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Over thousands of years, modernization could be predicted for the use of
microorganisms in the production of foods and beverages. However, the current
accelerated pace of new food production is due to the rapid incorporation of
biotechnological techniques that allow the rapid identification of new molecules and
microorganisms or even the genetic improvement of known species. At no other time
in history have microorganisms been so present in areas such as agriculture and
medicine, except as recognized villains. Currently, however, beneficial microorganisms
such as plant growth promoters and phytopathogen controllers are required by various
agricultural crops, and many species are being used as biofactories of important
pharmacological molecules. The use of biofactories does not end there: microorganisms
have been explored for the synthesis of diverse chemicals, fuel molecules, and
industrial polymers, and strains environmentally important due to their biodecomposing
or biosorption capacity have gained interest in research laboratories and in industrial
activities. We call this new microbiology Technological Microbiology, and we believe that
complex techniques, such as heterologous expression and metabolic engineering, can
be increasingly incorporated into this applied science, allowing the generation of new
and improved products and services.

Keywords: biotechnology, food microbiology, biopolymers, plant growth-promoting microorganisms,
environmental microbiology, biofactories

INTRODUCTION

The history of the use of biotechnological techniques by humanity is confounded by the history of
the establishment of microbiology as a science. The first indication of the use of microorganisms for
cereal grain fermentation to produce an alcoholic beverage was obtained from molecular evidence
from the Neolithic village of Jiahu in China and dates to 7000 BC (McGovern et al., 2004). Similar
evidence was found in the Zagros Mountains of northern Mesopotamia, dating to 5400–5000
BC (McGovern et al., 1996). The first indication of wine production comes from the presence of
tartaric acid in an old jar, also dated to 5400–5000 BC, at the Neolithic site of Tepe in Mesopotamia
(McGovern et al., 1996) and from grape juice residues, found in Dikili Tash in Greece and dated
to 5000 BC (Valamoti et al., 2007). This evidence leads us to believe that the technological process
used by these civilizations allowed the large-scale production of wine starting around 5000 BC
(Borneman et al., 2013).

The Egyptians, who already used yeast to brew beer, began to employ this microorganism
to make bread. Samples were found in different archeological sites dating to 2000–1200 BC
(Samuel, 1996). The establishment and dissemination of fermentation practices throughout Asia,
Mesopotamia, Egypt, and the Old World are traits of the empirical domestication of yeasts
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(Sicard and Legras, 2011), which later stimulated the interest
of Louis Pasteur in explaining the true cause of fermentation
(Pasteur, 1857). Evidence suggests that in 1856, Pasteur was
approached by a beetroot-based alcohol producer from the Lille
agricultural-industrial region, who faced production problems.
Thus began the pioneering studies of Pasteur on lactic acid
and alcoholic fermentations (Gal, 2008). He then became an
admirer of the microscopic universe, describing the association
of microorganisms with diseases and proposing vaccination
methods such as used against anthrax (1881) and human
rabies (1885) (Pasteur, 2002; Plotkin and Plotkin, 2011).
Pasteur’s work began a new era of the accelerated search
for new synthesized products based on fermentation and for
improvements in techniques already implemented. His studies
also provided support for the establishment of microbiology as
a science, which had as its initial interest the sanitary control of
diseases.

Technological Microbiology, however, started to draw the
attention of the market when products originating from
microbial activity began to be required on an industrial scale.
This occurred with the glycerol demand for the manufacture
of explosives during World War I (Wang et al., 2001) and the
large-scale production of penicillin, discovered by Fleming, in the
1940s (Neushul, 1993).

The American economic expansion brought on by the end
of World War II and known as the Golden Age of Capitalism
(Stephen et al., 1991), as well as the knowledge of microbial
genetics that was emerging at that time (e.g., Zinder and
Lederberg, 1952; Jacob et al., 1960; Ames and Martin, 1964;
Holloway, 1969; Sussman, 1970; Bagdasarian and Timmis, 1982),
stimulated the emergence of microorganism-based industrial
processes, triggering modern Technological Microbiology.
However, Technological Microbiology is considered to
have begun in the 1980s, following a decision made by the
United States Supreme Court that allowed the patenting of
a Pseudomonas putida variant that is effective in the organic
digestion of compounds found in crude oil spills (Robinson
and Medlock, 2005). The patent for a genetically modified
microorganism, requested by Ananda Chakrabarty, contributed
to a revolution in biotechnology that resulted in the issuance
of thousands of patents, the founding of hundreds of new
companies, and the development of thousands of bioengineering
and food plants (Holloway, 2014).

The studies of Warner Arber, Hamilton Smith, and Daniel
Nathans on bacterial endonucleases that hydrolyze the DNA
of the viruses invading these microorganisms (Smith and
Nathans, 1973; Arber, 1974) in the early 1970s earned these
researchers the Nobel Prize in Physiology or Medicine in
1978. These enzymes, also known as restriction enzymes for
“breaking” the DNA and providing gene fragments, became
frequently used in biotechnological processes such as cloning,
hybridization, fingerprinting, gene identification, and other
genetic manipulations for the production of transgenic animals
and plants.

The genetic modification of Escherichia coli in the 1970s
allowed the production of artificial insulin, which was the
first product obtained from recombinant DNA technology

(Walsh, 2012) and was approved by the United States Food
and Drug Administration in 1982 (Johnson, 1983). Over time,
the selection of improved microbial strains became frequent,
as did the manipulation of other microorganisms to obtain
products to meet human demands, and as a result, Technological
Microbiology has become a science essentially applied to several
branches of production, including food, chemical, agricultural,
and pharmacological.

Alternatively, the success of the genetic transformation carried
out by Herbert Boyer and Stanley Cohen in California from the
construction of chimeric E. coli cells containing frog (Xenopus
laevis) DNA changed the way genetic improvement is performed,
with a focus on the development of new varieties (Cohen et al.,
1973; Berg and Mertz, 2010). In 1976, a thermostable DNA
polymerase was isolated from the bacterium Thermus aquaticus.
Kary Mullis and others contributors found that this enzyme could
be used in the polymerase chain reaction (PCR) to amplify DNA
fragments (Chien et al., 1976; Saiki et al., 1988). The development
of that technique, as well as the enhancement of molecular
cloning techniques using plasmids as vectors, expanded the
possibilities of microorganism manipulation (Simon and Chopin,
1988; Olsen, 2016) and the large-scale production of microbial
products, including those from modified microorganisms.

In addition, in the 1970s, Carl Woese and colleagues used
the 16S rRNA molecule, a universally conserved sequence, as
a taxonomic marker and revealed that our ignorance about
microbial diversity was enormous, capable of hiding the existence
of a new prokaryotic domain, the Archaea (Woese and Fox, 1977;
Woese et al., 1990). Recent genomic discoveries have shown that
the tree of life seems to be even more complex, as the existence of
two extraordinarily complex and poorly studied groups has been
revealed: the bacterial group Candidate Phyla Radiation (CPR)
and the Archaea superphylum DPANN (Spang and Ettema,
2016). CPR bacteria have small genomes and unusual ribosomal
compositions, in addition to lacking numerous biosynthetic
pathways (Brown et al., 2015), whereas DPANN has been defined
as a function of the metabolic capacity (Rinke et al., 2013;
Castelle et al., 2015). These studies indicate that the tree of
life may continue to grow in the future. Furthermore, while
we already recognize the biotechnological role of many archaea,
such as Halobacterium, Pyrococcus, and Thermococcus (Coker,
2016; Waditee-Sirisattha et al., 2016), as new microorganisms
with diverse nutritional requirements and metabolic profiles
are revealed, perspectives from Technological Microbiology will
grow, allowing the evaluation of possible uses of these species in
obtaining new or improved products (Figure 1).

Therefore, we have seen a contemporary improvement
in Classical Microbiology through the discovery of new
species, selection and improvement of known strains until
the introduction of non-native genes for the acquisition of
expressed products or new functional traits. We have decided
to call this complex and applied microbiology Technological
Microbiology, and although many of its fields overlap, to
facilitate our discussion, we chose to divide it into six areas:
Food Technological Microbiology, Agricultural Technological
Microbiology, Chemical and Fuel Technological Microbiology,
Environmental Technological Microbiology, Medical
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FIGURE 1 | The main applications of fungi, bacteria, and viruses for obtaining new or improved products. Comparison between the possibilities generated
by Classical Microbiology and Technological Microbiology, where the incorporation of techniques has led to market novelties, as well as to the improvement of
commonly used products and services. PGPMs, plant growth-promoting microorganisms.
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Technological Microbiology, and Materials Technological
Microbiology, as follows.

FOOD TECHNOLOGICAL
MICROBIOLOGY

Despite the application of biotechnological techniques to
the food-processing industry and the agroindustry, which
occurred prior to the technological advances of the 1970s,
the current trend incorporates the use of genetically modified
microorganisms or even the use of enzymes, dyes, and other
compounds obtained from microbial metabolism with the aim of
improving productivity, enhancing organoleptic characteristics,
or even attributing new nutritional functions to certain foods.
Microorganisms, therefore, may have two different roles in
current food production. First, acting as starters in fermentations
(in this case, GMOs or engineered microorganisms are not
allowed). Secondly, they are used as factories for the production
of food ingredients. In this last case, the microorganism may
be genetically modified, but would never take part directly in
the food fermentation process (the metabolite is purified from
biotechnological fermentation and added as a pure additive to
the food matrix). The participation of the microorganisms in this
case is indirect.

Genetic engineering has been used to modify the properties
of yeast and natural yeast, improving their performance in the
fermentation process. In the future, breads and pastas of the
better quality can be obtained in less time. Yeasts have been
improved to tolerate temperature and pH variations and to
grow with high yield on a range of substrates (Linko et al.,
1997). Compounds involved in stress tolerance in yeasts, such
as proline and trehalose, are promising for the development of
resistant strains (Takagi and Shima, 2015). Thus, yeasts subjected
to new processes such as UV radiation have allowed foods with
new nutritional attributes to be developed, such as foods with
increased vitamin D levels (Degré et al., 2008; Lipkie et al., 2016).

Selection of β-lyase-producing yeasts improves aromatic thiol
release and, consequently, the sensory properties of wines (Belda
et al., 2016), whereas the selection of yeasts specializing in certain
processes such as flocculation may improve the fermentation of
special wines such as sparkling wines (Tofalo et al., 2016). In turn,
the current trend of using non-Saccharomyces strains, which in
the past were considered yeasts of secondary importance or yeasts
that produced undesirable changes, has positively impacted the
vinification process, given the ability of the strains to produce
enzymes, secondary metabolites, glycerol, ethanol, and other
compounds that can increase the organoleptic complexity of
wines (Padilla et al., 2016).

The prospection of lactic acid bacteria present in products
fermented with various cultures (e.g., Satish et al., 2013; Mokoena
et al., 2016) has created new sources of probiotics and the
discovery of strains that can improve the quality of fermented
products. Probiotics are living microorganisms that have been
linked to host health benefits (Gawkowski and Chikindas,
2016). Currently, the best-known probiotic microorganisms are
those belonging to the genera Lactobacillus and Bifidobacterium

(Prasad et al., 2000). Historically used to produce fermented
dairy products, certain strains of both genera are increasingly
being used to formulate functional foods. The result of this
phenomenon is the increase in the number of probiotic foods
available on the market, including a rapidly emerging variety of
non-dairy probiotic beverages (Enujiugha and Badejo, 2017).

A number of enzyme preparations of microbial origin have
been evaluated in food processing. Amylases obtained from
cultures of Aspergillus niger (e.g., Omemu et al., 2005; Djekrif-
Dakhmouche et al., 2006; Adejuwon et al., 2015) or Bacillus
subtilis (e.g., Ploss et al., 2016; Salman et al., 2016), for example,
have been used in place of chemical additives in the treatment of
wheat flour (e.g., Bueno et al., 2016), improving the preparation
of dough for baking and allowing the acquisition of pre-cooked
foods. A. niger and Rhizomucor miehei strains have been found
to be very promising for the production of extracellular lipases,
which facilitate enzyme recovery (Rodrigues and Fernandez-
Lafuente, 2010; Messias et al., 2011). These microbial lipases
are being employed in the hydrolysis of milk fat, improving
the aromatization of dairy products. They can also enhance
the aroma of beverages and the quality of margarine and
mayonnaise (Sharma et al., 2001). Cellulases and pectinases,
used especially in juice clarification and viscosity reduction,
have also been easily recovered from cultures of filamentous
fungi that are efficient in the degradation of plant biomass,
such as Cladosporium sphaerospermum, Penicillium chrysogenum
(Andersen et al., 2016), and Trichoderma viride (Ismail et al.,
2016). In addition, the technology for immobilization of these
enzymes in prefabricated supports or polymer matrices improves
their stability, activity, and selectivity, favoring their application
and reuse for long periods in industrial reactors (Mateo et al.,
2007; Sheldon, 2007).

In addition, microbial enzymes have been used to obtain
natural scents and flavorings for foods (Carroll et al., 2016),
although these compounds can often be directly obtained from
the general metabolism of filamentous fungi, such as A. niger
and Pycnoporus cinnabarinus, which can act together in a
process that leads to the synthesis of vanillin, an important
food flavoring, from autoclaved maize bran (Lesage-Meessen
et al., 2002). Additionally, yeasts of the genus Pichia have been
added to coffee fermentation to improve the quality and flavor
of the beverage because they increase the production of the
natural flavoring isoamyl acetate (Saerens and Swiegers, 2016).
Microbial biosynthetic pathways have been explored mainly
because they can enzymatically convert inexpensive precursors,
such as glucose or glycerol, into expensive aromatic compounds.
One example is the synthesis by E. coli of acetoin, which is
responsible in part for a buttery aroma, using glucose as a
substrate (Nielsen et al., 2010).

High rates of population growth have increased the demand
for new foods around the world. Protein extracted from
cultivated microbial biomass (single-cell protein – SCP) can
be used for protein supplementation in basic diets, replacing
expensive conventional sources and alleviating the problem
of protein shortages (Anupama and Ravindra, 2000). SCP
has been widely used as a source of protein in animal and
human food (Adedayo et al., 2011). Many bacterial strains of
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Bacillus, Hydrogenomonas, Methanomonas, Methylomonas, and
Pseudomonas have been used as substrate for the production
of S on an industrial scale because these bacteria can contain
approximately 80% crude protein in the total dry weight. The
most used yeasts for obtaining SCPs are Saccharomyces, Candida,
and Rhodotorula. Cultivation of yeasts is more practical because
these microorganisms are able to use a wide variety of substrates
(Patelski et al., 2015); however, the SCPs obtained are insufficient
in sulfur-containing amino acids. The most commonly used
filamentous fungi are Fusarium, Aspergillus, and Penicillium,
and among the prokaryotic algae, the most used belong to the
genus Spirulina, with approximately 65% of their dry weight
consisting of protein (Nalage et al., 2016). The possibility of
using microorganisms to obtain food, food additives, or even
microbial biomass for food has reinvigorated the food-processing
industry, which sees new possibilities for conventional foods,
such as flavors, textures, and aromas, or even the discovery of new
foods.

AGRICULTURAL TECHNOLOGICAL
MICROBIOLOGY

Recently, the interest in microorganisms has focused on
compounds with pesticidal activity, mainly herbicidal,
insecticidal, and nematicidal. The first commercially registered
mycoherbicide consisted of a suspension of chlamydospores of
Phytophthora palmivora to control Morrenia odorata (McRae,
1988), and since then, many other plant parasite and phytotoxin-
producing microbial species have been identified. Colletotrichum
gloeosporioides (Penz) Sacc. f. sp. aeschynomene can induce
symptoms of anthracnose in Aeschynomene virginica, thus
controlling this legume, which is a rice and soybean weed. On the
other hand, Puccinia canaliculata can control yellow nutsedge
(Cyperus esculentus L) by completely inhibiting flowering and
reducing tuber formation (Duke et al., 2015). Bioherbicides,
however, have not been widely applied in agronomic and
horticultural crops for weed management because they have
a number of requirements, such as ideal humidity conditions,
which diminish their effectiveness when compared to chemical
herbicides. In the future, biotechnological advances will
likely reverse this situation and improve the performance of
bioherbicides.

The endotoxin proteins Cry and Cyt are currently best known
as pesticides. These endotoxins are synthesized by the soil
bacterium B. thuringiensis (Bt) and have an entomopathogenic
action, controlling the pests present in cabbage, potato, and
grains (Sarwar, 2015a). Several transgenic species expressing
Bt protein crystals, such as tomato, tobacco, and corn, have
been cultivated worldwide because they have been successful
in preventing the spread of caterpillars, especially Lepidoptera
(Khan et al., 2016). Caterpillars and eggs of pests such as
Spodoptera frugiperda can also be infected by baculovirus,
thus reducing the agricultural losses caused by this caterpillar,
especially in corn. In addition, the progress achieved by the
genetic improvement of this virus has increased its effectiveness
as an insecticide (Popham et al., 2016). Several fungi pathogenic

of insects are also being used as control agents, including
Beauveria, Metarhizium, and Paecilomyces. These are most
frequently used against leaf caterpillars in greenhouses or other
places where the humidity is relatively high (Sarwar, 2015b).

In recent years, much progress has been achieved in the
development and commercialization of bionematicides (Wilson
and Jackson, 2013). Examples of this are the products of the
bacterium Streptomyces avermitilis, which are metabolites known
as avermectins. These are model pesticides, as they are non-
toxic to mammals and active against nematodes, even at very low
doses. Thus, filtrates of B. firmus cultures induce paralysis and
mortality of adult nematodes and larvae, including Radopholus
similis, Meloidogyne incognita, and Ditylenchus dipsaci, which
suggests that the synthesis of toxic metabolites (Mendoza et al.,
2008) is involved in the control of these pests. Toxic metabolites
are also produced by Myrothecium verrucaria when grown in
bioreactors, and when in contact with adult nematodes, the
metabolites in suspension kill the adults, in addition to inhibiting
egg development and hatching (Twomey et al., 2000). By contrast,
the endospores of the bacterium Pasteuria sp. use parasitism
as a method of control. When these endospores come into
contact with nematodes such as Meloidogyne spp., Heterodera
spp., Globodera spp., and Belonolaimus spp., they germinate,
become parasitic, and strongly decrease host fecundity (Davies
et al., 2011).

Among the microorganisms that act in the biological
control of pests, the most widely disseminated species are the
fungi belonging to the genus Trichoderma. These fungi are
saprophytes, mycoparasite decomposers, and plant symbionts,
usually associated with soil ecosystems, and have a global
geographical distribution (Druzhinina et al., 2011). This range
of lifestyles within the genus explains why Trichoderma is the
source of many strains commercially used in biological control
(Howell, 2003). Trichoderma spp. parasitize and successfully
control phytopathogenic fungal species such as Sclerotinia (Jones
et al., 2014, 2016), Fusarium (Saravanakumar et al., 2016),
Verticillium (Carrero-Carrón et al., 2016), and Macrophomina
(Khaledi and Taheri, 2016), among others, and have nematicidal
effect on the gall-forming Meloidogyne (Sahebani and Hadavi,
2008; Feyisa et al., 2016; Sokhandani et al., 2016). This functional
characteristic of Trichoderma and other biocontrol species
responds to the increasing call for practices that minimize the side
effects left by pesticides, such as resistance in pest populations,
reduction of soil and water quality, and the generation of residues
with harmful effects on non-target organisms.

Sustainable agriculture, however, provides not only the
control of phytopathogens but also the use of functional
microbial characteristics related to the promotion of plant
growth. Symbiotic microorganisms such as mycorrhizal fungi
and rhizobacteria develop activities that can improve plant
fitness, facilitating nutrient acquisition by the plant. Mycorrhizal
fungi and roots are complementary in plant foraging within
nutrient patches (Cheng et al., 2016) and facilitate the acquisition
of phosphorus by the plant, through the expression of genes
that code for inorganic transporters of this ion (Walder et al.,
2016). Likewise, PGPRs (plant growth-promoting rhizobacteria)
act through direct and indirect mechanisms to promote plant
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growth. Direct mechanisms include mainly biofertilization, with
nitrogen synthesis by strains belonging to the genera Rhizobium,
Sinorhizobium, Mesorhizobium, Bradyrhizobium, Azorhizobium,
and Allorhizobium, and the stimulation of root growth through
the synthesis of auxins, cytokinins, and gibberellins. Indirect
mechanisms are related to the reduction of susceptibility to
diseases, including antibiosis, induction of systemic resistance
and competition for nutrients and niches (Lugtenberg and
Kamilova, 2009).

On the other hand, endophytic microorganisms colonize plant
tissues without triggering any disease symptoms, establishing
a stable long-term interaction with the host plant. During
the interaction, endophytes synthesize bioactive metabolites
that may confer greater fitness to the plant. This promotion
of growth by endophytic action may be a consequence
of nitrogen fixation, synthesis of phytohormones, biocontrol
of phytopathogens through the synthesis of antibiotics or
siderophores, competition for nutrients, and the induction of
systemic disease resistance (Ahmad et al., 2016). However, the
bioprospection and characterization of these microorganisms,
associated with the most diverse plant species, is aimed not only
at obtaining strains of agronomic importance but also at the
identification of species that produce metabolites with potential
for the synthesis of antibiotics (e.g., Ma et al., 2016), as well as
potential for obtaining biotechnologically important chemicals.

CHEMICAL AND FUEL
TECHNOLOGICAL MICROBIOLOGY

Obtaining chemicals such as organic acids via microbial activity
is very promising, especially if it is thought to occur from
renewable carbon sources. Most organic acids are natural
products or intermediates of the microbial metabolism present
in important metabolic pathways (Sauer et al., 2008). Due to
their functional groups, these acids, such as acetic, citric, lactic,
and succinic acid, are extremely useful as raw materials for
the chemical or food industry. Citric acid, for example, has
been required on the market for use as a food additive, and
all annual worldwide industrial-scale production occurs via the
fermentation of glucose, beet molasses, cane molasses, or corn
starch using A. niger (Adham, 2002; Ikram-ul et al., 2004; Wang
et al., 2016). On the other hand, all the annual world production
of lactic acid also comes from the fermentation performed
by microorganisms. This acid and its derivatives are widely
used in the food, pharmaceutical, leather, and textile industries.
In addition, lactic acid fermentation processes have recently
received more attention because of the growing demand for new
biomaterials, such as biodegradable products and biocompatible
polylactics (Gao et al., 2011). The most common method for
obtaining this acid is using Lactobacillus spp. cultivated in whey
(Hofvendahl and Hahn-Hägerdal, 2000). However, it may also be
obtained via the activity of Rhizopus sp. under aerobic conditions
in glucose-rich medium and with limited amounts of nitrogen
(Papagianni, 2004; Fu et al., 2014), and even via the fermentation
of Saccharomyces cerevisiae in glucose- and cane juice-based
medium (Saitoh et al., 2005; Valli et al., 2006). In the future, the

microbiological processes for obtaining a variety of organic acids
are expected to will be competitive, become established in the
market, and allow for an annual increase in the production of
these compounds.

The microbial production of acetone and butanol, efficiently
performed by the genus Clostridium, was one of the first large-
scale industrial fermentation processes to gain global importance,
but this production has been losing ground to chemical synthesis.
Similarly, the centennial microbial synthesis of glycerol was
impacted by the inability to compete with chemical synthesis
from petrochemical feedstocks. However, in a scenario where
the cost of propylene increased because its availability decreased,
especially in developing countries, glycerol became an important
raw material for the production of various chemicals, which made
its alternative synthesis by fermentation more attractive (Wang
et al., 2001).

Likewise, the production of 1,3-propanediol (1,3-PDO), which
occurs through the fermentation of glycerol by bacteria of the
genus Clostridium or Enterobacteriaceae, a technique described
in 1881, lost status front to chemical synthesis through petroleum
products, remaining forgotten for more than a century. In
the last decade, however, research related to the synthesis
of microbial 1,3-PDO expanded considerably (Biebl et al.,
1999) because this diol began to be used in the synthesis
of biodegradable polymers and for obtaining solvents, films,
adhesives, antifreezes, and polyesters. Currently, a potentially
viable alternative for the synthesis of 1,3-PDO is the use of
genetically modified microorganisms. Genes from pathogenic
bacteria, such as Citrobacter freundii and Klebsiella pneumoniae,
were recently introduced in E. coli to allow the efficient synthesis
of 1,3-PDO from waste glycerol (Przystałowska et al., 2015).

This synthesis of chemicals through microbial metabolic
processes meets an urgent need to reduce dependence on fossil
fuels for energy generation. In modern biorefineries, renewable
resources such as biomass or waste products are converted into
substrates susceptible to microbial action (Sauer, 2016), and
thus, interest in bio-based chemicals has recently been renewed
because increasing climate change and environmental problems
have pushed the industry, moving it away from fossil fuel
consumption and toward renewable raw materials (Moon et al.,
2016). Microorganisms have also been potentially explored for
the production of a new generation of biofuels (Liao et al., 2016).
The production of second-generation ethanol, for example,
obtained from lignocellulosic biomass, already occurs in some
countries, although improvements are still needed to make the
technology economically competitive. Recent developments such
as the discovery of functional xylose isomerases (Kuyper et al.,
2005) resulted in the creation of new yeasts capable of fermenting
5-carbon (C5) sugars, as well as 6-carbon (C6) sugars. Co-
fermentation of C5 sugars with cane juice can produce up to 37%
more ethanol in first-generation fermenters (Losordo et al., 2016).
Another problem to be overcome for the effective production of
second-generation ethanol is the tolerance to acetic acid. This
acid is one of the main inhibitors of lignocellulose hydrolysates.
The polygenic basis of the high acetic acid tolerance present in
some strains of S. cerevisiae is still unknown, but its identification
may lead to greater efficacy in improving acetic acid tolerance in

Frontiers in Microbiology | www.frontiersin.org 6 May 2017 | Volume 8 | Article 827

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00827 May 8, 2017 Time: 11:44 # 7

Vitorino and Bessa Technological Microbiology

strains without negatively affecting other industrially important
yeast properties (Meijnen et al., 2016). However, in addition to
yeast genetic improvements, the prospection of new cellulose
sources, such as forestry and crop residues (eucalyptus bark, corn,
and rice husks), and the development of pretreatment techniques
(e.g., McIntosh et al., 2016) can leverage the production of
second-generation ethanol.

In addition to bioethanol, other energy molecules such as
biogas can be obtained from the microbial conversion of biomass.
Biogas is a combination of methane, CO2, nitrogen, H2S,
and traces of other gasses produced by anaerobic digestion
(AD) (Appels et al., 2008). Although AD processes have
been carried out for several decades, knowledge about the
microbial consortia involved in this process is limited due
to the lack of phylogenetic and metabolic data on these
predominantly unculturable microorganisms (Wirth et al.,
2012; Chojnacka et al., 2015). Studies carried out to isolate
and identify the microbial community associated with the
production of biogas revealed the presence of Proteobacteria,
Chloroflexi, Firmicutes, Bacteroidetes, Actinobacteria, Bacteroides,
Acidobacteria, and Spirochetes (Chouari et al., 2005; Chojnacka
et al., 2015). Methanogenic Archaea, such as Methanosarcina
barkeri, M. frisius, and Methanobacterium formicicum, were also
identified in anaerobic digestions (Godon et al., 1997; Satpathy
et al., 2016). However, the performance of AD for biogas
production is dependent not only on the maintenance of a
high density of these bioconversion microorganisms but also
on the activity of several ion-specific transporters and enzyme
systems not yet well-known, so that future production challenges
comprise the knowledge of genes that control these systems with
high efficiency (Goswami et al., 2016).

The expectation is that, in the future, at least 25% of all
bioenergy can originate from biogas (Holm-Nielsen et al., 2009),
and therefore, studies that seek to optimize the methanogenesis
process or describe the structure of microbial communities
have been encouraged (e.g., Ennouri et al., 2016; Mulat et al.,
2016; Suksong et al., 2016). Metagenomic approaches associated
with next-generation sequencing (NGS) techniques will help
to unravel the diversity of natural communities and in biogas
fermenters communities (e.g., Schlüter et al., 2008). However,
studies have shown that most of the microorganisms isolated
from the reactors are still unexplored (e.g., Krause et al., 2008;
Figure 2) and may be a source for new products and services in
the future.

ENVIRONMENTAL TECHNOLOGICAL
MICROBIOLOGY

A large variety of microorganisms, including heterotrophic or
autotrophic aerobic bacteria, actinomycetes, fecal coliforms, and
thermophiles, as well as yeasts and other fungi, have been
reported in solid waste composting processes (Beffa et al., 1996;
Tiquia et al., 2002). Many factors determine the microbial
community present during composting, but under aerobic
conditions, temperature is the main factor determining not only
the microbial types but also the species diversity and metabolic

rate (Hassen et al., 2001). On the other hand, the direct use
of microbial enzymes in the treatment of effluents, especially
industrial effluents, has been encouraged because the enzymatic
action is faster, dispensing with the conditions necessary for
the fermentative process. Lipases, for example, are used in the
treatment of wastewater containing mainly triglycerides (Jamie
et al., 2016). The presence of these enzymes in activated sludge
and in other aerobic degradation processes is important for the
continuous removal of the fat layers formed on the surface of
aerated tanks to allow oxygen transport (Hasan et al., 2006).
Peroxidases, phenoloxidases, dioxygenases, and phenoloxidase-
like compounds have also been used for the removal of
contaminants present in wastewater (Durán and Esposito, 2000).
Peroxidases, polyphenol oxidases, and tyrosinases obtained from
microorganisms such as P. syringae, Arthromyces ramosus, and
Agaricus bisporus may be applied to the removal of phenols,
biphenols, and chlorophenols (Tatsumi et al., 1996; Tong et al.,
1998; Akay et al., 2002; Kampmann et al., 2014). Laccases of
P. cinnabarinus were found to be efficient for the degradation of
benzopyrene (Rama et al., 1998), while manganese peroxidases
of Phanerochaete chrysosporium, Nematoloma frowardii, and
Phlebia radiata can be applied to the elimination of lignin in
wastewater (Hofrichter et al., 1999; Kunz et al., 2001).

Currently, research efforts have focused on integrating the
treatment of solid wastes or even wastewater with the use of
microbial fuel cells (MFC), i.e., microbial cells that use electrons
donated by low-value organic substrates, contained in the waste,
to generate energy (Xu et al., 2016). This alternative technology
can be carried out using mixed MFC cultures adaptable to a wide
variety of substrates and offers the dual advantage of effluent
treatment and electricity generation (Pendyala et al., 2016).

Research efforts have also been directed at improving the
purification of drinking water. A recent biotechnological process
called biologically active carbon (BAC) has been found to be
very efficient in removing water contaminants. In this process,
microbial cells colonize the surface of the granular activated
carbon (GAC) used in the filtering mechanism. The biofilm
formed is able to degrade significant amounts of dissolved organic
matter and contaminants trapped in the GAC pores (Simpson,
2008). In addition, the BAC biofilm can also biodegrade the
cyanotoxins and organic substances that can change the taste and
odor of potable water (Brown and Lauderdale, 2006).

Waste treatment based on enzymatic processes tends to be
less expensive; however, the enzymes are biodegradable, and
further studies and prospection of microbial enzymes that are
thermostable or resilient to large pH variations are needed. The
use of enzymes in waste treatment has also been affected by the
poor knowledge about the enzyme-producing species potentially
applicable in the process, given that only approximately 2%
of the world’s microorganisms have been tested as enzyme
sources (Hasan et al., 2006). Genetic improvement, as well
as the genetic manipulation of cells and the heterologous
expression of genes, is expected to help increase the enzymatic
biosynthesis in microorganisms of interest, or even to contribute
to the development of microorganism biofactories for important
enzymes not only for food or industry but also for environmental
applications, thereby expanding alternatives for the elimination
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FIGURE 2 | Use of metagenomics and next-generation sequencing in the study of microbial communities to obtain genetic data. These data can be
used in studies of microbial diversity, group phylogeny, species diversification, and microbial metabolism. These data have also allowed the discovery of new or
modified molecules used to obtain improved products, new products, or services.

of the wastes that have historically accumulated in soils and
watercourses.

The increasing market demand for biodegradable polymers
has also stimulated the prospection of microorganisms that act
in the synthesis of these compounds. The class of biodegradable
biopolymers of major interest is the polyhydroxyalkanoates
(PHAs), and the best known among these are poly(beta-
hydroxybutyrate; PHB), poly(beta-hydroxyvalerate; PHV),
and poly(hydroxybutyrate-co-valerate; PHB-V), the latter
being commercially known as Biopol. These biopolymers are
accumulated intracellularly by bacteria as a carbon and/or
energy reserve under the limitation of a nutrient essential for
their growth, such as nitrogen, phosphorus, sulfur, or oxygen
(Philip et al., 2007). The species Cupriavidus necator is one of
those responding more favorably to the conditions for industrial
production. This bacterium can accumulate approximately 80%
of its dry mass in polymer and uses different types of substrates,

such as glucose, fructose, and crude glycerin (Figueiredo et al.,
2014). Biopolymers offer a possible solution for eliminating the
problem of the residuals associated with petroleum-based plastic,
but for researchers, the real challenge lies not in obtaining these
molecules, which are the products of microbial metabolism,
but in finding applications that consume large amounts of
these materials, promoting price reductions and allowing
biopolymers to compete economically in the market (Mohanty
et al., 2000).

Another aspect of environmental technological microbiology
is advances in the knowledge and use of the symbiotic
relationship between plants and mycorrhizal fungi as a strategy
to increase plant biomass or increase the yields of products
of agricultural or pharmacological interest (e.g., Boyer et al.,
2016; Gabriele et al., 2016; Köhl et al., 2016). Such benefits
are the product of the positive and multifunctional roles of
mycorrhizal fungi in plant nutrition, pathogen protection, stress
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tolerance, and soil structure supply (Smith and Read, 2008).
Due to their unique biological traits, which include obligatory
biotrophy and intracellular development within plant tissues,
and multiple ecological functions, arbuscular mycorrhizal fungi
(AMFs; which are also thought to have helped plants conquer
terrestrial environments) have aroused agronomic interests
with the aim of sustainable production with low chemical
consumption (Lanfranco et al., 2016). In sustainable agriculture,
AMFs are known as biofertilizers. In the plant-microorganism
relationship, the mineral nutrients (mainly phosphorus, nitrogen
and water) are extracted from the soil through the extensive
network of hyphae and transferred to the plant, and organic
compounds of carbon are transferred from the plant to the AMF.
These microorganisms therefore reduce the need for application
of chemical fertilizers in soils (e.g., Abdel-Fattah et al., 2016;
Oliveira et al., 2016a,b). In the current context, “mycorrhizal
technology” aims to increase the abundance and diversity of
AMFs in soils in general to enhance the function of the
mycorrhizal community (Rillig et al., 2016) and, consequently,
crop production efficiency.

MEDICAL TECHNOLOGICAL
MICROBIOLOGY

The participation of microorganisms in the generation of medical
products or services involves four distinct aspects: (1) biocontrol
of diseases, (2) production of vaccines, (3) production of
antibiotics, and (4) production of biotherapeutics (hormones,
biomaterials, and others). These aspects will be discussed
throughout this session.

A problem commonly encountered in developing countries
is the difficulty of implementing public policies to control the
spread of parasitic vectors such as those of the genera Aedes
and Anopheles. However, recent epidemic outbreaks of emerging
and reemerging diseases have stimulated the development of
biotechnological techniques that can not only assist diagnosis
but also serve as alternatives for controlling transmission. An
example is the potential presented by the introduction of the
bacterium Wolbachia as an endosymbiont of the mosquito Aedes
aegypti, which transmits diseases such as dengue, yellow fever,
chikungunya, and the more recently detected Zika virus (Walker
et al., 2011). The focus of this approach is on the reduction
of mosquito longevity and not on abundance. The presence of
the bacteria reduces the mosquito life span, thus decreasing
the possibility of dengue virus transmission, since only adult
females are able to transmit (Cook et al., 2008; Turley et al.,
2009; Bian et al., 2010). Mosquitoes containing the Wolbachia
wMelPop-CLA strain showed an approximately 50% reduction
of the survival of females compared to mosquitoes without the
strain (McMeniman et al., 2009). These bacteria are transmitted
vertically from the female to the offspring. To guarantee this
transmission, the bacterium manipulates its host in diverse
ways such as feminization, death of males, parthenogenesis,
and cytoplasmic incompatibility. In cytoplasmic incompatibility,
fertilization of females not infected with Wolbachia by infected
males results in embryonic mortality. By contrast, females
infected with the bacterium will produce the highest number of
viable offspring, increasing the number of infected individuals
in the population (Figure 3A). Cytoplasmic incompatibility
facilitates the propagation of Wolbachia in natural populations
and their persistence over time (McMeniman et al., 2009).

FIGURE 3 | Use of Technological Microbiology to prevent the proliferation of the Aedes aegypti vector and the DENV virus. (A) Mechanisms of
transmission of the bacterium Wolbachia to the offspring of the vector. Cytoplasmic incompatibility causes females with Wolbachia to always breed offspring with
Wolbachia, whether mating with males with or without the bacterium. When females without Wolbachia mate with males with Wolbachia, the fertilized eggs die. With
successive generations, the number of male and female mosquitoes with the bacterium tends to increase until the entire mosquito population bears this
characteristic. (B) Use of Bacillus thuringiensis israelensis bioinsecticide to fight dengue. This bacterium synthesizes protein crystals that, when consumed by Aedes
larvae, solubilize in the mosquito’s intestine and are transformed into efficient toxins that damage the intestinal wall, allowing the attack of pathogenic bacteria that
cause the death of the larva.
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Another alternative, also focused on preventing the
proliferation of the dengue virus vector, is the use of a biological
insecticide. The action of this insecticide is based on the
activation of endotoxins (Cry and Cyt) produced naturally by the
bacterium B. thuringiensis serotype israelensis (Bti) (Figure 3B).
These toxins, previously mentioned in this text, are inactive
crystals that, when ingested by Aedes larvae, are solubilized by
intestinal proteases and converted into active toxins that interact
with the cell membrane of the midgut, leading to pore formation,
cell lysis, septicemia, and finally death (Gill et al., 1992; de Maagd
et al., 2001). This alternative has been successfully applied in
several regions of the world (e.g., Mohiddin et al., 2016; Setha
et al., 2016), and many Bti-based commercial products have been
introduced to the market, although some strains of A. aegypti
have already shown resistance to Bt toxins (Paris et al., 2011,
2012; Wu et al., 2016).

At the same time, the technological race for the development
of a vaccine against dengue continues. Recently, the first
dengue vaccine, the recombinant yellow fever-17D-dengue virus,
live, attenuated, and tetravalent (which induces antibodies
against four DENV virus serotypes; CYD-TDV; Dengvaxia R©,
Sanofi Pasteur, Singapore, Singapore), was licensed for use in
individuals aged 9–45 years old in Mexico, Brazil, the Philippines,
El Salvador, and Paraguay (Durbin, 2016; Pitisuttithum and
Bouckenooghe, 2016). This represents an important complement
to the other techniques that focus mainly on vector control. This
vaccine, however, is currently only available under private health
care systems at very high prices.

The HPV (human papilloma virus) vaccine is another example
of a newly developed vaccine that has been widely used in
many countries. The focus of campaigns in developing countries
has been on women who are not yet sexually active, although
being sexually active does not contraindicate the vaccine, which
can be tetravalent (protects against types 6, 11, 16, and 18) or
bivalent (protects against types 16 and 18). This virus has been
frequently linked to cases of cervical cancer, with types 16 and 18
accounting for approximately 70% of cases (Cutts et al., 2007).
However, these same viral types account for 86–95% of cases of
non-cervical cancer, i.e., anal, oropharynx, vulval, and vaginal
cancers in women, as well as anal, oropharyngeal, and penile
cancers in men (Gillison et al., 2008). Thus, prophylaxis should
also extend to men as a way to prevent potential non-cervical
cancers; however, affordable prices, funding mechanisms, and
multidisciplinary partnerships are essential for the HPV vaccine
to reach most populations in need, especially considering that
cervical cancer is the second leading cause of death of cancer in
women and is more worrying in populations that do not have
screening programs to detect precursor lesions (Roden and Wu,
2006).

For the production of vaccines, microorganisms do not
function as biofactories but are instead only used (whole or
fractionated) to stimulate the synthesis of specific antibodies.
Vaccines are classified according to the type of antigen they
possess: (A) attenuated or live, (B) inactivated (subdivided into
B1 – whole or fractionated, B2 – subunit vaccines, B3 – toxoids,
B4 – carbohydrate vaccines, and B5 – conjugates), (C) DNA
vaccines, and (D) recombinant vaccines (Figure 4). In attenuated

vaccines, the pathogens (virus or bacteria) are alive and induce
immune reactions similar to those resulting from a real infection
(Plotkin et al., 2008). Attenuated vaccines have been efficiently
developed for a range of diseases: mumps, polio (Sabin), rubella,
measles, smallpox, chickenpox, tuberculosis, yellow fever, and
dengue. These vaccines are considered highly immunogenic and
efficiently stimulate humoral immunity, such that only one dose
is capable of conferring immunity for decades. Recent studies
have revealed strategies for the development of attenuated strains
of the influenza virus that trigger robust immune responses
(e.g., Si et al., 2016; Wang et al., 2017). These studies not
only provide perspectives for producing more effective vaccines
against influenza but also suggest innovative approaches for the
generation of live attenuated strains for viral pathogens, which
remains a challenge (Bournazos and Ravetch, 2017). Studies have
also shown that live vaccines induce non-specific immunity,
conferring protection beyond the target pathogen (e.g., Aaby
et al., 2010; Higgins et al., 2014; Sørup et al., 2014), and that
revaccination may be indicated to reduce general mortality
caused by all diseases (Benn et al., 2016).

Inactivated vaccines, which are classified as whole or
fractionated, contain completely inactivated or fractionated
pathogens or only antigenic components of these pathogens
(including subunit vaccines, toxoid vaccines, carbohydrate
vaccines, and conjugate vaccines). In general, these vaccines
are effective stimulators of humoral immune responses, but in
many cases, multiple doses are required for long-term immunity
since they do not stimulate the production of immunoglobulin
A (IgA) or cytotoxic T cell responses because the virus does
not replicate. The advantage of inactivated vaccines is that they
are safer because the virulence of dead organisms cannot be
reversed. Inactivated vaccines are currently available for hepatitis
A, rabies, cholera, influenza, poliomyelitis (Salk), typhoid fever,
and pertussis. Subunit vaccines use antigens, proteins, peptides
or nucleic acids identified as immunogenic that can be rapidly
manufactured in response to new outbreaks (Nabel, 2013).
These antigens are purified from microorganisms, produced
by recombinant DNA techniques, or chemically synthesized.
They are poorly reactogenic, which is an advantage in terms
of adverse effects but a disadvantage in terms of stimulating
potent and long-lasting immune responses (Bobbala and Hook,
2016). Thus, these vaccines often require the co-administration
of efficient adjuvants to activate and modulate immune responses
(Reed et al., 2009; Schmidt et al., 2016). Despite this poor
reactogenicity, subunit vaccines have been developed against
a variety of pathogens, including Streptococcus pneumoniae,
hepatitis B virus, and HPV. By contrast, toxoid vaccines stimulate
the immune response by using inactivated pathogen toxins
as antigens. Vaccines of this type are available for tetanus,
diphtheria, and anthrax. Carbohydrate vaccines are developed
based on the knowledge that the vast majority of pathogens
have dense distributions of polysaccharides, oligosaccharides,
and complex glycans on their cell surface (glycocalyx) and that
infected organisms detect the presence of pathogens through
glycocalyx recognition and pattern recognition receptors (PRRs)
that stimulate host defense responses (Astronomo and Burton,
2010; Pifferi et al., 2017). Low immunogenicity is a major obstacle
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FIGURE 4 | Different biotechnological techniques used in the production of currently available vaccine types. (A) Attenuated or live vaccines, which use
attenuated pathogens. (B) Inactivated vaccines containing completely inactivated or fractionated pathogens or only antigenic components of these pathogens,
subdivided into (B1) whole or fractioned; (B2) subunit vaccines, which use proteins, peptides, or nucleic acids as antigens; (B3) toxoids, which use inactivated
pathogen toxins as antigens; (B4) carbohydrate vaccines produced from polysaccharides, oligosaccharides, and glycans; and (B5) conjugate vaccines, which have
polysaccharides combined with transport proteins. (C) DNA vaccines carrying plasmids containing genes encoding immunogenic antigens. (D) Recombinant
vaccines containing viruses engineered to carry genes encoding antigens from other disease-causing viruses.

to the manufacture of carbohydrate vaccines, and because of the
lack of long-term immune protection by these antigens, few such
vaccines are commercially available today. These include vaccines
against Salmonella typhi and Neisseria meningitides (Keitel et al.,
1994; King et al., 1996). Traditional covalent linkages between
carbohydrates and carrier proteins have been used to increase
immune responses to polysaccharide antigens (Nishat and
Andreana, 2016), thereby obtaining conjugate vaccines. In this
case, proteins function as carriers for capsular polysaccharides,
which induce T-cell dependent antibody responses and B-cell
differentiation in plasma cells and long-term memory. As a result,
protein-polysaccharide vaccines induce immunological memory,
a protection that is longer lasting than that induced by the use
of simple polysaccharide antigens (Knuf et al., 2011; Frenck and
Yeh, 2012; Pichichero, 2013). Conjugate vaccines are already

currently used in the control of Haemophilus influenza type B and
S. pneumoniae.

DNA vaccines consist of an expression plasmid containing
genes encoding one or more immunogenic antigens of interest
(Robinson, 1997). The use of viral promoters enhances gene
expression and improves mRNA stability related to antigen
synthesis. In addition, the incorporation of immunological
adjuvants and new methods of insertion of this material into
cells of the host organism beyond the intramuscular and
dermal routes have increased the popularity as well as the
immunogenicity of DNA vaccines, since the action of nucleases
can inactivate plasmid DNA. The other insertion pathways with
potential applications in humans include (1) bioballistics, which
requires further technical enhancement for use in humans (Fynan
et al., 1993; Brouillette et al., 2016); (2) intradermal needleless
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administration of the DNA plasmid: in tests conducted with
non-human primates, these intradermal needleless devices did
not increase immunogenicity compared to conventional syringes
(Rao et al., 2006); (3) intradermal tattoo, in which the DNA
plasmid is delivered to the epidermal layer using thousands of
injections; and (4) through the mucosa, which simulates the entry
of pathogens by this route. One approach for this last route
uses bacteria as carriers of a DNA plasmid to target specific
cells and activate receptors of pathogen-associated molecular
patterns (Becker et al., 2008). These vaccines are still under
clinical testing, and microbiological research efforts have focused
on HIV, hepatitis B, hepatitis C, influenza, and HPV.

Recombinant (gene) vaccines are prepared from viruses
engineered to carry genes encoding antigens from other disease-
causing viruses for expression in the host after inoculation. This
expression induces antibody production and immunization. The
immunity induced by recombinant vaccines is usually attributed
to the ability of the recombinant virus to express the gene of
interest at high levels within the host cells. The viral vectors used
for this purpose are attenuated to the host and are therefore
intrinsically safe. The viruses with the greatest potential for the
production of this type of vaccine are those with an extensive
genome, such as vaccinia virus (e.g., He et al., 2000). In the
manufacture of such vaccines, all genes that are not essential for
replication are first eliminated from the virus. Subsequently, the
genes of the other virus are introduced. Recombinant vaccines are
not yet available clinically but are quite promising.

Recently, the incorporation of biotechnological techniques
has allowed wide access to numerous monoclonal antibodies
(mAbs). Human virus-neutralizing MAbs have already been
isolated from non-immune and immune sources using a
range of newly developed antibody isolation technologies. One
such technology employs microorganisms, such as phages,
yeasts, bacteria, and viruses, to display repertoires of single-
chain variable-domain antibody fragments (ScFvs), antigen-
binding fragments (Fab), or domain antibodies (Dabs) on their
surfaces (Carter, 2006). These antibodies can also be obtained
directly from memory B cells of viral-infected patients or
even from mouse lymphocyte cells (Marasco and Sui, 2007).
These antibodies have also been used for the treatment of
infectious diseases. Recently, two antibodies were approved
for this purpose: palivizumab, a human respiratory syncytial
virus (RSV)-neutralizing monoclonal antibody that blocks virus
replication; and raxibacumab, which prevents binding of the
protective antigen of the anthrax toxin to its receptors in host
cells (The IMpact-RSV Study Group, 1998; Kummerfeldt, 2014;
Baldo, 2016). MAbs represent one of the largest classes of drugs
in development, and between 2010 and 2014, 17 of the 54 protein
drugs approved were mAbs (31.5%). These drugs therefore
provide a new and promising way of thinking about the treatment
of diseases caused by microorganisms.

In addition to increasing progress in the production of
vaccines and MAbs, technological advances have also increased
the availability of new drugs, such as antibiotics and hormones.
The boom of antibiotic discovery occurred between 1950 and
1960. However, despite the need for new antibiotics, only two
new classes of antibiotics have been introduced in medicine

since 1963, both of which are based on nalidixic acid (Brito
and Cordeiro, 2012). Limited research results, inappropriate
prescription of antibiotics, and misuse of antibiotics by the
general population have threatened antibiotic potency and
increased the occurrence of superbugs, i.e., microorganisms that
appear at an alarming rate and are resistant to most or all clinical
antibiotics in use (Srivastava et al., 2011).

In the United States, the Centers for Disease Control
and Prevention estimate that antibiotic-resistant bacteria infect
more than two million people annually (Nizet, 2015). In
this country alone, methicillin-resistant Staphylococcus aureus
(MRSA) accounts for approximately 10,000 cases of hospital-
acquired bloodstream infections, whereas Clostridium difficile,
associated with diarrhea, is the most common infection in
the United States, with more than 80,000 estimated annual
cases (Magill et al., 2014). Many multi-antibiotic-resistant
gram-negative bacilli also fit the description of superbugs,
such as P. aeruginosa, K. pneumoniae, E. coli, Acinetobacter
baumannii, and Stenotrophomonas maltophilia, and polymyxins
have emerged as the major last-line of defense against these
gram-negative superbugs (Velkov et al., 2016). Recently, Ling
et al. (2015) developed an important method that allowed the
in situ growth of soil microorganisms not cultivable under
laboratory conditions. Hence, chemicals produced naturally by
the microorganisms could be tested, such as teixobactin, the first
compound of a new important class of antibiotics. Teixobactin
is capable of eliminating MRSA, and bacteria are believed not
to be susceptible to developing resistance to teixobactin, which
targets the lipids essential for the maintenance of the bacterial
cell wall (Borghesi and Stronati, 2015). Thus, biotechnological
alternatives have been developed to circumvent the problem of
the low rate of discovery of new antibiotic molecules. Selenium
nanoparticles (SeNPs) combined with the synergistic properties
of quercetin and acetylcholine showed inhibitory effect on MRSA.
A study showed that SeNPs attach to the bacterial cell wall,
causing irreversible damage to the membrane, thus achieving
a remarkable synergistic antibacterial effect that inhibits MRSA
(Huang X. et al., 2016).

The use of recombinant microbial cells has allowed large-
scale production of a large number of products of pharmaceutical
interest, such as hormones, anticoagulants, high-value proteins,
antibodies or antigens, and others. This has been crucial
in determining the structure-function relation of proteins, as
well as for developing a better understanding of immune
system reactions, cell biology, and signaling events. The major
microorganisms explored as biofactories are the bacterium
E. coli, followed by the yeast S. cerevisiae; both prokaryotic and
eukaryotic systems are constantly evolving and competing to
improve their properties and intensify as platforms of choice
for the production of biopharmaceuticals (Chumnanpuen et al.,
2016; Sanchez-Garcia et al., 2016). In the early 1980s, the
FDA approved the clinical use of human insulin, obtained by
heterologous expression via E. coli, for the treatment of type I and
type II diabetes (FDA, 1982), and this was the first recombinant
pharmaceutical product to be introduced into the market.
Since then, the improvement of new heterologous protein
production systems via E. coli enabled the commercial approval
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of several other products, including hormones (calcitonin,
parathyroid hormone, human growth hormone, glucagon, and
somatropin), interferons, and interleukins (Ferrer-Miralles et al.,
2009). For example, approximately 30% of commercially available
recombinant proteins are currently produced in prokaryotic
systems (Overton, 2014). This production method is due to the
unusual physiology of the cells as well as the ease of genetically
manipulating them, but the understanding is that it is possible,
by adding heterologous reactions, to synthesize 1,777 non-
native products from E. coli, of which 279 have commercial
applications. Among the latter are 4-hydroxybenzoate, tyrosine,
and phenylalanine, which are precursors common to a large
number of non-native commercial products (Zhang et al., 2016).

By contrast, the products of heterologous proteins obtained
from S. cerevisiae comprise hormones (insulin, insulin analogs,
and glucagon), vaccines (hepatitis B virus surface antigen),
and virus-like particles (VLPs) (Ferrer-Miralles et al., 2009).
Prokaryotic production systems are required whenever the
recombinant proteins are smaller or do not require post-
translational modifications (PTMs), such as glycosylation,
phosphorylation, or proteolytic cleavage. However, production
in yeasts, such as S. cerevisiae and Pichia pastoris, is generally
required when the target protein cannot be produced in a soluble
form in a prokaryotic system, when it is rich in disulfide bonds,
or when a specific PTM, essential for the biological activity of the
protein, cannot be artificially created from the purified product
(Jenkins, 2007; Demain and Vaishnav, 2009).

Modified strains of S. carnosus, Corynebacterium glutamicum,
B. subtilis, and Lactococcus lactis, for example, have been used
in the controlled biological synthesis of calcitonin, amino acids
(glutamate and lysine), proinsulin (Olmos-Soto and Contreras-
Flores, 2003; Sandgathe et al., 2003; Liu et al., 2016), and protein
nanoparticles (Cano-Garrido et al., 2016), respectively. Further
manipulations of these species are expected to create strains
capable of producing a wide variety of non-native commercial
products.

Filamentous fungi, used for centuries in traditional Chinese
medicine, have also been evaluated for the potential production
of biopharmaceuticals. Polysaccharides of secondary metabolites
can be obtained using Ganoderma lucidum, Cordyceps sinensis,
and C. militaris (Paterson, 2006, 2008; Wadt et al., 2015).
Endophytic fungi such as Metarhizium anisopliae and
C. gloeosporioides (Gangadevi and Muthumary, 2008; Liu
et al., 2009) were found to be efficient in the synthesis of Taxol,
being a viable alternative to obtain this antineoplastic. The great
diversity of molecules produced by filamentous fungi justifies
the exploration of these microorganisms, and therefore, the
development of production systems in bioreactors has been
encouraged.

The metabolic engineering of molecules from microorganisms
has been stimulated mainly by the need for new functional
biomaterials in emerging drugs (nanostructured or not) (Vázquez
and Villaverde, 2013). A large number of substances with
nanomedical application have emerged, including polymers,
metallic nanoparticles, magnetic nanoparticles, VLPs, virions
or virion components, and a growing diversity of self-
organized protein materials, some with adjustable biomechanical

properties such as stiffness, elasticity, adhesion or controllable
disintegration or release of incorporated functional blocks
or conventional chemical drugs (Rodriguez-Carmona and
Villaverde, 2010). Obviously, the success of the use of microbial
nanoparticles in nanotechnology and nanomedicine depends
on the identification of new species of microorganisms and
on the knowledge of the microbial interactions that occur in
natural environments that can lead to the discovery of new
molecules (Bajaj et al., 2012; Avendaño et al., 2016; Borghese et al.,
2016).

Recently, the term ‘biobetter’ has been used to refer to
next-generation therapeutic macromolecules, which have a
more effective drug delivery system. These macromolecules
are modified by chemical and/or engineering methods using
molecular biology techniques to display better pharmacological
properties, such as higher activity, greater stability, fewer
side effects, and lower immunogenicity (Beck, 2011; Jozala
et al., 2016). Because they require original research and
development, and because they propose alternative methods
of administration such as dermatological applications and
inhaled formulations in order to minimize biological instability,
biobetters still have significantly higher costs compared to
reference biopharmaceutical versions (Mitragotri et al., 2014;
Sandeep et al., 2016). However, the future popularization
of protein engineering techniques, especially site-directed
mutagenesis (SDM), which allows the substitution, elimination
or insertion of one or more amino acids in the sequence
of a protein, is expected to enable the availability of less
expensive biobetters, which are the main growing class of
biopharmaceuticals (Courtois et al., 2016; Jozala et al., 2016).

MATERIALS TECHNOLOGICAL
MICROBIOLOGY

The application of biotechnological techniques to microbiology
has also made it possible to obtain a great diversity of
biomaterials and biosensors. Biomaterials are artificial or
natural products, usually synthesized by microorganisms in
different environmental conditions, that can act in biological
systems (tissues or organs). Biosensors integrate microorganisms
with a physical transducer to generate a measurable signal
proportional to the concentration of analytes, allowing rapid
and accurate detection of analysis targets in diverse fields such
as medicine, environmental monitoring, food processing, and
others (D’Souza, 2001; Paitan et al., 2003; Lei et al., 2006; Su et al.,
2011).

An important family of biomaterials includes the bioplastics.
Bioplastics are polyesters that accumulate intracellularly
in microorganisms in the form of storage granules, with
physicochemical properties similar to petrochemical plastics.
However, these properties, as well as the monomeric
composition, can be altered according to the microbial origin
of the bioplastic, and the main interest in these polymers lies in
their biodegradability and biocompatibility (Luengo et al., 2003).
Bioplastic can also be produced as a byproduct of biorefinery
using acidogenic fermentation or pyrolysis of lignocellulosic
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biomass, as well as a by-product of the biotreatment of solid or
liquid wastes (Ivanov and Stabnikov, 2016).

Bioplastics are being used in the manufacture of high-
value-added medical materials, such as films that function as
vehicles for drug delivery (Awadhiya et al., 2016). For use as
medical materials, the high purity of PHAs is enhanced by
using bioceramics and/or bioactive glasses that improve their
biomechanical properties and increase their bioactivity (Radecka
et al., 2016). Bioplastic formulations were recently tested for
seed coating of agronomic species. These coatings, which contain
spores of growth promoters such as T. harzianum, may help in
the control of agricultural pests in the future (Accinelli et al.,
2016). Bioplastics also have the potential to lead to the rise,
within civil construction, of materials that have low incorporated
energy, contributing to energy efficiency (Ivanov and Stabnikov,
2016).

Polysaccharides of microbial origin, such as chitosan, alginate,
xanthan gum, and cellulose, are another class of biomaterials that
have gained considerable interest for medical use because of their
properties, including that they are renewable, biodegradable,
and mimic the components of the extracellular matrix, which
make them key elements in biological processes (Pires and
Moraes, 2015; Pires et al., 2015). Chitosan can be easily
recovered from the cell wall of fungi such as A. niger, Rhizopus
oryzae, Cunninghamella elegans, and Mucor indicus, among
others (Pochanavanich and Suntornsuk, 2002; Franco et al.,
2004; Ruholahi et al., 2016; Abdel-Gawad et al., 2017). Specific
interactions with extracellular matrix components allow the use
of chitosan in the field of tissue engineering to repair skin, bone,
and cartilage (Khor and Lim, 2003). The potential of fungal
chitosan, when present in bioactive filters, to chelate heavy metals
and inhibit pathogenic microbial agents in contaminated water
was recently evaluated (e.g., Ruholahi et al., 2016; Tayel et al.,
2016a) for the development of a renewable, ecofriendly, and cost-
effective polymer that can help overcome the current problems of
chemical and microbial water pollution (Tayel et al., 2016b).

Alginate is a polysaccharide synthesized by several genera
of brown algae and two genera of bacteria: Pseudomonas and
Azotobacter (Hay et al., 2013; Maleki et al., 2016). Its properties
have broadened its use in the encapsulation or controlled
release of drugs, enzymes, or cells, or as a matrix for tissue
engineering (Andersen et al., 2012; Lee and Mooney, 2012),
similarly to chitosan. When mixed in the aqueous phase, alginate
and chitosan combine spontaneously by strong electrostatic
attraction, forming a polyelectrolyte complex (PEC) that may
be employed for the production of thin, transparent membranes
that allow good absorption of physiological fluids, as well as the
incorporation of several bioactive compounds (Pires and Moraes,
2015). Xanthan gum is also a good alternative for combination
with chitosan, forming a complex used in the immobilization of
enzymes and in the production of microparticles and membranes
(Bejenariu et al., 2008). This exopolysaccharide is commercially
synthesized by the bacterium Xanthomonas campestris, using
different carbon sources (Barua et al., 2016; Li et al., 2016; Velu
et al., 2016).

Cellulose synthesized (in abundance) by bacteria such as
Gluconacetobacter xylinus (e.g., Huang C. et al., 2016) displays

the same polymeric structure of cellulose from plants but is
superior in its mechanical properties, purity, and uniformity,
allowing the production of higher-quality devices (Pires et al.,
2015). These devices include dialysis membranes and scaffolds for
tissue engineering (Svensson et al., 2005). Microbial cellulose has
great potential for the treatment of skin lesions and replacement
of small-diameter blood vessels (Czaja et al., 2006).

The focus on microorganisms as an alternative in the
production of biosensors is mainly due to the ability to produce
them massively through cell culture (Su et al., 2011). In addition,
the recombinant DNA technique has facilitated the availability of
microbial biosensors in the market, providing a new direction to
manipulate their selectivity and sensitivity at the DNA level. This
technique consists of the construction of recombinant microbial
strains that contain a reporter gene (lux, GFP, or lacZ), i.e., a
gene that generates a signal when the biological reaction between
a microorganism and analyte occurs (Bechor et al., 2002; Lei
et al., 2006). An example of a microbial biosensor currently being
used for pollutant monitoring purposes consists of immobilized
recombinant E. coli cells expressing organophosphorus hydrolase
(OPH). The OPH catalyzes the hydrolysis of organophosphorus
pesticides releasing protons, whose concentration is proportional
to the amount of substrate analyzed (Mulchandani et al., 1998;
Kim H. J. et al., 2016). Recently, E. coli cells were developed to
function as CadC-T7 biosensors, which are based on synthetic
genetic circuits that combine a fluorescence reporter gene and
heavy metal-responsive proteins. These biosensors showed high
specificity for the detection of heavy metals (Kim K. R. et al.,
2016). For environmental monitoring of cadmium, a biosensor in
which cells express β-galactosidase in the presence of this metal is
also available (Shin, 2016). Bioluminescent E. coli have also been
used to signal DNA damage, superoxide radical production, and
membrane damage caused by potentially toxic liquids (Bharadwaj
et al., 2017).

In addition to the use of E. coli in biosensors, other
microorganisms have already been evaluated. P. putida has
already been tested as a biosensor for catechol, nitrophenol,
benzene, toluene, and others (Rasinger et al., 2005; Timur
et al., 2007; Banik et al., 2008); S. cerevisiae, for Cu2++ (Tag
et al., 2007); Acidithiobacillus ferrooxidans and Leptospirillum
ferrooxidans, for Fe2+, S2O3

2−, Cr2O7
2−, and others (Zlatev

et al., 2006; Stoytcheva et al., 2009); and Gluconobacter oxydans,
for propanediol and ethanol (Katrlik et al., 2007; Valach et al.,
2009), among others. Despite the great leap forward made by
biotechnology in the area of microbial biosensor development,
many challenges still need to be overcome. New microorganisms
still need to be evaluated for efficiency, more precise methods for
immobilizing microbial cells still need to be developed, and the
induction techniques need to be continuously evaluated because
they may vary in terms of their efficiency depending on the
analyte.

OTHER CONSIDERATIONS

Microorganisms are the most biodiverse class, leading us to
believe that the emergence and spread of new human and/or
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agricultural pathogens may shift from a current critical situation,
aggravated by globalization, to a recurrent situation at various
points in the future. Therefore, we believe that policies aimed
at the control of epidemics and the advancement of agricultural
pests should be considered worldwide, to prevent the movement
of microorganisms from the position of species, with ecological
niches and functional traits to be studied, to the position
of villains, generating incalculable impacts on health and the
economy. We must face the resurgence of diseases such as
Zika and the appearance of superbugs as public health alerts,
requiring emergency decision-making. These decisions must
be made while considering the entire technological framework
currently available, including transgenics and recombinant
DNA, such that incentives exist so that microbiology research

can be converted into products and services for society
(Figure 5).

Not only biodiversity but also the unique nature and
the biosynthetic capacities under specific environmental
conditions make microorganisms the probable candidates to
solve particularly complex environmental problems, such as the
biodegradation of xenobiotics, or even recurrent problems, such
as the decomposition of garbage and waste piles produced daily
in urban environments. Obviously, the recurrent changes in
the decomposing microbial community, as well as the reduced
number of studies in this area, make this community still
unknown for different wastes, thus diminishing the development
of biotechnological mechanisms, such as strain improvement, or
the heterologous expression of enzymes that could improve the

FIGURE 5 | Use of Technological Microbiology in the generation of products and services. These products and services can be obtained from the
expression of transgenes or native microbial genes (P = promoter and R = reporter). Marker expression generates signals that may indicate the presence and
concentration of analytes (biosensors). In turn, the symbiotic interaction between plant species and endophytic, mycorrhizal, and/or diazotrophic microorganisms
can help plant growth and development through N2 uptake, immobilized phosphate solubilization, siderophore production, competition with phytopathogenic
species, etc. Arrows of the same color inside the bacterium signal the same pathway.

Frontiers in Microbiology | www.frontiersin.org 15 May 2017 | Volume 8 | Article 827

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00827 May 8, 2017 Time: 11:44 # 16

Vitorino and Bessa Technological Microbiology

ability of these microorganisms to promote waste degradation.
This is a challenge to be faced by Technological Microbiology in
the coming years.

The group’s biodiversity, however, also means
microorganisms offer the greatest potential for the exploration of
molecules and processes, and the knowledge of unconventional
species, especially within the Archaea group, has stimulated
the research of genes of interest. These new genes may be
incorporated by recombinant technology into biologically
known species, such as E. coli and S. cerevisiae, for the large-
scale synthesis of products. To date, molecular strategies have
advanced by establishing heterologous expression systems
for the production of valuable industrial compounds, such
as biofuels, chemicals, pharmaceuticals, enzymes, and food
ingredients. However, Technological Microbiology has obstacles
to overcome, and these obstacles extend beyond the continuous
search for unconventional microbial species with valuable
metabolic properties. These obstacles lie mainly in the

popularization and expansion of metabolic engineering to
the system level, i.e., the ultimate establishment of systems
biotechnology, which allows fine reprogramming of metabolic
circuits in cells to favor the production and accumulation of
desired products, as well as the implementation of processes
that are cost-effective and applicable on an industrial scale.
Most of the time, the products and processes generated by
systems biotechnology are expensive and of little benefit when
implemented on a large scale. Thus, only in-depth research in
this area could result in more complex and efficient microbial
factories.
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