
Chapter 1

Fluid equations

This part builds upon the knowledge you acquired from the introductory
Module 911, on the fluid plasma description. Its scope is to provide qualita-
tive insight in the building blocks of fluid theory, and relies on a qualitative
picture (derivation of fluid equations from first principles) which is distinct
from the analytical one introduced earlier (derivation as statistical moment
evolution equations - to be iterated in detail in Part 2 of these Notes). This
Chapter is therefore to be covered in a descriptive manner, by introducing
terminology and setting the toolbox for the analysis of plasma as a (multi-)
fluid system.

1.1 The fluid approach to describing a plasma

In principle, modern physics has the tools to accurately describe a plasma
in all its detail. The motion of each (of N) charged particle(s) and their
mutual electrostatic interaction via a long range Coulomb field (collisions)
are governed by Maxwell’s equations. However, calculating the evolution
of more than a (very) small number of electrons and ions using Maxwell’s
equations is a daunting task even for modern day computers.

Consequently an alternative to ab-initio (from fundamental principles)
calculations is required. Substantial savings in the computational effort are
always possible given the right simplifications. Given the large range of
parameters a plasma can have in terms of density and temperature, a variety
of different theoretical approaches have been developed. These simply differ
in their assumptions and simplifications and therefore have different strengths
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or weaknesses. The key is to understand what simplifications have been made
in these models - and thus to be aware when trying to obtain results for which
a given model might not be any longer or may only be partially valid.

In the following we will discover the equations governing the evolution of
a plasma in the so called fluid approximation - often referred to as Plasma
Hydrodynamics - from Ancient Greek ‘′Y δωρ - water. Given that a plasma
consists of a large number of charged particles (electrons, ions, and neutrals)
it may come as a surprise that a plasma displays fluid-like behaviour and it
would seem more natural to describe the plasma in terms of single particle
motions. While models based on particle motions do exist, they are not
necessarily the most efficient way of describing a plasma. The beauty of the
fluid model lies in the fact that instead of tracking the behaviour of every
particle, we choose to describe an ensemble of moving particles (fluid or gas)
in terms of a few local parameters:

• the fluid density n

• the fluid (flow) velocity u

• the fluid temperature T

• ... (perhaps more, depending on the complexity of the problem).

Depending on the complexity of the approach other quantities are also in-
cluded such as magnetic fields, etc. Recall that all of these quantities are
functions of space and time, within the fluid picture, that is n = n(r, t),
u = u(r, t), T = T (r, t) and so forth.

As you know by now, plasmas are highly complex systems which may con-
sist of various particle species: electrons, different types of ions, other charged
ingredients (e.g. defects, dust) and neutrals (often omitted by assuming a
fully ionised plasma). Most important, you should keep in mind that the fluid
description outlined here refers to each species present in a multi-component
plasma. Therefore, we shall speak of the electron fluid density (or velocity, or
pressure), the ion fluid (same) variables, and so forth. A separate single-fluid
description will be tailored in the next Chapter, combining the species into
a single-fluid system.

The temporal evolution of these fluid equations is determined by the
fluid equations, to be presented below. The different species are dealt with
by developing one equation for each set of particles, i.e. in principle at least
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two, one for electrons and one for ion species. However, we frequently need
to incorporate multiple species (electrons, ions, different types of ions and
varying ionisation stages) as well as neutral atoms. In fact, some of the most
technologically important plasmas are only very weakly ionised, with only 1
in a 1000 or less ion content.

1.2 Particle conservation: the continuity equa-

tion

One of the simplest requirements in modelling plasma is that the number
of particles should remain conserved. Simply speaking, we require a set
of equations that keeps the overall particle number constant. In order to
formulate this in terms of an equation, let us first consider a three dimensional
(3D) volume element ∆V = ∆x∆y∆z.

Figure 1.1: Volume element in 3D space.

If we know the local number density n we can calculate the total number
of particles in the volume element ∆N , we can calculate the total number of
particles in the volume ∆V as:

∆N = n∆V . (1.1)
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As long as our volume element does not change shape (Eulerian view 1)
and there are no physical sources or sinks of particles (so that particles may
neither be ‘produced’ or lost), any change in the number of particles must
be as a result of particle flow across the boundaries of the volume element.
In other words, the change in the number of particles must only be a result
of flow across the boundaries. We can easily realise that the total number
of particles flowing across a boundary depends on the flow velocity u, the
density n and the area in question.

We can describe a flux of particles with an average velocity v streaming
across a boundary with a number density n, i.e. our flux is:

J = nu . (1.2)

If we make the simplifying assumption that our plasma is only flowing
along the x-axis, we can write the change in particle number as2

∂(∆N)

∂t
= (Jx=0 − Jx=∆x)∆y∆z . (1.3)

We may now express the flux through the boundary at x = ∆x in terms
of both the flux Jx=0 at x = 0 and its derivative in terms of x, by using a
Taylor expansion, i.e:

Jx=∆x ≈ Jx=0 +
∂J

∂x

∣∣∣∣
x=0

∆x . (1.4)

We can now substitute Eq. (1.4) into Eq. (1.3) to obtain an equation that
relates the change in particle number to the density and velocity gradients
in the plasma:

−∂N

∂t
= (Jx=0 − Jx=∆x)∆y∆z =

∂(nux)

∂x
∆x∆y∆z , (1.5)

1We shall work in Eulerian geometry throughout this part. A brief interpretation
of this assumption, which determines our mathematical toolbox, is provided below, as an
Appendix. A more complicated mathematical formulation exists (in the Lagrangian view),
but is omitted here, for simplicity

2Note that we have considered a finite volume element in some fixed position in space,
and are thus looking into the time variation of the particle density. However, all quantities
of interest may also vary in space, hence the partial derivative employed here ∂/∂t (instead
of a total derivative d/dt).
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or, for the 3D (three dimensional) case,

−∂N

∂t
= ∆V∇(nu) . (1.6)

Dividing by the volume, we can write down the continuity equation purely
in terms of density and velocity as

∂n

∂t
+∇(nu) = 0 . (1.7)

The physical interpretation of (1.7) is the conservation of particle number
density. We now have accomplished the first step towards a recipe to calculate
the evolution of a plasma in space and time.

Note: Clearly we have made one significant simplification, by omitting
particle sinks and sources. This is true in a ‘textbook’ picture of plasma, but
may not always be permitted in the ‘real world’. In other words, plasmas
may consist of constituent (particles species) whose number may be variable.
The most obvious of these sinks and sources is expressed by the fact that the
number of electrons depends on the average ionisation Z∗. The value of Z∗

relates the ion number density ni to the electron density ne as

ne = Z∗ni . (1.8)

Since the ionisation state of a given atom is strongly dependent on the plasma
temperature, an accurate plasma description requires that the average ioni-
sation state be calculated. Any change of Z∗ must then be incorporated into
Eq. (1.7) as a particle sink or source.
Unless specifically stated otherwise, the plasma considered in the rest of these
notes will be thought of as an ensemble of particle species of fixed number
composition.

1.3 Momentum conservation

Of course, the continuity equation (1.7) is not enough to determine the evolu-
tion of a plasma. To derive further equations that the plasma must satisfy, we
shall look into one of the most basic conservation laws in physics: momentum
conservation:

ptot = constant , (1.9)
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which essentially expresses Newton’s 2nd Law for the whole of the plasma
particles.

To calculate the momentum of a plasma, we must first consider the mo-
mentum carried by the individual particles. The momentum of a given (say,
i−th; here i = 1, 2, ..., N) plasma particle (ion, electron) is given by

pi = miui . (1.10)

For the overall momentum to be conserved, the sum of all the particle
momenta must remain constant. For a volume element ∆V we can write:

ptot =
∆V∑

miui = mi(∆N)u = ∆V minu (1.11)

with

ptot =
∆V∑

miui = mi(∆N)u = ∆V mnu (1.12)

and u =
∑∆V ui/∆N is the mean velocity.

Note that we have made the leap from single particle quantities (the
microscopic velocities vi) to an averaged quantity (the fluid velocity u)) here.
This step is key to the beauty and the effectiveness of the fluid description.
Later you will see that when we describe a plasma in terms of the kinetics of
single particle motion that we can recover the fluid description by evaluating
averages (statistical ensemble averages) of the individual particle quantities.
For the fluid description of a plasma it is therefore essential that we find a
simple way of obtaining and measuring averages. This will be discussed at
some length later in this course.

We know that for a single particle the change of momentum pi is propor-
tional to the applied force Fi = dpi/dt (Newton’s Law). We can calculate the
time dependence of the momentum from the forces acting on the particles as

dptot

dt
= ∆V

d

dt
(mnu) = F . (1.13)

Since n∆V = ∆N and d(∆N)/dt = 0, we can rewrite the above equation as

mn∆V
du

dt
= F . (1.14)

So far we have summarised the forces acting on the plasma simply in
terms of the variable F. To make quantitative predictions we need to look
into this force term in a little more detail.
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1.3.1 Forces acting on a fluid element

For a plasma, the dominant forces result from the electric field E and the
magnetic field B. We recall that the force acting on an individual particle is
simply the Lorentz force Fi = qi(E + v ×B).

In fact one might argue that this should be the only term on the right
hand side of the momentum equation, since electromagnetic forces dominate
the interaction between charged particles and other forces (such as gravity)
only play a role on enormous time and distance scales (e.g. astrophysical
plasmas). While this is strictly speaking true, a detailed analysis of the field
sources shows that there are very distinct contributions to the fields which
operate on very different spatial scales. Coulomb collisions between charged
particles take place on extremely short spatial scales while externally applied
fields act on much larger length scales. Once again we face the challenge of
formulating an understanding of the basic processes in a format which will
allow actual calculations to be performed.

It is practical to use the average over the Lorentz force on single particles.
We can therefore make our momentum conservation equation more detailed
by writing:

mn

(
∂u

∂t
+ (u∇)u

)
= qn(E + u×B) + Fmicroscopic , (1.15)

where the last term denotes the sum of forces acting on the plasma fluid
due to microscopic effects. We shall be more specific on this in the following
paragraphs.

Momentum transfer by like particles - the pressure term

Since we are averaging over a volume element to arrive at our fluid equa-
tions, collisions between like particles need not be included in our equation
for momentum conservation. Collisions between like particles do play a role
for non-thermal plasmas (plasmas which do not have a Maxwellian veloc-
ity distribution) and act to bring any velocity distribution back towards a
Maxwellian distribution. They are therefore the basis on which we can use
a fluid description.

However, particle movements in and out of our volume element will lead
to a net transfer of momentum. This momentum transfer is exactly analogous
to the concept of pressure we are familiar with from a gas. The pressure in
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a gas is simply the force per unit area arising from the thermal motions of
the individual particles. (Note that the force per unit area has the same
dimensions as energy density and that for example a magnetic field also
exerts a magnetic pressure exactly in proportion to its energy density. We
shall come back to this subtle point later.)

In single particle terms, a momentum transfer (or force) arises because
of the random motion of particles entering and departing from the volume
element ∆V . Similarly to our derivation of the continuity equation, we con-
sider a volume element centred at (x0, ∆y/2, ∆z/2) and consider only motion
along the x-axis. The number of particles passing through into the volume
element is (∆nV )ux∆y∆z where ∆nV denotes the number of particles per
unit volume moving with velocity ux each, i.e. with a momentum mux.

The momentum entering the volume element through the face located at
x0 is then the sum over all the different velocities

Px0 =
∑

∆nvmu2
x∆y∆z = ∆y∆z

(
mnv2

x/2
∣∣
x0

(1.16)

and for the interface at x0 −∆x

Px0−∆x = ∆y∆z
(
mnv2

x/2
∣∣
x0−∆x

, (1.17)

where v is the average velocity. The net gain of momentum is then

Px0−Px0−∆x = ∆y∆z
1

2
m

[(
nv2

x

∣∣
x0−∆x

−
(
nv2

x

∣∣
x0

]
= ∆y∆z

1

2
m(−∆x)

∂

∂x
(nv2

x) .

(1.18)
The total momentum transfer is just twice this result since the contribution of
particles moving in the opposite direction and carrying negative x-momentum
adds an equal term, thus

∂

∂t
(nmvx)∆x∆y∆z = −m

∂

∂x
(nv2

x)∆x∆y∆z . (1.19)

What we would like to know is how we can relate this result to average
quantities and since we are dealing with pressure, we would like to relate our
pressure term to the local plasma temperature. We can do this by writing
down the velocity of an individual particle in terms of the average velocity
(the flow velocity) and a random (thermal) component.

vx = vx + vth . (1.20)
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For a Maxwellian distribution we can relate the concept of temperature
T to the average velocity via the well known relation

1

2
mv2

th =
1

2
kBT , (1.21)

which gives the average thermal velocity per degree of freedom (only mo-
tion along the x− direction is considered here). Recall that kB denotes the
Boltzmann constant.

With this relation we can rewrite equation (1.19) in terms of the local
temperature

∂

∂t
(nmvx) = −m

∂

∂x

[
n(v2

x + 2uxvth + v2
th)

]
= −m

∂

∂x

[
n

(
v2

x +
kBT

m

)]
.

(1.22)
After carrying out the partial differentiation we can see that we can cancel

the two terms nearest the equal sign by using the continuity equation (1.7)

nm
∂

∂t
vx + mvx

∂

∂t
n = −mvx

∂

∂t
(nvx)−mnvx

∂

∂x
vx −

∂

∂x
(nkBT ) . (1.23)

Using the definition of pressure as

p ≡ nkBT , (1.24)

we may rewrite our momentum transfer balance equation for like species in
terms of pressure

mn

(
∂ux

∂t
+ ux

∂ux

∂x

)
= −∂p

∂t
. (1.25)

This is the pressure gradient force, so the change of momentum in a volume
element due to pressure becomes(

dp

dt

)
pressure

= −∇p . (1.26)

We may add, for rigour, that we have only treated the simplest case here.
In principle the pressure need not be isotropic and in this case the scalar
pressure must be replaced by a pressure tensor P and the pressure gradient
force generalises to (

dp

dt

)
pressure

= −∇P . (1.27)



1.3. MOMENTUM CONSERVATION 12

For isotropic pressure, the pressure tensor simply contains the scalar pres-
sure p as the trace of the tensor with all off-diagonal elements 0. For non-
isotropic pressure the off-diagonal elements remain 0, and the trace contains
the pressure in x, y and z directions. In the most general case the off-diagonal
elements can also become non-zero in the presence shear flow.

Momentum transfer between particle species - collisions

Coulomb collisions between different particle species do transfer momentum
and any plasma consists of at least two distinct populations: electrons and
ions. The momentum exchanged between the two species must be added to
our momentum balance equation in terms of a momentum gain (loss) term.
Of course, as we will see later on, the actual momentum exchanged in a spe-
cific collision depends on the collision cross section and the relative velocity
of the two particles. Instead of looking at the hopeless task of including every
single collision, we may again look at average relative velocities between the
species and average the momentum exchanged over all possible parameters.
Then the rate of momentum density exchanged between two species simply
depends on their relative average velocities (u1 − u2) and the frequency of
their collisions ν12 (

dp

dt

)
coll

= ν12n1m1(u1 − u2) , (1.28)

whereby the collision frequency must be calculated in such a way that we get
the right rate of momentum transfer, for a given physical problem.

Of course the probability of a collision must depend on both the electron
and ion density as well as on the electron and ion charge. The strength of a
collision depends on the particle charges and the frequency of the collisions
must depend on the density of each species. For a fully ionised plasma of
Z=1 and therefore expect an e2 dependence and, since ne = ni = n also an
n2 dependence of the momentum transfer. These two approaches should only
differ by a proportionality constant η and hence(

dp

dt

)
coll

= ν12n1m1(u1 − u2) = ηe2n2(u1 − u2) . (1.29)
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We may therefore express the collision frequency as

ν12 = η
ne2

m
. (1.30)

Taking all the above terms together we can write our momentum conser-
vation equation as(

dp

dt

)
=

(
dp

dt

)
Lorentz

+

(
dp

dt

)
coll

+

(
dp

dt

)
pressure

(1.31)

and substituting all of the above expressions

mn(
∂u

∂t
+ (u∇)u) = qn(E + u×B) + ν12n1m1(u1 − u2) +∇P . (1.32)

It would be useful to revise at this stage some general definition relating to
collisions between any two particle species. The same definitions used for me-
chanical, short-range collisions apply also to Coulomb, long-range collisions,
e.g. the concepts of cross section σ, mean free path λm, collision frequency νc.
In particular, for a scattering process having cross section σ where particles
with velocity v are scattered by stationary scatterers of density nn, one has

νc = nnσv . (1.33)

1.3.2 Coulomb collisions

In order to obtain a final working expression for ν12, we must calculate the
parameter η accurately. This can be done by an analysis of the mechanics
of a Coulomb collision between an electron and an ion. It is obvious that
the exact form of η contains all the information about the intrinsic proper-
ties of the plasma, as one might expect from simple physical intuition. For
instance, we may anticipate a dependence of collisions on the temperature of
the plasma (affecting the particles’ speed, on the average), or on the charge
of the constituent particles (higher charge implies stronger interaction, hence
stronger collisions).

Consider an electron with velocity v transiting close to an ion, which
we will consider stationary during the collision. The distance between the
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unperturbed trajectory of the electron and the position of the ion is called
the impact parameter, r0, as indicated in Fig. 1.2. After the encounter with
the ion, the electron trajectory will be modified due to the Coulomb force
experienced in the proximity of the ion, and χ is the angle between the initial
and final trajectories of the electron. The encounters which result in electron
deflections with χ ∼ π

2
are called large angle collisions, and are obviously

the most effective in randomizing the motion of the electrons, as after such
a collision the electron will not have any memory of its original trajectory.
We can derive an approximate condition on r0 and v for obtaining χ ∼ π

2
.

mev χ

Electron

r0

+

Ion

Figure 1.2: Schematic of Coulomb collision between an electron and an ion

Roughly speaking , the Coulomb force FC on the electron is effective in

deflecting it only near the ion (where r ∼ r0) , i.e. roughly for a time τ ∼ r0

v
The change in electron momentum will be approximately equal to

|∆mev| = FCτ ∼ e2

4πε0r0v
. (1.34)

Also, since the velocity of the electron (in module) will be conserved dur-
ing the collision, and the final direction will be approximately normal to the
initial one, one can also say that ∆(mev) ∼ mev. Equating the two expres-
sion and solving for r0 we find that the condition for obtaining a large angle
collision is:

r0 =
e2

4πε0mev2
. (1.35)
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We can now define a cross-section σ for large angle collisions:

σ = πr0
2 =

e4

16πε0
2me

2v4
. (1.36)

Using the expression 1.33, and assuming Z=1 one obtains, for electron-ion
collisions that

νei = niσv =
nee

4

16πε0
2me

2v3
, (1.37)

and

η =
me

nee2
νei = niσv =

e2

16πε0
2mev3

. (1.38)

If we consider that in a plasma of given electron temperature T, one has
v2 ∼ kBT/me, this leads to the approximate expression

η =
πe2m1/2

(4πε0)2(kBTe)3/2
. (1.39)

We call this parameter η the resistivity of the plasma (we will later see
why), and this is an approximate expression based on single large-angle col-
lisions alone.

Obviously, collisions leading to small angle deflections (i.e. χ < π
2
) can

have an effect as well in randomizing the motion of the electrons. Particu-
larly, small angle collisions can be more frequent, and the combined effect
of many small angle collisions may also result in large deflections and large
momentum exchanges. If one carries out an exact calculation, averaging over
a Maxwellian distribution and integrating over all angle deflections, the re-
sults is - remarkably as our calculation was quite rough- very close to the
expression of Eq. 1.39

η =
πe2m1/2

(4πε0)2(kBTe)3/2
lnΛ , (1.40)

i.e., the expression derived above is correct, apart from a multiplicative term
ln Λ, where Λ = 12πneλD

3 is called the Coulomb logarithm.

Online Task 1:

• What is the maximum impact parameter that makes sense to consider
when evaluating the effect of small angle collisions?

IK
Line
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• Recall what η in Eq. (1.40) [and ν in (1.37)] represent(s) physically.
What is the physical effect of its (their) value, whether small or large?
Discuss the dependence of Eq. (1.40) on the plasma temperature, and
the particle mass and charge. Use purely qualitative arguments (no
calculation required to answer this). Is this dependence expected, from
physical intuition?

1.3.3 Plasma resistivity

Note that η is also referred to as the plasma resistivity since it is the pro-
portionality constant between the electric field E and the current j such that
E = ηj.

This can be shown by simply considering the momentum equation to
analyze the case of a constant electric field applied in a plasma, driving an
electron current. We will assume that the ions do not move on the timescales
of interest, and that the plasma is cold (T ∼ 0) and unmagnetized.

Under these conditions, the momentum equation for the electron fluid
can be written as:

mene
due

dt
= −eneE + ηne

2e2(vi − ve) (1.41)

Let’s assume that after having applied the electric field for some time we
reach a stationary state in which a constant electron current flows through
the plasma. At this stage we will have that due

dt
= 0 and:

E = −ηneeve = ηJ (1.42)

This is the microscopic expression of Ohm’s law, proving that η is effec-
tively an expression for the resistivity of a plasma.

Some considerations on collisions

Looking for example at equation (1.29), it might appear at first glance that
for large velocity differences the momentum transfer between species becomes
very efficient. However, the opposite is the case. It should also be empha-
sized that η implies that collisions become negligible in the limit of high
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temperatures since (kBT )−3/2 ∝ v−3 - even if the electron and ion tempera-
ture deviate substantially. In the case of Te ∼ Ti the v−3 scaling implies that
collisions are approximately 1 million times less likely at a few hundred eV
than at a few eV. Consequently we will see that many theoretical descriptions
and numerical models do not include collisions without substantially affect-
ing the accuracy of the predictions.The physical origin of this dependence
is that the time during which a particle feels the coulomb force depends on
the velocity of the particle and the impact parameter r0 as tcoll ≈ r0/v and
r0 ≈ v−2. The approximation of a collisionless plasma is frequently used to
simplify plasma modelling - in particular in the kinetic approach.

1.4 Equation of state

In order to study the evolution of a plasma employing the fluid equation
discussed previously, one also needs a functional relationship (an equation of
state, EoS) between the fundamental plasma parameters p, n, T . This has
been already discussed in Module 911. We will just remind here that p, n, T
will in a typical equilibrium situation be assumed to satisfy the relationship
p = nkBT (the state equation of a perfect gas). Furthermore, depending
on the problem under investigation, either of the following conditions apply:
T = constant (isothermal EoS) or P = Cnγ (adiabatic EoS, to be used when

p, T vary slowly), where γ =
f + 2

f
, where f denotes the number of degrees

of freedom of the physical problem.
If we know the right EoS for the problem we are investigating using the

fluid equations, we can now specify an expression for the term −∇p in the
right end of (1.32). Particularly, we will refer to the case of the electron fluid.
Let’s consider a 1D case, i.e. a case in which all parameters are function of
a single spatial variable x. In this case, ∇pe = ∂pe

∂x
.

If the phenomenon under investigation can be described by an adiabatic
EoS (e.g. it is slowly varying), then one has that pe = nekBTe and Pe = Cne

γ,
from which one can write:

∂pe

∂x
= Cγne

γ−1∂ne

∂x
.

However,

Cne
γ−1 =

Cne
γ

ne

=
pe

ne

= kBTe .
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Therefore one has in this case:

∂pe

∂x
= γKTe

∂ne

∂x
= 3kBTe

∂ne

∂x
. (1.43)

Online Task 2: Suppose that you have to study electrostatic dynamics of
an adiabatic electron plasma in 2 dimensions (2 degrees of freedom). Ions
may be taken to be “frozen” (since much heavier), thus ni = constant (no
dynamics). Provide a system of fluid equations to model this problem. How
is the pressure term expressed in the right-hand side of the momentum equa-
tion? You may assume that the space-dependent plasma dynamical variables
are ne and ue, while the pressure is given from ne via an equation of state
(which one?).
Hint(s): Consider the evolution of the electron fluid density ne and velocity
ue. Refer to your Module 911 notes about the Eq. of state.

Online Task 3: How many (scalar) dynamical state variables does the sys-
tem in the latter question contain? How many equations? Is this a “closed”
system? (i.e., one bearing so many equations are variables to solve for). If
not, then how would you suggest that it may be “closed”?
Hint: Consider E = −∇φ (magnetic field variations are neglected for electro-
static plasma excitations), and search for an equation in terms of the electric
potential φ. Recall that the total charge density is ρ = (ni−ne)e (why?) for
ion charge state Z = 1.

1.5 The pressure evolution equation

Recall that the equation of state was introduced in order to “close” the system
of fluid density and velocity equations, by adopting a specific exact expression
for the fluid pressure variable p therein. For the sake of completeness, and yet
omitting tedious algebraic details, we should add that one may also employ an
evolution equation for the plasma pressure ps (where s = e denotes electrons,
or i for ions).

The pressure equation, expressed in its simplest form, reads:

∂ps

∂t
+ us · ∇ps = −γ ps∇ · us , (1.44)
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where ns, us and ps respectively denote the density, velocity and pressure
of species s. The parameter γ = cP /cV = 1 + 2/f denotes the specific heat
ratio (for f degrees of freedom), e.g. γ = 3 in the one-dimensional (1d) case,
γ = 2 in the two-dimensional (2d) and γ = 5/3 in the three-dimensional (3d)
case; also, γ = 1 if an adiabatic evolution is considered.

The pressure equation can be used instead of the EoS introduced previ-
ously. Admittedly, this extended description (density, momentum, pressure
evolution) adds some level of complexity to the existing one (density, mo-
mentum, plus EoS) (Maxwell’s laws’ contribution obviously to be added in
both cases). Nevertheless, it adds some rigour to the picture provided by
an EoS, which relies on (sometimes questionable) physical assumptions (e.g.,
adiabatic variation, or isothermal hypothesis).

A note, for rigour. As will be discussed in the second part of these Notes
(kinetic theory), the pressure equation (1.44) is but a link in a long chain of
equations (the momentum equations). In the picture shown here, it closes
the system of fluid evolution equations, yet only because it was “forced” to
do so (!), by truncating terms present in the RHS. Nevertheless, Eq. (1.44)
is a good “working horse” for efficient fluid plasma study, and can be used
instead of an EoS (in fact, to avoid the assumption of an EoS), wherever the
complexity of the phenomena to be studied so require.
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1.6 Appendix 1: Eulerian vs Langrangian view-

point

When treating a plasma as a fluid there are two fundamentally different
viewpoints in which we can approach the plasma. The first approach is the
so called Eulerian viewpoint - more conventional in terms of the way we
normally look at the world around us. Here we treat the physical quantities
of interest as functions of the spatial co-ordinates (x,y,z) and time. I.e.
when we try to solve for the typical quantities of interest (e.g. density and
temperature) we are sitting in one place (or volume element) and seek to
describe the temporal evolution in that point.

The motion of the fluid is then described by particles moving across the
boundaries of our volume element. Clearly each particle leaving the volume
element leads to a reduction of the local density, while particles entering the
volume element lead to an increase. The change in density is then a result
of net particle flow (inflow-outflow) across the boundaries and similarly, the
net change in the local temperature depends on the net energy flux across
the boundaries.

By contrast, in the Langrangian viewpoint, we consider the fluid from
the perspective of a group of particles - in effect we are “riding” with the
bulk fluid and watch the fluid properties (e.g. density, temperature) evolve
as the particles move through (and actually being) the fluid. Therefore the
number of particles for each fluid element is a constant (since we are ’riding’
with a fixed group of particles). Changes in density are therefore described
by a volume change of the volume element containing these particles, while
changes in temperature are described by a change in kinetic energy of this
group of particles.

A good way of visualising the two approaches is to think of a cup of
coffee into which we have just put a drop of milk. From the of the Eule-
rian viewpoint we are watching the evolution by sticking a probe into a fixed
position in a cup of coffee and watching the temperature and milk concentra-
tion change in that small volume element. From the Lagrangian perspective
we might be following the evolution of the drop of milk and observe that
the drop of milk starts moving more rapidly (gets heated) and increases its
volume - hence becoming more diluted within the coffee.

A rigorous analytical way to formulate the Lagrangian picture is to em-
ploy, instead of the Eulerian variable {r, t}, the moving frame variables
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{r − u(r, t)t, t} ≡ {ξ, τ}. This is obviously a tedious mathematical for-
mulation. The (simpler, analytically) Eulerian formalism will be adopted
throughout these course Notes, unless otherwise necessary (and explicitly
stated).

Eulerian Picture

v

Lagrangian Picture

Figure 1.3: Contrast of Eulerian and Lagrangian Viewpoints. In the Eulerian
Viewpoint the volume element is fixed in space and the plasma flows through
it. By contrast in the Lagrangian viewpoint the volume element itself moves
though the liquid, changing shape and size to reflect changing density. The
two boxes are offset by a distance v∆t where v is the flow velocity and v∆t
the elapsed time.
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1.7 Appendix 2: The convective derivative

Consider any quantity Q that varies with both space and time in a fluid,
(e.g. the temperature or density). The total derivative with regards to the
time t can be rewritten as

dQ(x, t)

dt
=

∂Q

∂t
+

∂Q

∂x

dx

dt
=

∂Q

∂t
+ ux

∂Q

∂x
, (1.45)

which is generalised in three dimensions as

dQ(x, t)

dt
=

∂Q

∂t
+ (u · ∇)Q . (1.46)

The right-hand side of this expression defines the so called convective deriva-
tive. The convective derivative accounts explicitly for quantities that vary
both in time and in space. In some contexts (namely in the Lagrangian pic-
ture discuss above), one often encounters research studies wherein the fluid
equations are rewritten in terms of the operator of the convective derivative,
say D/Dt, as defined in the latter equation (1.46),

D

Dt
=

∂

∂t
+ u · ∇ . (1.47)


