
7 Particle Transport and Loss

Now that we have seen how complicated a mixture a plasma can be, it is time to
take a step back and consider the simplest possible plasma made only of electrons,
one type of ion and one type of neutral. The transport of charged particles is dealt
with in this section. For low pressure plasmas this deals with the basic question of
how particles move to the walls. We also look at what happens right next to any
solid walls in contact with the plasma.

7.1 Diffusion

Particles in a gas undergo a random walk process as they move about. Collisions
change the direction of motion and the particles move in straight lines between
collisions. Because we are dealing with enormous numbers of particles, we can
assume that the changes in direction are completely random, and this means that
there is no preferred direction for the particles to move in. If we start by labelling a
bunch of particles in a region A and then follow them, we will find them spreading
out in all directions as they move about and collide with other particles and each
other.

Now consider two separated (equal volume) regions A and B. If we label all the
particles in these regions and follow them, we’ll find that after a time some of the
particles from A have ended up in B and vice versa. However, if A and B initially
contained unequal numbers of particles (nA > nB , say) then we expect that more
from A have ended up in B than the other way round.

The random walk process thus tends to equalise the density in the gas, smoothing
out any peaks and filling in any hollows, and this applies equally well whether we
are considering neutral molecules or charged particles. The diffusion of particles
can be expressed by Fick’s law which relates the resulting flux Γ to the density
gradient which causes it,

Γ = −D∇n (7.1)

where D is the diffusion coefficient and ∇n gives the concentration gradient in the
x, y and z directions and is given by
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(7.2)

In some important cases the concentration is almost uniform in two of the directions
(y and z say) so there is no variation in n in these directions. Thus ∂n/∂y and ∂n/∂z
are both zero and we have

∇n = i
dn

dx
(7.3)

and Fick’s law in one dimension becomes

Γ = −D∇n = −D
dn

dx
. (7.4)

The spatial variations in density will be smoothed more quickly if the particles move
faster and collide less often. The diffusion coefficient is given by

D =
kBT

mνm

(7.5)

where νm is the momentum transfer collision frequency. This is not the same as νc

since we are now concerned not just with how often collisions occur, but also how
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much the direction changes in each collision. The two frequencies are related by

νm = νc(1 − 〈cos(θ)〉) (7.6)

with the cosine of θ, the scattering angle, averaged over all collisions in the expres-
sion. For isotropic scattering, 〈cos(θ)〉 = 0 and νm = νc. The diffusion process we
have just described is called free diffusion and it clearly does not apply to charged
particles when an electric field is present. In that case there certainly is a preferred
direction since the particles accelerate in the direction of (or opposite to) the field.

7.2 Mobility

When an electric field is present, charged particles are accelerated but their motion
is disrupted by collisions with the neutrals. Let us consider the equation of motion
for electrons

me

dve

dt
= −eE +

∑
n

me∆vnδ(t − tn). (7.7)

In the second term ∆vn represents the change in velocity during the nth collision
at time tn (δ is the Dirac delta function). Collisions occur randomly and there is a
huge number of electrons, so we’d like to average over time to find what happens
to all the electrons as a group. This averaging gives

me

dve

dt
= −eE + meveνm (7.8)

where ve now represents an average electron velocity. This equation of motion
is interesting, because the second term on the right hand side has the form of a
frictional drag (proportional to the velocity and opposing the motion). As a group,
we can expect the electrons to eventually reach a terminal velocity in the medium
of the (stationary) background gas. Equation 7.8 can be integrated to give this
average velocity, which is called the drift velocity

vd = −
eE

meνm

. (7.9)

We see that the electron drift is simply proportional to the strength of the field and
the proportionality constant is called the mobility

µe =
e

meνm

. (7.10)

Notes:

• The mobility measures how easily electrons or ions move through a neutral
gas. It depends on the particle mass as well as the density of the gas and the
cross section for elastic collisions.

• We have tacitly assumed that the magnitude of the electron velocity does not
change during a collision with a neutral. This is a good approximation for
electrons but not for ions. However, we can still define a mobility for ions by
µi = e/miνm where νm is the momentum transfer collision frequency for the
ions.

• Since the collision cross section in general depends on the particle energy, the
linear dependence in equation 7.9 is not strict. The mobility is still very useful
for modelling plasmas and making estimates.
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• Comparing equation 7.10 with equation 7.5) gives the Einstein relation

µ =
e

kBT
D. (7.11)

This is a thermodynamic relation between the two transport coefficients which
can often simplify calculations.

7.3 Ambipolar Diffusion

The total flux of charged particles in a gas consists of both the diffusion due to the
density gradients and the drift in the electric field

Γe,i = ∓µe,ine,iE − De,i∇ne,i. (7.12)

The subscripts refer to the electrons or ions and the sign depends on the sign of the
particle charge. Since the plasma is quasineutral, ne = ni = n, and the gradients
are the same. Consider now a small volume in the plasma. The fluxes of electrons
and ions out of (or into) this volume must be equal. Any inequality results in a
charge imbalance which generates an electric field that opposes the charge buildup
by equalising the fluxes. Since electrons and ions have different mobilities and
diffusion coefficients, a small electric field always exists in nonuniform plasmas
where ∇n 6= 0. This field can be found by equating the fluxes

−µenE − De∇n = µinE − Di∇n (7.13)

and solving for E. The flux of electrons (or ions) can then be written in the form
of Fick’s law

Γe,i = −Da∇n (7.14)

with the same diffusion coefficient

Da =
Diµe + Deµi

µe + µi

(7.15)

governing the motion of both species. This is ambipolar diffusion, which just means
that both types of charges move together.

Notes:

• De ≫ Di and µe ≫ µi so Di < Da < De. Ambipolar diffusion results in
faster diffusion for the ions and slower diffusion for the electrons. The faster
electrons drag the ions ‘behind’ them. We can approximate Da by

Da ≈ Di + De

µi

µe

. (7.16)

• There seems to be a contradiction in using ne = ni and finding that there is
an electric field present (i.e. ne 6= ni). Is this a serious flaw in the argument?

• If Te = Ti the Einstein relations give Da = 2Di. In industrial plasmas we
often have Te ≫ Ti which leads to

Da ≈ Di

Te

Ti

. (7.17)

• The character of the motion is quite different for the electrons and the ions.
The fast, mobile electrons move about a great deal with the net flux quite
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small in comparison with the separate fluxes due to the field and the density
gradient

µenE ≈ De∇n. (7.18)

In contrast, the ions are dragged along by the field

Γi ≈ µinE (7.19)

and their thermal motion is less important. We can thus normally assume
that the electrons are in Boltzmann equilibrium but this is not true for the
ions.

• At very low pressures collisions between ions and neutrals are rare and it is
reasonable to assume that the ions fall ballistically through the ambipolar
field. This is sometimes called the ‘free fall’ regime. At slightly higher pres-
sures collisions become important but the drift velocity is still higher than the
thermal velocity. A better estimate of the collision frequency is νm ≈ |ui|/λi

where ui is the ion drift velocity.
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