relevant frac-
ture sets will be intersected along such a direction. To identify the
global frequency minimum we therefore need to determine the direc-
tion of the intersection of each pair of fractures, and then compute the
fracture frequency in that direction. The directions of the various in-
tersections, and the frequency computed along those directions, are as
follows:

Setsland 2 Setsland 3 Sets1and 4 Sets2and 3 Sets2and 4 Sets 3 and 4

058/00 109/07 174707 064/71 063/67 072/68
542 m™! 5.68 m™! 6.65m™! 34 m™! 3.36m! 3.38 m™!

The global minimum is therefore in the direction of the intersection of
Sets 2 and 4, and has a magnitude of 3.36 m~!. Notice that the minima in
the directions of the intersections of Sets 2 and 3, Sets 2 and 4, and Sets 3
and 4 are all similar in magnitude. This is because the directions of these
intersections are all similar.

Maximal value. Although the directions of the various minima coincide
with the directions of fracture set intersections, the directions of the vari-
ous maxima are not so well defined and can only be found by rigorous
computation. The maximal value occurs where the sum of the fracture
contributions from all intersected sets is maximized, and an approximate
value could be found by simply scanning all the fracture frequency
values used to generate the contoured hemispherical projection to find
the maximum value.
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A more elegant method utilizes the vector-like nature of fracture
frequency (i.e. it has both a magnitude and a direction): the maximal
fracture frequency is found as the resultant of the individual set fre-
quencies. However, because the maximal frequency for each fracture set
occurs in two opposite directions (e.g. for a horizontal set the maximal
frequency occurs in both a vertical upward and a vertical downward
direction), the resultant formed from either of these directions must be
considered.

Clearly, therefore, a number of candidates for the overall maximum
will be found using this procedure. In fact, these will either be the vari-
ous local maxima that can be seen in each zone of the projection bounded
by great circles, or maxima that — whilst mathematically valid — do not
physically exist. To identify which is which, the actual frequency in the
direction of a mathematical maximum is computed and the two results
compared; they are equal for maxima that physically exist.

In order to investigate the various maxima shown on the projection,
we start by computing the Cartesian components of the normal to each
fracture set. For a right-handed set of axes with x directed east, y
directed north and z directed upwards, these components are given by
ny = sin(@,) cos (B,), n, = cos(a,) cos (B,;) and n, = —sin(B,), where «,
and B, are the trend and plunge of the normal. For the fracture sets used
here, these are as follows:

a B ay Bn ny ny n;
145 08 325 82 —0.080 0114 -0.990
148 88 328 (02 -0.530 0.848 -0.035

021 76 201 14 -—-0348 0906 —0.242
087 69 267 21 -0932 -0.049 -0.358

These values represent downward-directed normals, and to convert
them to upwards-directed normals we simply multiply each component
by —1. The components of each of the various resultants are then given
asry = ;Sing, ry =, sn, and r, =), sin,, where each s; takes the
value £1 in order to cycle through all candidate resultants. Applying
these to the data used here results in the table given below.

Candidate s, s, s3 s3 ry= Zs,-n,,. ry = Zs,-ny‘. r, = Zs,-nzi Resultant
i i i

1 1 1 1 1 —6.633 0.308 -5.617 8.697
2 1 1 1-1 —0.554 0.627 -3.280 3.385
3 1 1-1 1 —4.143 6.794 —3.885 8.855
4 1 1 -1 -1 1.936 7.113 -1.548 7.532
5 1 -1 1 1 —2.491 ~6.319 -5.344 8.643
6 1 -1 1-1 3.587 —6.001 -3.007 7.611
7 1 -1 -1 1 —0.002 0.167 -3.612 3.616
8 1 -1 -1 -1 6.077 0.485 -1.275 6.228

The Cartesian components of each candidate are found by normalizing
each resultant in the table above to a magnitude of unity. If we represent
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these Cartesian components by (m,, m,, m.), they are used in the usual
formula of

Ay = Z Ailcos(6) | = Z Ajlmyny, +myny, +m,n, |
i i

i

to compute the actual frequency in the direction they represent. This
computation, together with the magnitude of the resultant shown above,
is given below.

Candidate m, m, m, A|cos(8))| Azl cos (8;) | Az| cos (83) | Ayl cos (s) | A, m~! Resultant
1 —0.763 0.035 —0.646  2.452 1.785 1.394 3.067 8.697  8.697
2 -0.164 0.185 -0.969 3.458 1.085 0.442 1.600 6.585  3.385
3 —-0468 0767 —0.439 1.946 3.571 1.526 1.812 8855  8.855
4 0257 0944 —0.206 1.012 2.625 3.204 0.691 7532  7.532
5 —0.288 —0.731 —0.618 1.921 1.742 3.265 1.715 8.643  8.643
6 0.471 —0.788 —0.395  0.918 3.535 2.312 0.845 7611  7.611
7 0.000 0.046 —0.999 3.461 0.290 0.716 1.161 5.628 3.616
8 0976 0.078 —0.205 0.465 1.734 1.290 2.739 6.228  6.228

This shows that candidates 2 and 7 do not physically exist. Of the
remaining candidates, their orientations are found from their Cartesian
components to be 273/40, 329/26, 015/12, 202/38, 149/23, and 085/12. Of
these, the global maximum is at 329/26 with a magnitude of 8.855 m~!.

This answer illustrates an important point: the directions correspond-
ing to the minimal and maximal numbers of intersected fractures are
not perpendicular. The reason why this is important is that it raises
questions about the validity of tensor representations of rock mass prop-
erties, in which the principal directions corresponding to the extreme
values are orthogonal, as is the case for stress, strain and permeability.
For example, we saw in Q8.3 and A8.3 that the directions of minimal and
maximal rock mass deformability modulus may not be perpendicular.

QI1.5 When cyclic deformabil- P /

ity tests are conducted on rock Hocal unioading modulus T

masses, the ical force-dis- £ ‘ 4

placem’ent cu?vpe is as shown % o ’eloadmgmwwus\/‘/ .

-

to the right (Schneider, 19673; /L///”

Goodmun, 1989)' Overall loading modulus 7
Explain why, with cycles of re- s

peated unloading and reload- e

ing, the curve manifests dif- 4

ferent unloading and reload- //

ing moduli, permanent defor-

/ 7 .
. / Displacement
mations and hysteresis. °p .

3 Schneider B. (1967) Moyens Nouveaux de Reconnaissance des Massifs Rocheux. Supp.
to Annales de Ulnst. Tech. de Batiment et des Travaux Publics, 20, 235-236, 1055-1093 (as
illustrated in Goodman R. E. (1989) Infroduction to Rock Mechanics, 2nd edn., John Wiley
and Sons, New York, 562pp).
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A11.5 The mechanical behaviour of a rock mass is dominated by the
fractures, which significantly reduce the modulus from the intact rock
value. The deformation modulus of a rock mass is often only about one
tenth that of the intact rock modulus. Thus, we would expect that the
idiosyncrasies of the force—displacement curve above are caused by the
fractures. Indeed, when fractures are compressed, they have a non-linear
behaviour as the asperities are deformed and crushed. However, when
the fractures are subsequently unloaded, the behaviour will be more
linearly elastic and stiffer, because the asperities have been crushed. This
is also the reason for the permanent deformation and the hysteresis that
occurs on initial loading and unloading. After one or two cycles of such
loading and unloading, the fracture surfaces in the rock mass have been
sufficiently disturbed to make the rock mass modulus higher and it
responds in a more reproducible manner. The site investigation question
is which modulus the design calculations require — and this will depend
on whether the rock mass will be repeatedly loaded during engineering
operations.

Q11.6 The tensile strength of an architectural granite was measured
to ensure that the granite would be strong enough to form the
structural elements of a pedestrian bridge in a shopping mali. Ten
specimens were tested in each of four test configurations (illustrated
in A6.9), and the values obtained were as follows.

Type of test Mean value Standard deviation
(MPq) (MPaq)

Direct tension test 8.4 3.2

Point load test 9.6 3.8

Beam test 104 4.5

Ring test 12,9 6.7

Are these results consistent with what you know about tensile
strength variation and which value would you use for the structural
calculations?

A11.6 We expect tensile strength variation (see A6.9) both within and
between tests. The tensile strength increases with (a) a lower test volume
subjected to the high stress, and (b) a higher tensile stress gradient.
We note that the different tensile strength test configurations have the
following characteristics.

Direct tension test. The whole test volume is subject to the same high
tensile stress and there is no tensile stress gradient. This indicates a low
measured strength.

Point load test. The region of the specimen between the loading platens
is subjected to a high tensile stress, and there is no significant tensile
stress gradient.

Beam test. It is only the region at the opposite face of the beam from
the loading point that is subjected to the high tensile stress, where there
is a linear tensile stress gradient.
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Ring test. Only the regions on the inner surface in line with the loading
are subjected to the high tensile stress, where there is a steep tensile
stress gradient. This results in a high measured strength.

Thus, the mean values and standard deviations of the test results are
entirely consistent with our understanding of tensile strength variation.
For the structural calculations, we should use the value obtained in a
similar configuration to the design configuration, i.e. the beam test. We
should also obtain an estimate of any scale effect in moving up to the
size of the bridge elements, and apply a safety factor.

Q11.7 The following table shows data obtained from a single-stage
triaxial compression test on a cylindrical rock sample, conducted
with closed-loop servo-control, at a confining stress of 10.0 MPa,
and at zero pore pressure.

Total axial load Sample height Sample diameter

(kN) (mm) (mm)
0.00 100.84 50.20
19.89 100.80 50.20
39.60 100.77 50.20
63.40 100.74 50.20
88.67 100.71 50.21
116.18 100.68 50.21
144.68 100.65 50.22
162.38 100.63 50.22
185.23 100.58 50.24
190.62 100.56 50.25
191.99 100.54 50.25
180.22 100.52 50.26
137.56 100.49 50.26
115.79 100.46 50.27
101.93 100.43 50.28
97.97 100.40 50.28
96.98 100.37 50.28

Estimate volues for the following:

(i) yield strength o ;

(ii) peak strength omax;

(iii) residual strength o, ;

(iv) tangent Young’s modulus E,,, at 50% peak axial stress; and
(v) tangent Poisson’s ratio v,,, at 50% peak axial stress.

A11.7 From the test data recorded, we compute the axial stress, axial
strain and diametral strain in order to plot the axial stress—axial strain
and diametral strain-axial strain curves and to visually estimate the
various strength parameters. The stress and strain values are given in
the table below. Note that the axial strain values are positive (because the
convention of contraction positive is being used), but the diametral strain
values are negative (because the specimen expands circumferentially
during the compression test).
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120.0 -1.8

i ?— -1.6
100.0

axial stress -

axial strain +-10

60.0
i S e
40.0 1 - —-06

diametral strain -

axial strain T-04

20.0
T+ -0.2

axial strain, millistrain
0.0

0.0

axial stress, MPa

diametral strain, millistrain

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 45

The curves associated with these results are shown [ axial Axial Diametral
above. The strength parameters are read from these | Stress strain _strain
curves, and have the following values: 000 0.000°0.000
(i) yield strength o, ~ 83 MPa (this is where the | 1005 037 -0020

axial stress—axial strain curve becomes visibly 20010684 ~0.060

. 3203 0992 —0.100

. non-linear); . 4479 1289 -0.159
(ii) peak strength opa =~ 97 MPa (this is the max- | oo 7 0230
imum axial stress the specimen sustained); 73.05 1884 —0319

(iii) residual strength o, ~ 49 MPa (this is the final | g 97 2083 0438
stress value given, which may have reduced 0345 2578 —0.717
further had the test been continued); 96.13 2777 —0916

(iv) tangent Young’'s modulus En, at 50% peak | 9.80 2975 -1.056
axial stress is computed from the axial stress | 90.85 3.173 -1.155
and axial strain values immediately above and | 69.32 3471 -1.29
below 50% of the peak axial stress. The valueis | 5834 3768 -14l4

given by 5134 4.066 1534
49.34 4363 —1653
5870 —44.80 139 _ 50.00 GPa. o5t tee1 1o

1.171 — 0.893 ~ 0.278
In practice, we would compute this value from
several ranges of values to estimate any vari-
ation.

(v) tangent Poisson’s ratio v, at 50% peak axial stress is similarly
computed from the diametral and axial strain values immediately
above and below 50% of the peak axial stress. It is given by

0.159 —0.100 _ 0.059

= =0.21.
1.171 —0.893  0.278 0

Q11.8 Explain why the introduction of servo-controlled testing ma-
chines in the early 1970s revolutionized rock mechanics laboratory
testing, and why we are now able to test rocks under virtually any
loading conditions.

A11.8 The principle of a servo-controlled testing machine is that a
feedback signal representing some experimental value is continuously
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compared with a program signal representing the desired value: any
discrepancy is corrected with only a 5 millisecond response time. This is
known as a closed-loop control system.

Two complete stress—strain curves for rock are shown in the plot to the
right. The pre-peak portion is the region OA. The two types of curve are
categorized in terms of the characteristic of the post-peak region: either
the curve monotonically increases in axial strain (the thick curve) or it
does not (the thinner curve). The former, is termed a Class I curve; the
latter is termed a Class II curve (Fairhurst and Hudson, 1999 4).

v
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@
e C Class |
»
B
Class Il D E N
Y Strain g

It is important to understand these two types of curve in order to
optimize the control of rock failure. Cylindrical specimens that exhibit
Class I behaviour tend to be somewhat ductile in nature when loaded
axially, whereas specimens that exhibit Class II behaviour respond in a
brittle fashion to axial loading. A test conducted in axial strain control
is generally sulfficient to obtain the complete stress—strain curve of spe-
cimens exhibiting Class I behaviour, but alternative control techniques,
such as using circumferential strain as the independent (or control)
variable, are necessary when testing specimens that exhibit Class II be-
haviour because the stress—strain curve does not then monotonically
increase in axial strain. Note that the shaded area ABDCA is the surplus
energy which would be supplied by a rigid machine (one with infinite

4 Fairhurst C. E. and Hudson J. A. (1999) Draft ISRM suggested method for the
complete stress—strain curve for intact rock in uniaxial compression. Inf. J. Rock Mech.
Min. Sci., 36, 3, 279-289.
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stiffness indicated by the line AD) or a servo-controlled machine with
axial strain control — both leading to uncontrolled failure — and so
energy has to be withdrawn from the specimen to sustain continued
controlled failure. It is an awesome experience to stand next to a granite
specimen being tested under such controlled conditions and watch it
quietly change from solid rock to fragmented grains and dust particles.

In a uniaxial compression test, one could, for example, control the stress
rate, the strain rate, the energy input rate, the pore pressure, or the acoustic
emission output rate. Servo-control can be used in any testing configura-
tion and this type of testing machine is limited only by one’s imagination.
That is why such machines have revolutionized rock testing and enable
virtually any test to be servo-controlled. Also, more realistic loading con-
ditions can be applied, so that the rock can be tested in the same way that
it is loaded in the engineering scheme. We anticipate that the next phase
of development will be the use of servo-control in field tests.

Q11.9 (a) The results in the table below represent shear displace-
ment and shear stress recorded during a direct shear test on a
fracture in slate. The shear displacement range was from 0 to 15
mm as shown in the table below. The normal stress during the test
was 0.34 MPa.

Shear displacement (mm) 0.0 0.5 1.0 1.5 20 25 3.0 3.5

Shear stress (kPa) 0 281 344 344 328 281 281 297
Shear displacement (mm) 4.0 4.5 5.0 55 60 65 7.0 7.5
Shear stress (kPa) 281 281 266 266 266 281 281 281
Shear displacement (mm) 8.0 85 9.0 9.5 10.0 10.5 11.0 11.5
Shear stress (kPa) 297 297 297 313 313 313 313 313
Shear displacement (mm) 12.0 12.5 13.0 13.5 14.0 14.5 15.0

Shear stress (kPa) 313 313 313 313 313 313 313

Use these results to determine the residual shear strength of the
fracture.

(b) A series of direct shear tests was undertaken at different
normal stress values on samples from the fracture, and the peak
shear stress encountered during each test was recorded, as shown
in the table below.

Normal stress (kPa) 336 648 961 1273 1586
Peak shear stress (kPa) 344 516 719 953 1156

Use these results to determine the basic friction angle, ¢, and the
asperity angle, i, for the fracture. Also comment on the validity of
the bi-linear approximation for the failure locus.

A11.9 This question has been included to illustrate typical laboratory
testing results and their interpretation. Such laboratory testing is invari-
ably conducted if specific properties are required for an analytical or
numerical model. It is therefore essential that we know how to extract
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such values from test results — which is sometimes straightforward, and
sometimes open to interpretation.

<,

T
P

Schematic cross-section
of the direct shear test

—

(a) Plotting the displacement and stress results for the shear test,
illustrated above, generates the diagram shown below. There is a well-
defined peak strength, followed by a poorly defined residual strength.
By poorly defined, we mean that a residual strength is encountered
at a displacement of about 6 mm, but should the residual strength be
this or the one reached at a larger maximum displacement? Although,
by definition, we regard the residual strength as that reached at large
displacements, this may not be appropriate if the fracture has failed at
some intermediate lower strength — before reaching the higher strength
attained at a larger displacement.

By analogy with the complete stress—strain curve in compression,
the in situ stability of the fracture depends on the stiffness of the
loading system (i.e. the engineering structure for a field project), and
the appropriate value for the residual strength can only be chosen given
the engineering circumstances. Thus, it may be that the appropriate
residual shear strength is either about 260 kPa or about 310 kPa. If a
shear displacement of more than 8 mm is sufficient to cause catastrophic
collapse of a structure, it is of no value to know what the strength would
be at subsequent, higher, shear displacement values.
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(b) Plotting the normal stress and peak shear stress values provides a
failure locus, and the values lie close to a straight line, as shown below.
The basic friction angle is given by the slope of this straight line, 33.4°.



190 Testing techniques

The asperity angle /

The bi-linear approximation to the failure locus requires that the initial
portion of the locus emanates from the origin. However, there is no way
of determining where this initial portion intersects the measured failure
locus — we have assumed it to be where the locus intersects the normal
stress used in the first test. The dashed extension of the measured failure
locus is fictitious, and is sometimes used to determine an ‘apparent
cohesion’. To compute the asperity angle, i, we take the gradient of
the initial segment of the locus, ¢ + i, which has a value of 44°, and
subtract from it the basic friction angle ¢, to give an asperity angle of
44° — 33.4° = 10.6°.

All five of the test results lie close to a straight line, and hence indicate
that any bi-linear behaviour would occur at a normal stress value lower
than the smallest one used here. We have assumed that the initial part
of the bi-linear approximation extends between the origin and the first
test result, but there is no means of establishing this on the basis of the
results given.
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Q11.10 The diagram below shows example results from using a
numerical modelling code for predicting the elastic displacements
(indicated by the arrows) of a 2-D assemblage of distinct rock blocks
through which a tunnel has been excavated. The plot shows the
displacement vectors.

(a) Write down a list of rock properties that you think would be
required as input to such a modelling exercise.
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(b) Indicate which of these are likely to be practicably measure-
able.

Al11.10 (a) There are many possible answers to this question, but the
rock parameters actually used by the UDEC code which generated the
results are:

- the magnitudes and directions of the in situ principal stresses;

» Young’s modulus and Poisson’s ratio of the intact rock;

o the number of fracture sets and;

« for each fracture set, the orientation, frequency, persistence, cohesion,
angle of friction, normal stiffness, shear stiffness, and dilation angle.
(b) The in situ stress state and intact rock parameters can usually

be established fairly well, assuming homogeneity across the region of
interest. The number of fracture sets is sometimes clear, but sometimes
not in complex circumstances. Given that fracture sets have in fact been
established, the orientation and frequency are relatively easy to specify,
but the persistence is impossible to measure completely and hence to
specify. The cohesion and angle of friction are also relatively easy to
measure or estimate, but establishing values for the normal stiffness,
shear stiffness and dilation angle that represent the in situ fractures is
much more difficult.

Thus we see that a disadvantage of such numerical modelling is that a
large proportion of the required input parameters may not be obtainable.
However, the advantage of the numerical modelling approach is that the
sensitivity of the instability mechanisms to the input parameters can
be studied in detail. Thus, it is better to use numerical modelling for a
parametric study of the overall rock mass behaviour, rather than trying
to establish specific values at specific points in the rock mass.



192 Testing techniques

11.3 Additional points

We emphasize that it is not possible to specify the components of a
site investigation and the associated testing programme that will be
universally appropriate for all rock engineering projects. This is because
different projects have different objectives (e.g. the objective of mining
engineering is to obtain the rock, whereas the objective of civil engineer-
ing is to utilize the space created). Thus, it is necessary to understand
the complexities of the rock mass geometry and mechanical properties in
order to make sensible decisions on the optimal site investigation given
a specific engineering objective.

Sometimes, even the most basic parameters cannot be measured dir-
ectly. For example, assume that you have been contracted to measure
the rock stresses during a site investigation. The client, who takes an
interest in rock mechanics, visits your measurement site. He is watching
you using the flatjack technique — measuring the normal rock stress
components. You have installed two pins in a rock wall, measured the
distance between them, cut a slot in the rock wall between the pins,
cemented a ’flatjack’ into the slot, and hydraulically inflated the jack
until the original distance between the pins is re-established, giving the
normal stress component perpendicular to the flatjack. The client asks
you how many measurements you are going to make. You explain that
there will be six such normal rock stress measurements at each test loca-
tion, using six flatjacks at six orientations, so that the six normal stresses
can be used to establish the three normal stresses and three shear stresses
of the rock stress matrix. Suddenly, the client has an inspiration, “Surely,
it would be better and more elegant to measure the three normal stresses
and the three shear stresses directly, rather than measuring six normal
stresses?” The client’s inspiration is a good idea but, unfortunately, no
one has yet found a way to measure a shear stress directly.

For standardization, it is necessary to have guidance on how to estab-
lish specific rock parameters. The International Society for Rock Mech-
anics (ISRM) and the American Society for Testing Materials (ASTM)
publish recommended procedures for establishing a wide range of para-
meters. We gave lists of these in Chapter 11 of ERM 1. Starting in 1998, a
second series of ISRM Suggested Methods has been under development;
these can be found in the issues of the International Journal of Rock
Mechanics and Mining Sciences from 1999 onwards (e.g. see Fairhurst
and Hudson, 1999).



