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Strength and Failure of Rocks

91, Failure . | -
Failure, in a general sense, includes both fracture and flow.
As defined by Jaeger “the term fracture iE:phe_s the appear-

ance of distinct surfaces of separation in the body™. Yield is used to-

i i i i i tric~
describe the onset of plastic deformation with the resulting unrestric-
ted plastic deformation defined as flotv. Before discussing failure, it
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is necessary to discuss about stress~deformation behaviour of
materials. Stress~deformation behaviour of three distinct types of
materials is shown in Fig. 9°1.
9'2, Idealy Plastic, Perfectly Plastic and Elastic Plasticc
Matelials X

Upto a limiting stress o,, no deformation takes place and if o»
stress is reached, the material deforms continuously with no incre-
ment in stress thea the material is known as “Ideally plastic”. Its i
stress strain curve is shown in Fig. 9'1 (a). ! 5
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In some materials, due to application and removal of stress
greater than the failure or threshold stress, a permanent deformation
results. Elastic effects are

included 1n such a case. The ,7 l ,
loading and unloading are in- . ;

dicated by the path O4BC, and ;
a permanent deformation is

given by abscissa of point C. (@ ® ©

‘L'he materials of such a type are Fig. 91

“Perfectly plastic”.

If the total deformation is calculated from a sum of elastic
and viscous deformations, the material is known as *“Viscoelastic’”
[Fig. 9'1 (c)]. When ths flow stress has been reached, the actual beha-
viour of the material with time is not specified. Failure alone is suffi-
ciently important. :

In seme materials, the recoverable deformation which takes
place prior to oa-sst of failure, is small in comparison to the defor-
mation after reaching the limiting stress. The material possessing
such a property is known as “rigid-plastic”” [Fig. 9'1 (a)]. But if the
deformation prior to the on-set of failure is such that it plays an
importaat part in the stress-analysis, then they are known as “‘elastic-
plastic” materials. The stress-strain curve of such materials is shown
m' Fig. 8°1 (a).

The above definitions have been given to have an idea about. the
different typss of materials which bshave in different mannsrs on an
applicatios of Joad and .prior..to. failuce. Next; before discussing
strength criceria of rocks, a brief idea about diffzrent failure theories
will be nécessary which explain failure criteria "of differedt "types of
materials, ST : - et ey

93, Types of Failure _ . Lo e ety
. Fracture and failuré are also of differeat types which take place
in ditferent types of materials. Several’ ‘typss of fracturé which
commoaly occur are described below.
" (@) Ruptare o

Rupture occurs when a ductile-material fails in tension. It is
preceded oy a plasiic deformation causing “necking’* and is “usually
known as a ""Cup and Cone” fracture.” ’

(b) Brittle fracture 7

_ Brittle fracture occurs in brittle materials due to tension asa

tensile or cledvage fracture which occurs on a plane perpendicular to
the direction of the tension, RO

/ (¢) Shear fracture

; Shear fracturs occurs in case of brittle materials subjected to
| compression. " The resulting failure planes are approximately in the
‘\direction of the greatest shear stress. : - :



1‘6 RUCK MDUDAIMGD 1IN Al vriavians

At an elevated temperature and pressure however, brittle mate-
rial behave as ductile or plastic materials. S -

94, Yield Criteria of Failure Theories

Different theories have been given to explain the yield or
failure criteria in different types of materials. They are also known
as strength theories. A few of the important theories are being )
discussed. ' '

94’1, Maximum-Stress Theory

This theory is also known as Rankin’s theory. The theory states
that the maximum principal stress in the material determines failure
regardless of the magnitude and senses of the other two principal
stresses. Thus, in a stressed body, yielding starts when the absolute
value of the maximum stress reaches the yield point stress of the
material in simple tension or compression.

_ The theory is contradicted in solid materials where three equal
tensile or compressive stresses cannot produce a plastic but only an
elastic deformation. The theory is best suited for considering the
streng_th of non isotropic materials, specially fayered materials, where
there is a pronounced difference in strength properties in different
directions. For example, a layered rock has almost no tensile strength
or very little in the direction normal to the layers, and fails in tension
by splitting along these layers. ' -

9'4'2, The Maximum Elastic Strain Theory

This theory is also known as the St. Venant theory. The theory
assumes that a ductile material begins to yield when the maximum
strain equals the yield point strain in simple tension. This is true for
compressive strains (shortening) also. In such a case, the minimum
strain equals the yield point strain in simple compression. Mathe-
matically, it can be described as

o

c v
ITE'L -7 (o;,+ay) =% (tensile) -[91 (a)}
or -i'--n-a-(cr +0,) |[=—* (comp.) (91 (B)]
E T ENTHISTE P-
where oy=major principal stress
ay==minor principal stress
a,==intermediate principal stress ~
E=modulus of elasticity
v==Poisson’s ratio
and ay=yield stress. {
This theory is again contradicted by material behaviour under \
hydrostatic tensile or compressive stresses.
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94'3. The Censtant Elastic-Strain Energy Theory

In this theory, the quantitv of strain energy per unit volume of
the material is used as the basis for determining failure in the
material.

Therefore as per this theory, failure will occur when strain
energy for a given state of stress in a material reaches the value of
energy stored at the vield point in simple tension. Mathematically,
the criteria can be described as

(G'-y)z 1 2 2 2
'E =H§E (6-1 +C|'g_ +33)
» A
~E (6,05 6,03+ 030y) +(92)

This theory does not explain the behaviour of the material
under a hydrostatic stress. Because performance of materials, under
a hydrostatically stressed condition, indicates that the elastic e¢nergy

can have no significance as a limiting condition.
944, The Maximum Shear-Stress Theory
This is also known as Tresca theory. As per this theory
yielding begins when the maximum shear stress in the material equals
the maximum shear stress at the yield point in sample tension.
Mathematically it can be written as
Ty _ 0'1_63
22
or Gg=0,—0dy
It can also be written as

Tmog = ﬂ“2_—"'r”={:onsfant -.(9°4)

(9'3)

In uniaxial tension
61=60
g,=a;=0
g
Tmaz = 2‘1‘

and

and in uniaxial compression
6, =06,=0

and G3=—0p

o (.?0)
LMezr = 2

.". Yield criterion, as per this theory, is
g

. 7m5x=§(61—03)=—?0— '(9.5)

The slip lines (failure lines) which appear on set of plastic flow

are inclined at an angle of 45° with respect to the directions of princi-

pal stress o, and oy which is coincident with the direction of maxi-

mum shearing stress. .
This theory is applicable to explain failure criteria of some type

of soils and rock materials.
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9'4'5. The Constant Elastic Strain-Energy of Dlstora
‘tion Theory

This theory is also known as Von Mises or Maxwell theory of”
failure. .
The theory states that plastic yielding begins when the

strain energy of distortion Sp reaches a critical value given by equa-
tion (9°6).

Sn—--liv— [(01“52)2+(“ﬂ-08) +(a3—ay)%]

R _ . (96}

For a material in simple tension the yield point occurs at oy
then, we have

G1=0y
and g,=03=0
Putting these values in Eq. (9°6)

Sp= 1+v (a,)?

Thus, the condition for yJeId to occur based on the theory is
2 (09 =(03~ ) + (03— 0  +(cg— ) ---(9T):
It can also be proved that

Toct== J; Oy F YWt el el het 51(9°8)
where <oet2 Octahedral shearing stress. Equation (9'8)-

_ states that the octahedral shearing stress
. in the material at the time of on-set of a

plastic limit is constant and it depends.

on the yzeld point of the material in.
v simple tension OF-compression.

$'4'6. Mohr’s Theory .
This theory assumes slippage as a mode of _failure and states.
that failure occurs dus to both yielding and “fracture. It provides a
functional relationship between the" normal and the shear stress given
by Eq. (9°9) o
=f (o) o ()

As per Mohr’s theory failure dcpeuds upon the stresses on the.
slip ‘planes which has got:minimum strength. The failure takes place
when the obliquity of the resultant stress exceeds a certain maxl-
mum value known as sheur strength,

9'4'7, The Coulomb Theory
The Coulomb theory states that failure in the material ‘takes.

place when the shear stress on the material along the failure plane:

A
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exceeds the value of shear strength of the material given by
eguation

t=C+otan ¢ -{9°10)
where C=cohesion

a=normal stress
-and . d=angle of internal friction.

The Coulomb equafion, represented by equation (9°10),isa
special case of Moht’s theory of strength in which the Mohr’s enve-
lope is a straight line which is inclined to the normal stress axis at an
.angle é.

The use of the Coulomb Eg. 910 to represent the Mohr’s
envelope in the Moht’s diagram is known as the “Mohr-Coulomb’
theory.

Although soil failure criteria are explained by Coulomb, and
Mo hr’s theory, the failure criteria of some of the rock materials are
explained by ‘Mohr-Coulomb’ theory. ’

95, Behaviour of Rock Materials

Rock in general, is neither homogeneous, isotropic, nor psr-
fectly elastic. Its behaviour can range from that of a brittle material
to that of a ductile material depending on the combination of pres-
sure and temperature to which it is subjected. The [imit of tempera-
‘ture and pressure in most engineering works is such that for harder
‘rocks, their basic behaviour is that of a brittle material, or in a tran-
sition from brittle to ductile. With the softer rocks, ductile behaviour
‘becomes more pronounced. In the field, on these intrinsic character-

istics, a “macroscopic fabric” pattern is superimposed, i.e., rocks range

from a massive formation with a few joints to an accumulation of
uncoherent, although interlocked, blocks or fragments. Further,

tock in-situ is always in a state of stress and strain. At the same time,

-an anisotropic behaviour is found more frequently than an isotropic
‘behaviour not only in the stratified rocks, where the planes of strati-
fication and schistosity give rise to wide variation in strength in
different directions, but also in harder igneous rocks.

The above characteristics and less quantitative information
-available on rock behaviour make it essential to critically review and
objectively assess the adequacy of every phase of the investigation-
design-construction process, if rock structures are to be permanentlv
stable and adequate under their specified conditions of use. Althougzh
importance and the procedure of investigation work have already
been discussed in earlier chapters, for proper design of a structure

‘the strength criteria of rocks also are esseatial, We have seen that at

ordinary temperature and pressure, most of the rocks behave like
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brittle materials. Therefore, first we shall discuss the failure criteria
of brittle materials. The most important theocy up-till-now which
describes the strength criteria of brittle matsrials is Griffith’s theory.
The theory dcscr;bes how fracture is initiated, how 1t propagates and
how failure is caused in the material due to fracture,

96. Griffith’s Theory of Fracture Initiation in the Rock
Mass

_Griffith postulated that a rock material contains a large number
of randomly oriented zones of poteptial failure in the form of grain
boundaries. The grain boundary contains a number of open flaws
which are approximately elliptical 1 shape. Very high tensile stresses.
occur on the boundary of a suitably oriented elliptical opening even
under compressive stress conditions. Griffith assumed that fracture
initiates from the boundary of an open How when the tensile stress
at this boundary exceeds the local teasile strength of the material.

96’1, Stress Arouad Boundary of an Open Flow

For obtaining the stresses around the boundary of an open
flaw let us take one grain boundary as shown in Fig. 9°2 which con-
tains a number of open flaws. Considering only one flaw with the
following simplifying assumptions.

(i) The flaw, which is of an celliptical shape, can b treated as
a single eillpse in a semi-infinits elastic medxum ;

(ii) Adjacent flaws do not interact ; ;

(iii) The material is assumed to _be homogeneous ;

(iv) The ellipse and the stress system are taken to be two-
dimensional.

As shown in figure, the flaw
is inclined at aa angle « to the
major principal stress (o,) direc-
tion. oy and 7=y are. the normal
e and the shear  stress respectively
acting on the material surrounding
the flaw. Their values are given
P by Egs. 9'11 and 9712.

‘—_ oy=1%(0,— 03) ~ }(0,— ) 003 2
- - "‘ P i}
and Tzy=}% (0,— 03) sin 2a
(97 12)
1 where o,=major principal stress

Fig. 92 :a). Stress acting around a
crack in a rock mass. and oy=mioor principal stress.
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The parameters defining the ellipse bhave been shown ia
Fig. 92 (b). l

Fig. 9°2 (b). Equation of ellipse, x=a cos B, y==b sin 8, m=b/a.
Stress around an elliptical flaw,

The tangential stress o2 on the boundary of ellipse is given by
the Eq. (9°13) derived by Inglis (1913), Dznkhaus (1964).

ay [m (m+2) cos* B—sin? B]
+az {(I1+2m) sin® B—m* cos? ]
— <2y 12(14+m*) sin R cos B]

m* cos® B+sin® B

gr==
-(9°13)

Since the flaws in rock are very flat in shape, the axis ratio m of
the ellipse will be very small. Eq. 9'13 states that maximum ten-
sile stress will occur near the tip of the faw when f=0. When 8= 0,
sin p+f and cos B=I1, Putting these valuss in Eq. 913 and
neglecting the terms of second order and higher in the numerator
the following approximate relation is obtained

y— 2 (oym—7zyB)

ﬂl".+51 ‘(914)
os is the boundary stress near the tip of the flaw.
dev
When ?B =0

the tangential stress on the boundary will be maximum. Now diffe-
rentiating Eq. 914 with respect to § and equating it to zero, we
havs
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dos . — 2Txy _ 2 (oym—T2,B8) 2B
dB - m2+3: (mz_f_&z)z
. (—27zy) f?i‘l"‘"‘ﬁ?)_?v (oym—7tazy B) 2B
- (m*+8%)*
_ ...(9°1%9)
Eq. (9°15) is to be equated with zero for
9_“’1=0
g
(=272y) (m?+8*) =2 (oym—1x) 28=0
(m2+02) (—272y) =48 (oun — Tay B) ...(9°16)

—2m? T-ty_zfzy Bj=4ﬁ Gym_"4fzp B’
_‘_m".' Tzu—’_zf:ay B: _4B Ty J?‘I=0

]_ 1_. Zﬂ'y _
T T T Beam
1 2ay 1 1
- - —_t——=0
‘3‘ MTzy ﬁ + m?
20y 'LV do*y 1
1 ‘_-Gﬂf m ‘C-"xgr m?' m*
B -2

From Eq. (9'14), we have
2 (eym—7zy B)=0b (M*+B*)
Putting these values in Eq. (9°16)
(m*+B2) (—272y) =28 o» (M*+8%)

—Tzy=0 ob

gp= _BTH .{9°18)

Putting these values in Eq. (9°17)
—oym= -—‘l"'_{ﬂv:l: (due‘f“fgw )1}}

m Tzy

m O‘o=u',,.—_l;(63,—f—t2”);~' -+(9'19)
9'6'2. Equations Defining Fracture Initiation

Thus, the criteria for fracture to initiate at the boundary of

elliptical flow is that when tangential stress o» reaches a value eqqal
to the tensile strength of the material at that point. But local tensile
strength of the material is difficult to measure Hence, the term co.m

-
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'has to be expressed in the term of uniaxial tensile strength o, of the
rock body in which the daw exists. This is obtained when

gy=0t
.and r=u=0
From Eq. (9°19)
ovm=2 ot ...(920)

Putting this value in Eq. (9'19)
2 Urzcvi(ﬂ'?v‘*"faﬁv)lm
or 20— 6y= (0% + %)/
Squaring both sides,
40 +o’y—4o,0y=0% +1%y
or 2y =4a(ai— oy) (921
The Eq. 921 is an equation of parabola in oxy—oy plane

and defines the relation between the shear and normal stresses at
which fracture will initiate at the boundary of an elliptical flaw.

Since fracture initiates when tangential stress on the boundarv

. of the flaw exceeds the total tensile strength .of the material and the

.crack initiated will propagate in a direction which is normal to the

{1
E MOHR'S FAILLIRE ENVELOPE
g
| =
g % - 40(g-05)
a
MCHR’S CIRCLE
REPRESENTING
. FAILURE STAGE
c— l
L 51

; _ o
kg 2@—*" © RORMAL SIRESS (07

Fig. 93
‘boundary of the ellipse. The normal to the ellipse can be defined by
‘the equation ' .

tan 6= — —:_g
‘where ' dx=—asin B, df
dy=nria cos Pdp
_anp

tan

Since B is very small tan 8= 8

_f )
tan 8= m -(9°22)
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Since the inclination « of the elliptical flaw is such that the
boundary stress o» is 2 maximum for any combination of the princi-
pal stress oy and o3 then Eq. (9°'21)is the equation of the failure
envelope (Fig. 9'3) which will be tangential to the Mohr’s Circle

giving failure stages.

Ty

tan 2 a=

20:
Again since osm=2a;
* — — M7y 1
B
_ ;msz
B 20,
= —m tan 2« we(9°23)
From Egs. (9°22) and (9°23)
tan 0=—tan 2«
or " f=—2a or (r—2x) ...(924)

The condition is shown in Fig. 9°4.

FINAL CRACK
PATH
— INITIAL -
DIRECTION OF
4} THE CRACK 1>
—n e
03 g3
iy —
Y —
5 . P
|+
T T
Fig. 94
' Tzy
Since tan 2a= »
20’ t

therefore, till 7.y > 0, « > 0 and so @ > 0 ; therefore,

direction of the crack will try to reverse i.e., negative to the

the
value.
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Hence, it will go out of direction at which it had initiated and this-
is the reason why all cracks exlstmg in the rock mass do not propa-

gate always in their direction of crack initiation. When 7zy=0, x=0
and 8=0i.e., in case of a uniaxial tensile stress to whieh the crack
is perpendicular, a crack is mitiated at the tip (8=0) of the elliptical
flaw and propagates in the plane of initial flaw, This is the Griffith’s
theory. The pre-existing cracks or flaw is known as the “Griffith
cracks.” Griffith’s theory states that macrescopic fractures start at
pre-existing faws (so called Griffith cracks) which enlarge and spread
under the inluence of applied stress. Thus, the brittle strength of a
material can be calculated for any system of loading, if the shape and

the size of Griffith cracks are known, of course, with certain material.

constants.
9'7. Relation between Grain Size and Strength of Rocks

According to the Griffith theory, fracture occurs when cgacks-
of certain orientation and length (as discussed above) spread. For a

tensile stress, fracture occurs when the stress exceeds the tensﬂc'

strength 7, given by Orowan (1949).

2E5 RPN
To=| - ] .(9°25)
~where E=Young’s modulus

s=specific surface energy of the material.
It is the unit work, required to separate
a crystal into two parts along a plane
and depends on the atomic binding
strength per unit of surface.

a=half length of the Griffith crack.

Orowan [urthsr states that at atmospheric pressure, the com-
pressive strength Cg is § times the tensile strength.

e[ 2] (929)

wa

Stace strength is inversely proporticnal to the square root of a
crack length . the | longest crack in the material determines its strength.,
Brace, (1Y6 1) oa the basis of his extensive rescarch with lime stone,
concludcd that the Griffith crack length is abeut the same size as the

maximum grain diameter. This has been substantiated by Paterson who-

concluded that coarse-grained lime stone was found to bz weaker
than a fine-grained lime stone. Wood (1930) has reported that brittle
strength of certain polycrystalline metals is inversely proportional to
tizz squre root of msan grain diameter. Thus, in general, it can be
concluded that strength "of rock material dzpends upon its grain size.

T ———
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9:8. Expetimental Investigations of Rack Strength

Many investigators have investigated the mode of failure in
r(_)cks, testing the cylindrical rock samples in an unconfined compres-
sion or under a triaxial compression which is more realistic consider-
ing the rock existence in nature and the mode of application of stress
in the rock mass. Griggs observed two types of failures—shear and

_tension. The shear surfaces gave the evidence of fracturing and-

"powdering of the crystals. The slip planes, developed bv shear failure

were alwaysat an  angle with the direction of the axial load. The
tension fracture occurred by splitting parallel to the direction of com-
pression. No granulation was observed on the tensile fracture planes.
The tension surfaces aprear as a fresh break in the rock showing a
clear separation of particles.

Griges (1936) explained the tension or splitting phenomenon as
the result of the formation of wedge shaped failure planes at the top
angﬂha bottom of the sample. If the confining pressures in the tri-
axial tests were of low magnitude, the wedees caused the sample to
split because of the tension developed between the grains at the point
of the wage. Careful observation. with a high speed movie film con-
firmed the hypothesis that the slip or shear surfaces appear prior to
the_ tension fracture. Terzaghi also oresented a similar theory for
splitting failure, stating that tension between two grains is due to the
wedging action of a third grain trying to push its way between them.
Shear failure produces a surface which is covered by granulated par-
pcles of variable size. Failure by a combination of shear and tension
is also there. '

981, Failure in Rock

Failure in Rock is classified by Terzaghi as splitting.. shear and

- pseudo-shear depending on the inclination of the failure planes. Split-

ting is recognised by cracks appearing parallel to the direction of the
axial local which indicates that the bond between grains fails by ten-

-sion.  Shear fajlure occurs when grains and bonds alike are displaced

along a glide plane. Bseudo-shear failure represents a combination
of shear and tension fracture.

Mechanism of tension fracture has already been explained. A

- shear failure depends upon the shear strength of the material which
-is influenced by : !

(i) cohesion
(i) internal-friction and dilatancy.

Cohesion is defined as the inherent shear strength of a material
in the absence of external stresses. Physically it is the resistance to

- particle separation without the influence of any external forces or

pressures This resistance to separation consists of molecular bonding
ionic attraction and particle interlocking. The value of cohesion is

. obtained by intercept of the Mohr’s envelope at a zero normal stress.
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The term dilatancy refers to a volume change which is due to-
one particle blo:king the path of another as slip is initiated on a glide
plane. Dilatancy 1s also referred as particle interferénce.

Dilatancy and internal friction cannot be evaluated separately, .
because they depend on each other. The non-metallic brittle mate-
rials consist of crystalline solids which may be considered as hetero-

geneous bodies and must have an iaterior surfaces. Each crystal.

may be considered as an independent cell or element. The frictional
strength of the entire’ aggregate ot crystals is developed when one
crystal face is pushed against an adjacent crystal face.

* 9'82. Behaviour of Brictle Materials

A brittle material is defined as one which accepts only a limited -

amount of strain after yielding and before its rupture,

When the susrounding pressure is increased sufficiently high, a -
brittle material changes to a ductile one. This happens because as the
confining pressure 1ncreases, splitting failure 1s prevented and shear
fracture predominates. The transition, which occurs, is in progression
from tension failure 1o pscudo-shear aud finally 1o shear failure. The
tension pmduccd between the grains is gradually reduced by the

superposition of hydrostatic pressures untill the sum of the forces bet- -

ween the grains 1s totally compressive.  The tensile cracks are pre-
yented in the same manoer as pECSCI‘Chblﬂ" prevents tensile failure 1o a
structural concrete. If sputuog 1s cumpletely prevented (by a very
high confining pressure) the saraples faul by shear and produce the
slip planes. Failure by pseudo-shear takes pla\,.. waen aplutmg 13 pre-
ventea partially. . L

983 Conclusion on Strength ard Faﬂure Criteria of
Rocks

Following conclusion can bu made ﬁnally on: the strength and
failure criteria’ of rocks. * D it ‘

(i) Rocks fail by sphttmg, hpar or combmatlon of chase, kno Wi -
as pseudo- shea.r.

{ii) bailure of rock 1s elsher ducnlc or brittle and it dep.,nds
upon the amount of conﬁmng pressure

(iit) Shear failure occuss in a rock 1f conﬁnmo pressures are_

sufficiently, hlgh to prevent. sphttmg

(#v) The angle of slip for shear failure is-predicted by-the Mohs's
criteriou.

(v) Shear-strength of rock is'a function of cohesion, internal -

fricuon and “fracture _interference” also known as dila-
tancy.

(v¢) Fracture imterference is a umque function of anormal-
stress, .

R ——
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{(vii) Fora brittle failure in rock mass, the Griffith’s the ory is
most suitable to explain the bebaviour.

(viii) As per Griffith’s theory, the strength of rock depends on
pre-existing flaw in the rock mass, size of which depends on
the grain size of the rock., Therefore, it is inferrad that the
strength of rock depends upon its grain size. :

‘99, Strength Criteria of Jointed Rocks

The behaviour of jointed rock in-situ depends upon the friction
and shear on the joints and the deformation originating in the joints.

The systems of joints or cracks contain hills and valleys and the
-solid surfaces in contact are supported on the top of these irregu-
larities as shown in Fig. 9°5. Therefore, the actual area of an inti-

mate contact is very smali compared to the total area. Therefore, the -

'_ .pressure applied is not acting on the whole area but at the points of

| J‘I }.L\ '
\ \\ \\\\\\\ N\ r

N .

",

L

e
Area of contact=234,+ Az+As+...
(@) _ Fig. 9°3 )

REAL AREA OF CONTACT

«contact only, and under these localised intense pressures at a point of
.contact, deformation occurs. Let us assume that the tip of a parti-
cular asperity is spherical of radius r as shown in Fig. 9°5 (b). Then
.as per Hertz’s solution for an elastic deformation.

: R=C,W'# S (927)
‘where W=]load on the asperity

R=the radius of the circle of contact
and Cy;=constant which is a function of r, the

radius of tip of the asperity and elastic
-moduli of the material.
The area of contact A
=rR*?

=nCyaW?"3 .--(9°28)

Therefore, the average pressure Pa on the area of contact is
.given by '
4

Pn"’v'—'—

e

-
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N 4
:r:C 2L

Wi
= e (929)
1

When the load is increased, the mean pressure increases and the
material where the stress is maximum ceases to be elastic and yield
occurs. This yield occurs at point P which is about 05 R below the
circle of contact. When the load is increased further, the plastic zone
grows rapidly and at a particular stage the average pressure Pa
becomes approximately constant as shown in Fig. 9°6. At this point,
the whole region of contact deforms permanently, , After this stage
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although area A increases, the average pressure Pa remains constant
at a value P and the real area of contact is almost propomonal to
the load. Therefore,

W

A=—Tm

P
where P is known as mean flow pressure of the asperities.

99’1, Failure Propagation of Jointed Rocks

Bowden and Tabor (1954) with their experiments have conclud-
ed that with two surfaces in contact, a high pressure, which acts at
the summits of the surface irregularities, causes a $trong adhesion of
the surfaces over the actual area of contact. When sliding takes place,
work is required to shear these joints and also to plough out the
softer of the materials by the harder asperities of the other surfaces.

Therefore Fir=P+ Sy -..(9°28)

where Fr=friction force required to slide the sur-
faces over one another.
Pi=ploughing force required to displace
material in front of the asperities.
=shearing force to shear junctions of the
real area of contact,

For relatively smooth surfaces, the ploughing force P; is smaller
dompared to Sr and may be meglected. :
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where s=shear strength of the junction
w==coeff. of friction
p=flow pressure of the material.

But, rock has got rough surfaces and hence, the plowing for ce:
term cannot be neglected. For a relative movement, there is a com- *
plex situation where both shearing of junction and ploughing are
occurring simultaneously and junctions are continuously being made
and sheared and elastic as well as plastic deformations are taking.
place. For a given condition, P; can be expressed as

Pi=Kp .(9°30)-
where _ K=a constant depending on the geometric.
characteristics of the surface and asperi-

ties .

Eqs. 9'28, 9'29 and 9'30 are based on the use of a real area of’
contact which is a fractien of the gross area. If the forces Fr, £i and.
W are taken as average stresses over the gross unit area, then we can.
write that : . . :

T=1,+ou L3
where - v=shearing stress per gross unit area
—shearrng stress depending on the geomet-
Frrngan el i - ric :characteristics: of the surface- and.
- ... asperities and flow pressure of the mate-
" rial.” Tt is”approximately - constant and.
s .mdependent of normal stress.
o=normal stress on-gross unit area
——coeﬁ' or friction and is apprommately
_ . dependent on ‘s (thé ‘shear strength “of
L :_' . ’the junction) andp (the ﬂow pressure of
. : the material).’

Eq. (9731) is of the same type as expressed by’ Mohr s
failure criteria for the on set of a permanent deformation. e

Now, we. sha!l see how fractures propagate when a load is
appﬁed on the jointed rock mass. In practical cases, there is a wide
range in the size of the asperrtres whrch eonstltute the real area of
contact.

In Fig. 9°7 (a) the small aspermes are only deformed plastically
due to a small ioad-and the’ major part of the deformation is elastic.
In parts b and c of the figure further stages in the deformation process-
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are shown due to an increase in load. As the load is increased plastic
deformation is more and more. The real area of contact, which is
flattened tips of the asperities, is.very less than the area over which
macroscopic deformation has taken place. The permanent defor-
mation of the asperities in fact provides the real area of contact
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Fig. 9°7. Elastic to plastic deformation of a small asperity.

which supports the load while the stresses in the asperities are taken
up by an elastic deformation of the underlying material as shown in
Fig. 9°8. If the load will be reduced, then due to an elastic relaxation
of the deformation the junctions will be progressively broken.

It has already been explained that the friction between the sur-
faces depends on the intimacy of contact, the flo v pressure, the shear
strength of the junctions and the resistance to plowing. The streagth
of the junctions shown is higher if the rate of application of load,
that is the speed of shearing, is very low. This happens, because as
sliding begins, the material displaced by plowing accumulates in front
of the asperities and causes the force to increase which resists the
motion.

992, “Stick-slip” Process of Rupture

If one of the surfaces has a certain degree of elastic freedom,
then the motion is not continuous but intermittent. The process of
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rupture has been descnbed by as “stick- slip”. The “stick” is des-

cnbed due to the higher static friction between the surfaces and the
51;? is due to a lower kinetic fI'ICth]] during the slipping process

itself. . .
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Fig. 9°8. Sequence of elestic and plastic deformatlon ina
jointed rock mass.

If “slip”” occurs, there is a sudden release of stresses and there-
fore, energy also and that is why, | brittle materials, such as rock S]ldc
with jerks. . : .

This “stick-slip’” behaviour is observed in the field when it is
found that after excavation in the rock mass, the “delayed fall-out”
of the rock occurs.

99'3. Barton (1973) has suggested an empirical relation to des-
cribe the shear strength of any joint along the jointed surface.

T=gn tan ((J’RC logs, ‘.}'_f_ﬁ_;‘ + o ) ...(932) .

where . ~v==shear strength of the joint
on=normal stress acting in the joint surface
JRC=joint roughness coeffizient

JCS=joint wall compressive strength which -
can be determined by Schmidt hammer
test and has the upper limit as oc for

_fresh surfaces

$»=base angle of friction.
9'9'4  Conclusion '

On the basis of different investigations by different investigators,
it has been concluded that the roughness also has a pronounced in-
fluence on the strength of - a rock joint. The rougher the joint, the
higher is the shear strength. '
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