18 THE GAMMA AND BETA FUNCTIONS |Ch. 2

From the convergence of the integral on the right in (8) it follows
that

Lim | et=1di =0,

A= v a
Hence
(0) fwe"t"' dt = '(z) = Lim [e" - (1 - !—) ]E*—l dt.
o adem o0 n

But, by Lemma 3 and the lact that |£«] = et

J'“[Ewi — (] — E)h:l.’.‘_‘ dil = f‘t*e“' « (Reta=1 dy
0 n 0

- ]

= l g~ I Relal v df.

Haf g

anf e~!{Re(0+1 df converges, sof g-yratn+t df js bounded. There-
1] 0

fore
i [T - 1= o
and wg may conclude from equation (9) that (8) is valid.
l/gl‘he Beta function. We define the Beta function B(p, ¢) by

(1)  Bipg) = fll"“{l —)tdl, Re(p) >0, Re(g) > 0.

Another useful form for this function can be abtained by putting
t = gin? p, thus arriving at

ir
(2) B(pg) =2 f sin**~'p cos*vlp dp, Re(p) > 0, Re(g) > 0.
L]

The Beta function is intimately related to the Gamma function.
Consider the product

3) rpreg) = [ etrvdt - [ oot s

In {3) use t = x* and » = ¥* to obtain

M(p)T(g) = 4 [ exp(—z)z1 de - [ exp(—yyre dy,
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§171 THE VALUE OF r()T(l — 2) 19

T{P)P(Q) = 41:-1:‘-&?{])-(-—:‘ _ y‘);lrlyl'—l dr dy_

Next turn to polar coordinates for the iterated integration over the
first quadrant in the zy-plane. Using 2 = rcos 8, y = rsin §, we
may write

T(p)T(q) = 4_[:- f exp( —r1)rivtte? cog?e1p sin?v'g rdodr

o ir
= 2f exp(—rt)ris+ieidr - Ef cost»10 sin*v'9 do.
1] ]
Now put r = 4/f and 8 = }= — ¢ to obtain

r(p)rig = J:'r'l’"“ dt- 2 _L. J'si:tt’""qr: cos' g do,
from which it follows that
T(p)T(q) = IMp + @) B(p, 9)-
Treorem 7. If Re(p) > 0 and Re(g) > 0,
) Bipg) = NPI@.

T(p+ a)

By (4), B(p,q) = Bl(g,p), a result just as easily obtained directly
from (1) or (2).

Equations (2) and (4) yield a generalization of Wallis" formula
of elementary caleulus. In {2) put 2p — 1=m, 2¢ — 1 = n, and
use (4) to write

m-41 n+1
r
. 2 2
[ sin™p cos"p dp =

(g td)

(5

valid for Re(m) > —1, Re(n) > —1.

17. The value of T'(z)T(1 — z). The important relation (4) of
Section 16 suggests that the product of two Gamma functions whose
arguments have the sum unity may possess some pleasant property,
sinceif p+¢=1,T(p+¢g) =1(1) = 1.

If z issuch that 0 < Re(z) < 1, both zand (1 — 2) have real part
positive, and we may use (4) of Section 16 to write
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r(p)r{g) = 4J;mj;mexp{—x’ — )zt de dy.

Next turn to polar coordinates for the iterated integration over the
first quadrant in the zy-plane. Using x = rcos 8, ¥ = rsin 8, we
may write

@ i
T(p)T(q) = 4‘[ f exp( ~r)re+te? costrig sin?v g rdodr
(] g

- ir
= Ef exp( —ri)rie+ieidr - ZJ- cos?»—'9 sin‘v 4 dé.
a a
Now put r = 4/t and & = }= — ¢ to obtain

o ir
o) r(g = f g i) df . 2f sin®r=tp cos?vly de,
[/ <]
from which it follows that

T(pr(g) = T(p + ¢)B(p, 9).

TueoreMm 7. If Re(p) > 0 and Re(q) > 0,
_ I(p)T(g)
@ Bipa) = T o
By (4), B(p,q) = B(q,p), a result just as easily obtained directly
from (1) or (2).
Equations (2) and (4) yield a generalization of Wallis" formula
of elementary caleulus. In (2) put 2p — I=m, 29 — 1 = n, and

use (4) to write
F(m 2 ) (n 2 I),

21ﬂ(r.r.r,+n+2)
2

ir
(5) J; sin™p cosp dp =

valid for Re(m) > —1, Re(n) > —1.

17. The value of I'(z)T(1 — The important relation (4) of
Section lmt of two Gamma functions whose
arguments have the sum unity may possess some pleasant property,
sinceilp+g=1T(p+gq) =r() =

If zissuch that 0 < Re(z) < 1, both zand (1 — z) have real part
positive, and we may use (4) of Section 16 to write
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§19] LEGENDRE'S DUPLICATION FORMULA 23

THEOREM 9. If « ts neilher zero nor a negalive Tnleger,

T
(3) (), = Tlatn)
We have already had, in equation (3), page 11, the result
— 1Y! s
I'(z) = Lim (n 13! »

nrw 2z 1)z+2)---(z24+n—1)
which ean now be written in the form
- 4 2 (H — ]' ! H.
@result use re = Lim —#
Equation (4), reinterpreted in the light of Theorem 9, yields a
result of value to us in the subsequent two scetions.

Lemma 7, If n is inlegral and z 13 not a negalive inleger,

. (n—1Nln
(5) bm e+ n -

19. Legendre’s duplication formula. l.et us turn to Lemma 5,
page 22, and use & = 2z, We thus obtain

{23}!. = EEIF(Z}H{Z + é}l"
In view of Theorem 9 we may rewrite the above as

M2z 4+ 2n) _ 2T(z4 a)r{z+ 1 + n)
r2;) r(z)r(z + ) ’

or
r(2z) _ I'(2z 4+ 2n)
ririz+143) 2riz+a)riz+4 +n)
which, since the leit member is independent of n, also implies
r(2z) Y r'(2z + 2n)
W Tore+Fn T MM ETEF T+ 1)
We next insert in the right member of (1) the appropriate lactors
to permit us to make use of the result in Lemma 7. From (1)
we write
r'(2z)
r(z)T(z + %)
- Lim T'(2z+42n) _ (n—1)1In (n=1)In . 2::{2n—1)!
e (Z2n—=1)1(2R)*  T(z4+n) Tlz+i+n) 2ai(n-11]*"
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24 THE GAMMA AND BETA FUNCTIONS [Ch. 2

which, because of Lemma 7, becomes

() _ . 242 = 1)
TATGEF1) ~ m Foni[(n = DIF
It follows that

r(22) it
24Tz +3)

in which ¢ is independent of z. To evaluate ¢ we use z = } and
find that
r(1) 1

“TEmT T 3 ;

We have thus discovered an expression for I'(2z) in terms of I'(z)
and I'(z + 4). It is Legendre’s duplication formula,

2) A/ *T(22) = 22-1T(2) Iz + }).

20. Gauss’ multiplication theorem. Following the technique
used to discover and prove Legendre's duplication formula, we
readily move on to a thcorem of Gauss involving the product of &
Gamma functions.

Lemma 6, page 22, can be wrilten

&
()ur = k=t TT (E"‘;’_—l)

and by Theorem 9, page 23, (a). = T'(a + n)/T(a). We thus
obtain
at+s—1
vttty N )
() @ I
o hind r(a + 8 — 1)

I
In (1) put « = kz and rearrange the members of the equation to
arrive at
@) _ T(kz) _ . T(lz + In)
e+ i) el e i)

am

_ I'_i,m _ (lz 4 k) .
1 1 r(s+n+"‘; 1)

=i
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