
9 Ground-penetrating radar

While seismic-reflection and -refraction techniques are commonly employed to map near-
surface layers, they do not have the high vertical resolution (detection of subsurface
structures with length scales of 1.0 m or less) that is required for many applications.
Ground-penetrating radar (GPR) can be a suitable geophysical tool in these situations. The
technique is used to detect changes in subsurface electromagnetic impedance via the
propagation and reflection at impedance boundaries of an electromagnetic wave generated
by a transmitter deployed at the surface or, less commonly, within a borehole. Typical GPR
frequencies are in the 10 MHz to 1 GHz range, much higher than the frequencies used in
the electromagnetic (EM) induction method (see Chapter 8). The popularity of GPR as a
near-surface geophysical technique lies partially in the similar appearance of radar sections
to the seismic sections that are familiar to many geophysicists (Figure 9.1). Both seismic
reflection and GPR are imaging techniques based on wave-propagation principles but there
are important differences; some of which will be discussed in this chapter. Good overviews
of the theory and practice of GPR appear in Davis and Annan (1989), Knight (2001), Neal
(2004), Annan (2009), and Conyers (2011).

Example. Perchlorate transport in karst.

The occurrence of the perchlorate ion ClO�4 in groundwater presents a great risk to human
health since perchlorate has long been known to inhibit proper functioning of the thyroid.
Beneath the Naval Weapons Industrial Reserve Plant (NWIRP) in central Texas, significant
concentrations of perchlorate ions derived from the manufacture of rocket propellant have
been detected in groundwater and springs. Hughes (2009) has described a wide-area (~ 500
ha) GPR survey in karst terrain with the goal of mapping subsurface structural features that
might be indicative of major pathways for subsurface transport of perchlorate ions. The
survey was executed by towing a 50 MHz GPR system for ~ 100 line-km on a sled behind
an all-terrain vehicle. The geology consists of a weathered limestone bedrock below a 0–3-
m clay overburden. The lateral resolution of the GPR, about 1 m, is far too coarse to detect
individual bedrock fractures on the order of millimeters in width. The geophysical targets
were therefore identified as top-of-bedrock irregularities, such as weathered downcuts of
1–10 m in width and tens of meters in length, that can be spatially associated with the
north-northeast-trending regional structure.

A typical GPR profile from the wide-area survey is shown in Figure 9.2a. On the left
side of the profile, the main return signal seen at 20–40 ns is interpreted as a reflection from
the top of bedrock at 1–2 m beneath the surface. The bedrock signal is lost at the right side
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of the profile due to signal attenuation within a deeper clay overburden. The features
marked A37 and A39 are interpreted as bedrock lateral discontinuities. A plan-view map of
the two-way traveltime to the GPR main return, assembled from all the GPR profiles in the
survey area, is shown in Figure 9.2b. This map can be interpreted as a map of depth to
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Figure 9.1 GPR section obtained with 50 MHz antennas showing reflection hyperbolas from two road tunnels. The two smaller
hyperbolas at the right are caused by scattering from shallow buried objects. After Annan and Davis (1997).
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Figure 9.2 (a) Typical GPR section obtained at the NWIRP site, Texas, using 50 MHz antennas; (b) plan-view map of the
GPR main returns, interpreted in terms of depth to bedrock. After Hughes (2009).
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bedrock, with the magenta regions corresponding to bedrock highs and the blue regions
corresponding to bedrock lows. Notice that the dominant orientation of the GPR-inferred
bedrock depth map correlates well with the north-northeast geological structural trend.
This lends support to the supposition that GPR can provide valuable information about
structural controls on subsurface contaminant transport.

Example. Plastic landmine detection.

Landmines and other explosive remnants of war constitute an enduring and severe environ-
mental hazard in dozens of countries that have previously experienced military conflict.
Many landmines are now manufactured that contain little or no metal so that metal
detectors, long the primary geophysical tool used by humanitarian deminers, often become
ineffective. Alternative geophysical techniques, or combinations of techniques, are cur-
rently under intense investigation by various commercial, governmental, and non-profit
research organizations around the world. The interested reader is invited to explore the
United Nations website www.mineaction.org for further information about all aspects of
humanitarian demining.

Metwaly (2007) describes GPR imaging results from a 2.5-m � 6.0-m test site in which
five plastic cylinders (Figure 9.3) of similar dimensions (nominal radius 4–5 cm; nominal
height 7–13 cm) and construction to anti-personnel landmines were buried up to 22 cm depth
in a prepared bed of homogeneous dry sand. It is easy to see from the reflection hyperbolas in
the GPR sections that the highest frequency (1.5 GHz) affords the best spatial resolution of
the buried objects. The objects labeled 1 and 5 are not well imaged, especially at the lowest
frequency, 400 MHz. It may be concluded from this and other studies that plastic, non-
metallic landmines may be identified using GPR techniques provided the following condi-
tions hold: (a) there is a sufficiently strong dielectric contrast between the landmine and the
host soil; (b) the signal is not overwhelmed by cultural noise (clutter) or shallow subsurface
heterogeneities; and (c) the soil electrical conductivity is low, as would likely be the case, for
example, in a dry, coarse-grained sedimentary environment with low organic content.

9.1 Fundamentals

In the frequency range 10 MHz < f < 2 GHz, electromagnetic wave propagation in non-
magnetic, resistive Earth materials (σ < 0.01 S/m) is controlled largely by spatial variations
of dielectric permittivity ε in the subsurface. Bound-charge displacement, or polarization,
is the dominant mechanism although the quasi-free charge migration, or conduction, that
governs the EM induction technique plays an important role in GPR signal attenuation.
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The following discussion provides an elementary introduction to the phenomena of
atomic, molecular, and interfacial polarization as they are relevant to GPR. Consider an
isolated atom consisting of a nucleus of positive charge þZ surrounded by a neutralizing
electron atmosphere of charge –Z. An applied electric field E exerts a force on the electron
atmosphere and displaces its charge center, as shown in Figure 9.4a. In essence, the circular
orbits of electrons become elliptical (von Hippel, 1954). Similarly, in the presence of
an applied field E, a polar water molecule will experience a torque which tends to
align its asymmetric charge distribution into the direction of the applied field, as shown
in Figure 9.4b. There is often a small “dielectric loss” caused by some energy that
dissipates as the polar molecule rotates, since water is a viscous solvent. The loss term
can often be neglected to first order. A non-polar molecule, such as the oxygen molecule
O2, does not exhibit molecular polarization due to its more symmetric distribution of
positive and negative charges.

In the GPR frequency range, it is the molecular polarization of the water molecule that
largely controls the velocity, and hence the reflection, diffraction, scattering, and other
aspects of the subsurface propagation of electromagnetic waves. Atomic polarization does
not become an important source of polarization until very high frequencies, greater than
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Figure 9.3 GPR detection at three frequencies of plastic-landmine-simulating cylinders buried in homogeneous sand at test
site in Egypt; C ¼ unwanted diffraction from an off-site metal sheet; G ¼ reflection from the base of the
sand layer; vertical axis is traveltime [ns]. After Metwaly (2007).
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10 GHz, which is above the normal GPR range. A third type of dielectric polarization,
interfacial polarization or theMaxwell–Wagner effect, can become important at frequencies
less than 100 MHz (Hizem et al. 2008). Interfacial polarization at GPR frequencies is
caused by electric charges that accumulate at dielectric interfaces when a heterogeneous
medium is subjected to an applied electric field.

The electromagnetic wave velocity in a non-magnetic (μr ¼ 1) medium is given by the
formula (Davis and Annan, 1989)

v ¼ cffiffiffiffi
εr

p ; ð9:1Þ

where c ¼ 3 � 108 m/s (~ 1 ft/ns) is the speed of light in vacuum and εr ¼ ε/ε0 is the
relative electrical permittivity, or dielectric constant. Sometimes the symbol K is also used
for dielectric constant. To first order, in the radar frequency range 10 MHz– 2 GHz, the
velocity v is independent of both frequency and conductivity. This is evidenced by the
“GPR plateau” shown in Figure 9.5a.

For most dry geological materials, such as sand, gravel, and crystalline rock, the
dielectric constant varies roughly between 3 � εr � 8. Water has an anomalously large
dielectric constant of εr ~ 81 due to the high polarizability of the water molecule in the
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Figure 9.4 (a) Atomic polarization; (b) polarization of the water molecule.
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Figure 9.5 (a) GPR wave velocity as a function of frequency; (b) GPR attenuation as a function of frequency.
After Davis and Annan (1989).
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presence of an applied electric field. Thus, water-bearing rocks have significantly higher
dielectric constants (εr ~ 10–30) than dry rocks of the same lithology. Hydrocarbons such
as oil and natural gas have low values of dielectric constants, on the order εr ~ 1–2. The
dielectric constant and radar attenuation (discussed below) of common geomaterials at 100
MHz is listed in Table 9.1.

The dielectric properties of rocks and soil are generally dispersive at GPR frequencies
(West et al., 2003), which implies that permittivity ε is a complex function of frequency,
often written as ε*(ω). A primary cause of the dispersion is that, at sufficiently high
frequencies, the polarization of atoms and molecules cannot keep pace with the rapid
alternations of an applied E field. This leads to an out-of-phase component of the
polarization that manifests itself as an imaginary, or quadrature, contribution to ε*(ω).
Moreover, any dielectric loss caused by viscous dissipation of energy as the water
molecules rotate in a rapidly changing E field adds to the quadrature part of ε*(ω). At
frequencies greater than ~ 1010 Hz, well above the GPR frequency range, both the real and
imaginary components of permittivity ε*(ω) drop precipitously since water molecules are
not capable of responding to such extremely fast fluctuations in the E field.

The attenuation of a radar wave is given approximately by the formula

α e 1690
σffiffiffiffi
εr

p ½dB=m�: ð9:2Þ

A more general, frequency-dependent formula for attenuation α that accounts for both
conduction and various forms of dielectric loss is presented in Davis and Annan (1989). As
shown in Figure 9.5b, attenuation increases with increasing conductivity σ and frequency
ω. This accords with the familiar rule that the GPR depth of penetration decreases as the
product σω increases. Under poor conditions such as wet, clay-rich soils the penetration
depth at ~ 100 MHz is roughly 1–2 m. Under better conditions such as dry, clean sands or
gravel, the penetration depth at this frequency can be greater than 10–20 m. In pure rock
salt, a low-loss ionic solid, penetration depth can be several hundreds of meters (Gorham
et al. 2002). The occurrence of fine interbedding restricts the penetration depth of radar

Table 9.1 Dielectric constant and radar attenuation of common geological materials
at 100 MHz, after Davis and Annan (1989)

Material Dielectric constant Attenuation [dB/m]

Air 1 0
Freshwater 80 0.1
Seawater 80 1000
Dry sand 3–5 0.01
Saturated sand 20–30 0.03–0.3
Limestone 4–8 0.4–1.0
Clay 5–40 1–300
Granite 4–6 0.01–1.0
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waves as energy is lost at each reflecting horizon. The seismic and GPR techniques are
somewhat complementary in the sense that poor GPR field conditions (wet clays) are
actually good seismic conditions while ideal GPR conditions (dry sands) are unfavorable
for the acquisition of high-quality seismic data.

Geophysical imaging using the GPR method is based on the reflectivity of the geological
medium under investigation. Suppose a radar pulse is propagated into a non-magnetic
ground which consists of a single layer of dielectric constant ε1 overlying a halfspace of
dielectric constant ε2. The reflection coefficient for a normally incident radar plane wave is

R ¼
ffiffiffiffi
ε1

p � ffiffiffiffi
ε2

pffiffiffiffi
ε1

p þ ffiffiffiffi
ε2

p : ð9:3Þ

The reflected energy is proportional to R2. The general case of oblique incidence of a plane
wave will be examined later in this chapter.

9.2 Dielectric constant and electrical conductivity

The velocity of a subsurface radar wave depends on the dielectric constant εr, as indicated
by Equation (9.1). Radar waves reflect off discontinuities, and bend when they encounter
spatial gradients in the local dielectric value. Radar waves are attenuated mainly by
electrical conductivity σ. Since the two properties (σ, εr) affect radar wave propagation
in different ways, it is instructive to examine more closely the relationship between them.
This will result in a better understanding of the information content of GPR data.

As a conceptual model, following the discussion in von Hippel (1954), consider two
oppositely charged parallel-plate conductors like those shown in Figure 9.6a. The parallel
plates of area A and separation d serve as a basic model for a capacitor, which is essentially
a charge-storage device. The intervening space is filled with vacuum, so that no electrical
current can flow between the plates and accordingly they do not discharge. A voltage V is
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maintained across the plates by an external battery such that an electric field E exists in the
ẑ direction, positive downward, as shown.
Let the surface charge density on the two plates be given by ±s [C/m2] and the total

charge on the plates by ±Q [C], where Q ¼ sA. Now, suppose the space between the plates
becomes filled with a dielectric material of relative permittivity εr, and zero conductivity
σ ¼ 0, as shown in Figure 9.6b. The electric field E now polarizes the dielectric material so
that microscopic dipoles form, as shown by the gray symbols in the figure. The dipoles
attract and bind some of the free charges on the plates. These newly bound charges are the
ones that are circled in the figure. Thus, only a portion of the original free charges remain to
contribute to the voltage across the plates. The relative permittivity εr is then defined as
Q0 ¼ Q=εr where �Q0 is the total free charge that remains after the dielectric material is
added. Note that Q0 < Q. The free charge density is similarly reduced to s0 ¼ s=εr. The
total bound charge is Q� Q0 ¼ Qð1� 1=εrÞ. Still no current flows across the plate since
the added material is non-conductive. The capacitor continues to store electrical energy and
the plates do not discharge.

Now suppose the space between the plates is filled by a dielectric material that also has a
non-zero electrical conductivity σ. In this case, some of the free charges are able to migrate
through the material between the plates, and hence an electric current is created in
accordance with Ohm’s law J ¼ σE. The capacitor, in this case, is leaky and loses some
of its stored electrical energy. The electric field E is given, as usual, in terms of the free
charge density by E ¼ s ẑ=ε0. A new displacement field D is defined in terms of the total
charge density as D ¼ s ẑ ¼ ε0εrE ¼ εE. The physical interpretation of the displacement
field is explained as follows.

Suppose an external electric current of density J [A/m2] charges the plates. The total
surface charge density s increases with time as charges are brought up to the plate by the
external current. The increase in charge density, in the case of a pure non-conducting
dielectric, is given by J ¼ ðds=dtÞ ẑ ¼ ðdD=dtÞ. In the case σ ¼ 0, all the charges are
stopped on the plate and no current is conducted across. Nevertheless, there is a displace-
ment current of magnitude dD/dt. If the capacitor is filled with conducting material, some
of the charges that are brought up to the plate by the external current J can migrate across
to the other plate. Therefore, in this case there is also a conduction current given by Ohm’s
law. The total current is then the sum J ¼ σE þ dD/dt, where the magnitude of D is now
scaled by the bound charge density s� s0. Sometimes the electric polarization vector
P ¼ ε0χeE is introduced, in which χe is termed the electric susceptibility, and we write
D ¼ ε0E þ P. However, we will find no further occasion to use the electric polarization
vector P.

The displacement current, and its distinction from the conduction current, is usefully
described by the simple parallel-plate model considered above. However, the geophysical
situation may be better conceptualized with reference to Figure 9.7 in which an AC voltage
V exp (iωt) is applied across a rock mass. The rock has electromagnetic properties (σ, εr)
and thus both a conduction current σE and a displacement current dD/dt will be present.
There are both energy-storage and energy-loss mechanisms. It is well known in the history
of physics (e.g. Selvan, 2009) that the presence of the energy-storage term, associated with
the displacement current, led Maxwell to predict the existence of electromagnetic waves.
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If an AC voltage with harmonic-time variation exp (iωt) is applied to a rock mass, as
shown, the total current in the frequency domain becomes J ¼ σE þ iωD ¼ σE þ iωεE ¼
σ*E where σ* ¼ σ þ iωε is a complex conductivity that depends on frequency. Neglecting
EM induction effects for the moment, the conduction current σE is in phase with the driving
voltage while the real component of the displacement current iωD, generated by lossless
polarzation effects, is out of phase. The dielectric loss term described in the previous section
acts, however, mathematically, much like the Ohmic loss term and often in the literature it is
seen that both are lumped together into the imaginary component of a complex permittivity
ε*(ω). However, it should be remembered that the two phenomena have distinct physical
origins: Ohmic loss is essentially the kinetic energy loss of migrating quasi-free charges
scattering off lattice ions, while dielectric loss is associated with the rotation of bound
charges in a viscous fluid. As such, it is easy to see that the Ohmic term is sensitive largely to
connected porosity while the dielectric loss term is more sensitive to total water content,
which equals the total (connected and unconnected) porosity in a fully saturated system.

9.3 Dielectric properties of rocks and soils

The electrical properties of porous rocks, including the conductivity σ and the dielectric
constant εr, are highly sensitive to the pore-scale microstructure and the volume fractions of
the solid and fluid phases. The most important factor in determining the dielectric constant
εr of near-surface geomaterials is the volumetric water content, θW. This is because water is
characterized by εr ~ 81 and air by εr ¼ 1 while the dielectric constant of the solid matrix
material most commonly falls somewhere close to the range εr ~ 3–4. The empirical Topp
equation (Topp et al., 1980)
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Figure 9.7 Conceptual model of a rock under an applied time-harmonic voltage.
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εr ¼ 3:03þ 9:3θW þ 146:0θ2W � 76:7θ 3
W ð9:4Þ

is a widely used formula for expressing the bulk dielectric constant of a soil as a function of
its water content. It can be regarded as a GPR equivalent of Archie’s law in the sense that it
is based on a compendium of laboratory measurements using a wide variety of samples.
The method for determining εr involves a time-of-flight measurement of an electromag-
netic pulse propagating along a coaxial waveguide loaded with the soil sample, as shown in
Figure 9.8a. The results from using soils of different types with varying water content θW
are summarized in Figure 9.8b, in which the curve given by Equation (9.4) and an estimate
of its experimental uncertainty are overlain. The Topp equation works well in clays and
loams but has less predictive capabilities for organic-rich soils.

The effect of salt content on the bulk εr of water can become significant at high values of
salinity. In general, εr drops with increasing salinity, to values as low as ~ 60 for highly
saline pore waters of ~ 100 parts per thousand (ppk) (Hizem et al., 2008). There are three
effects at work: (i) more salt by volume implies fewer polarizable water molecules; (ii)
water molecules cannot rotate as easily if they are weakly bound to Na and Cl ions; (iii)
mobile Na and Cl ions within the pore-fluid electrolyte agitate the water molecules, tending
to randomize alignment of the H2O dipole moments. Hizem et al. (2008) also note that εr of
water drops with increasing temperature T to as low as ~ 45 (at 150 �C) due again to
thermal agitation of the H2O dipole moments.

Many heuristic dielectric mixing rules have appeared in the literature. The heuristic
rules, by definition, do not have a firm theoretical basis. The complex refractive index
model (CRIM), for example, is based simply on a volumetric averaging of the dielectric
constants of the constituents of a composite material (Tsui and Matthews, 1997). The
CRIM formula for the dielectric constant εr of a partially saturated rock is

ffiffiffiffi
εr

p ¼ ϕð1� SW Þ ffiffiffiffi
ε0

p þ ð1� ϕÞ ffiffiffiffi
ε1

p þ ϕSW
ffiffiffiffi
ε2

p
, ð9:5Þ
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Figure 9.8 (a) Transmission-line method for determining soil dielectric constant; (b) soil dielectric constant as a function
of moisture content for different soil types. After Topp et al. (1980).
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where ϕ is the porosity, SW is the water saturation, ε1 is the dielectric constant of the matrix
material, and ε2 is the dielectric constant of the pore water. Often, however, CRIM provides
unsatisfactory estimates of the bulk dielectric constant since it does not take into account
the geometric arrangement of the various solid and fluid phases that make up the composite
material (West et al., 2003).

Consider a fully water-saturated vesicular basalt as an idealized system composed of
fluid spheres of dielectric constant ε2 ¼ 81.5 embedded within a solid matrix of dielectric
constant ε1¼ 3.03. The bulk dielectric constant εr of the composite system, as a function of
the volumetric water content, is shown in Figure 9.9 using the Topp equation (9.4) and the
CRIM equation (9.5).

A number of more rigorous, physics-based dielectric mixing rules have been developed
using an effective medium approach. One of these is the Maxwell–Wagner–Bruggeman–
Hanai (MWBH) model (Chelidze and Gueguen, 1999), which grew out of original work by
Maxwell in the nineteenth century. The MWBH model treats the composite material as a
spatially uniform, concentrated suspension of spherical particles of dielectric constant ε2
embedded within a host medium of dielectric constant ε1. The MWBH relationship
between the effective dielectric constant εr of the composite medium and the dielectric
constants of its constituents is

εr � ε2
εr � ε1

ε1
εr

� �1=3

¼ 1� Φ2, ð9:6Þ

where Φ2 is the volume fraction of the spherical inclusions. Note that the dielectric
constants ε1 and ε2 appearing in Equation (9.6) can actually be complex functions of
frequency. Robinson and Friedman (2001) have developed a formula that predicts the bulk
dielectric constant of mixtures containing n different grain sizes.

Themixing theories described above do not take into account surface electrical-polarization
processes that might occur on the interfaces between two components of the mixture. These
surface effects are likely to be important factors in determining the effective dielectric constant
of actual porous near-surface geomaterials. For example, the Maxwell–Wagner effect
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Figure 9.9 Bulk dielectric constant of saturated vesicular basalt as predicted by the Topp and CRIM equations.
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increases with increasing hydrocarbon saturation in a three-phase oil–water–sand mix due to
the appearance of additional oil–water interfaces. A good discussion of surface effects on the
dielectric properties of porous rocks can be found in Chelidze and Gueguen (1999).

9.4 Resolution

The resolution of a GPR system ultimately depends on its capacity to distinguish between
two radar returns that are spaced closely in time. The two returns could be due, for
example, to the top and bottom interfaces of a buried thin layer. Hence, the resolution is
determined by the transmitted pulse width Δt, along with any broadening and distortion of
the pulse as it propagates into the subsurface. As the pulsewidth of a given TX decreases,
its frequency bandwidth Δf increases (Figure 9.10). The pulsewidth–bandwidth trade-off is
a general principle of Fourier analysis, as has been well documented in the seismic
literature (Knapp and Steeples, 1986). Therefore, a high-resolution GPR necessarily
transmits a broad band of frequencies. Resolution is improved by transmitting at higher
frequencies only if the bandwidth is simultaneously increased. This can be achieved in the
time domain by narrowing the pulse width. A pulse radar operating in the megahertz range
generally has a bandwidth of a similar magnitude and a pulse width of Δt~ 1–10 ns.

There is also a trade-off between range and resolution in GPR systems. As was shown
earlier in Figure 9.5b, attenuation increases with frequency beyond about ~ 100 MHz.
Sharpening the resolution by narrowing the pulse width invariably comes at the cost of a
reduction in the depth of penetration at which the subsurface targets may be interrogated.
The range–resolution trade-off places a fundamental limitation on the capability of GPR to
image small-scale structures at depth.

9.5 Data acquisition

A standard geophysical surveying geometry for GPR is the common-offset configuration
(Figure 9.11a) in which the transmitter and receiver antennas are moved in tandem along a
profile while maintaining a fixed separation distance between them. The WARR
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Figure 9.10 (a) Transmitted pulse in the time domain. (b) Broadband amplitude spectrum.
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configuration (Figure 9.11b) is analogous to the deployment of a seismic geophone array
except that typically only a single receiver is available and it is stepped out from the fixed
transmitter location, as shown. The WARR configuration is not as popular as common-offset
sounding since attenuation in the ground is often sufficiently high that good quality data from
large TX–RX offsets cannot be acquired. The common depth-point (CDP) configuration is
shown in Figure 9.11c. It is often used to estimate the ground radar velocity v by determining
the normal moveout of radar return signals, as in the seismic-reflection technique. A new
generation of GPR systems, presently under active development and beginning to appear in
commercial offerings (e.g. the Sensors and Software product SPIDAR, see www.sensoft.ca/
products/spidar/spidar.html), consists of multiple transmitter and multiple receiver antennas
working simultaneously. Such systems increase the efficiency of data acquisition in the field,
thereby enabling a lower cost and/or an increased scope of a project.

The antennas can be arranged in broadside, in-line or cross-polarized orientations, as
shown in Figure 9.12. Due to the vectorial nature of electromagnetic waves, each of the
orientations provides a different illumination of buried targets. A discussion on radar target
polarization effects appears later in this chapter. A photograph showing in-line 100 MHz
GPR data acquisition with 1.0 m TX–RX separation is shown in Figure 9.13.
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Figure 9.11 (a) Common-offset GPR profiling; (b) wide-angle radar reflection, WARR; (c) common depth-point
configuation, CDP.
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9.6 Basic GPR data processing

A number of standard data-processing steps should be performed after data acquisition in
order to transform measured radargrams into a time or a depth section that is ready for
advanced processing, qualitative interpretation, and attribute analysis. The standard pro-
cessing steps described below are recommended in most cases but they do not all have to
be performed or in the particular order given. It should be kept in mind that each data-
processing step results in a loss or transformation of the information that is contained in the
original radar data. Thus, processing should always be performed carefully and, in the final
analysis, it becomes a subjective process.

Although it is tempting to apply standard seismic data-processing algorithms (Yilmaz,
2001) to GPR data, significant interpretation errors can be made since the nature
of subsurface radar wave propagation is very different from that of seismic wave propaga-
tion. As pointed out by Cassidy (2009), GPR signals exhibit considerably more attenuation,
dispersion, and scattering from heterogeneities than do seismic signals. The spatial variations
in electromagnetic properties of geomaterials are moreover much stronger than variations in

(a)

profile
direction

TX

RX
(b)

TX RX
(c) TX

RX

Figure 9.12 GPR antenna orientations: (a) broadside; (b) in-line; (c) cross-polarized relative to the data-acquisition-profile direction.

Figure 9.13 In-line 100 MHz GPR data acquisition with a 1.0-m TX–RX separation distance.
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elastic properties; hence, GPR wavefronts generally exhibit more geometric complexity than
is found in seismic wavefronts. The GPR waves are also vectorial so that changes in
polarization as the wave propagates, reflects, refracts, diffracts, and scatters must be taken
into account. Antenna design and ground coupling further contribute to complexities that are
specific to GPR wave propagation and these have no exact seismic counterpart.

The first step of GPR data processing is file reconciliation and trace editing. The former is
done to bring the datafiles thatwere actually recorded in thefield into the desired survey format.
For example, some of the profiles may have been acquired in the reverse direction or acquired
out of the correct sequence. Some of the datafiles may be redundant, or there may be some files
that are unusable due to equipment malfunctions, poor acquisition protocol, or excessive
external noise. Bad traces within a profile may need to be removed. Some profiles may contain
extra traces, or too few traces, due to navigation errors. The extra traces can be deleted. The
missing traces can be restored by interpolating from neighboring traces. These steps are
necessary asmost processing algorithms require uniform station spacing. Filtering, as discussed
in Chapter 2, may be used at this stage to remove noise spikes and some of the extraneous
energy from noise sources whose dominant frequencies lie outside the GPR bandwidth.

An essential GPR processing step to be performed early in the processing sequence, after
file reconciliation, trace editing, and preliminary filtering, is the time-zero correction. Here,
the measured radar traces along a profile are individually shifted along the time axis such
that a recognizable feature that is common to each trace, typically the first peak of the
earliest arriving pulse train, is aligned to a common temporal datum. Trace misalignment is
caused by many factors, including drift in the transmitter or receiver electronics, irregular-
ities in either the cables connecting the transmitter and receiver electronics to the antennas,
or in the connectors themselves; or else small, along-profile variations in TX–RX antenna
spacing and orientation. The time-zero correction improves the spatial coherency, or cross-
trace correlation, of the resulting time section and readies it for further processing.

A de-wow low-cut filter should also be applied as one of the early GPR data-processing
steps. “Wow” is the ubiquitous slow variation of the baseline amplitude found in radar
traces, and includes any bias, or constant shift, in the baseline amplitude (Figure 9.14, left).
The baseline amplitude of a radar trace, at large values of the two-way traveltime, ideally
should be a constant zero. Wow variation is caused by the presence of unwanted low-
frequency components contained in the spectrum of the transmitted electric field, and also
by EM induction effects in the conductive ground. The de-wow filter attenuates these

before de-wow

raw GPR trace wow

DC bias

after de-wow

de-wowed GPR trace

Figure 9.14 Effect of de-wow filter. After Cassidy (2009).
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low-frequency components to produce a zero baseline amplitude. The effects of a de-wow
filter are shown in Figure 9.14, right.

As in seismic data processing, gain control functions can be applied to radar traces in
order to correct for geometric spreading and attenuation of the propagating wavefront, and
to equalize the signal returns from all depths. There are many different types of gain
functions that could be applied. An automatic gain control (AGC) function, for example, is
a simple multiplier that scales with the inverse of the signal strength of the raw trace. The
effect of applying an AGC function to a raw trace is shown in Figure 9.15. The objective of
applying such an AGC function is to enable visualization of both shallower and deeper
reflectors on radar sections at roughly the same display intensity.

A background-removal filter involves the subtraction, from each radar trace, of a lateral
moving average of the radar amplitudes over a given early-time window. This filter
mitigates the unwanted appearance of ground clutter or antenna ringing in displayed radar
sections. Ground clutter is the high-amplitude, laterally continuous signal seen in radar
sections at early time (Figure 9.16, left). Ground clutter is caused by direct coupling, or
cross-talk, between the TX and RX antennas and contains no useful subsurface infor-
mation. The background removal filter cleans up the early portion of the radar section and
sometimes permits a better visualization of very shallow reflectors. A deleterious effect of

raw trace

AGC gain
function

AGC-gained
trace

strong reflectors

weak reflectors

low gain for
strong reflectors

high gain for
weak reflectors

maximum
gain

Figure 9.15 The effect of an AGC function applied to a radar trace. See www.sensoft.ca/products/spidar/spidar.html

Figure 9.16 500 MHz GPR data. The left panel shows raw traces, while the right panel shows the same data after background
removal and gain control.
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background filtering, however, is that it can also remove much of the signature of slowly
undulating soil horizons and other near-surface geological features, which could include
top of bedrock or the water table. Thus, background removal should be used with care or
avoided if shallow soil stratigraphic, structural, or hydrostratigraphic mapping is an
objective of the GPR survey.

A radar time section processed using a background removal filter and gain control is
shown for illustrative purposes in Figure 9.16, right. The ground clutter is largely attenu-
ated and the deeper reflectors are much better imaged in the processed time section.

Elevation measurements should be made along GPR profiles that traverse irregular terrain.
A topographic correction can then be made to account for the distortion in the acquired
radargram due to the along-profile elevation changes. A simplified illustration of a GPR
topographic correction is shown in Figure 9.17. Suppose the geology consists of a subhor-
izontal interface buried at depthD beneath a horst of height h. The radar velocity of the upper
unit is known or estimated to be v. An idealized, uncorrected radargram is shown at left.
A naive geological interpretation that does not take elevation into account could involve a
buried paleochannel, as shown by the dotted line. The topographically corrected radargram is
shown at right. The elevation data, combined with the knowledge or estimate of the radar
velocity v, are used to “pull up” the traces that were acquired over the horst structure by an
amount Δt ¼ 2h/v. The correct interpretation of a flat-lying radar reflector can now be made.

A field example from Cassidy (2009) is shown in Figure 9.18. The data were acquired
over the lobe of a pyroclastic flow. Notice in the topographically corrected section, at right,
that the main reflecting horizons (marked as key basal surfaces) appear more flat-lying, and
are closer to their correct stratigraphic positions. The topographically corrected radargram
thus allows a more reliable geological interpretation than does the uncorrected radargram.

A CDP analysis is performed by symmetrically expanding the TX and RX antennas
about a common midpoint (Figure 9.11c, bottom). A flat-lying subsurface reflector would
exhibit a normal hyperbolic moveout in the radar time section, analogous to the previously
discussed seismic case (see Chapter 6). As in the seismic case, the subsurface velocity is
the one that, when used in an NMO correction, best flattens out the reflector. Alternatively,
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Figure 9.17 Schematic illustration of GPR topographic correction.
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the subsurface velocity can be estimated by fitting a hyperbolic function to observed
diffractions in a radar time section (see Figure 9.19). Once the subsurface radar velocity
is known, by either of these methods, the practitioner is enabled to make a time-to-depth
conversion. Then, one can display a radar depth section rather than a time section. The
advantage of a depth section is that the radar reflection horizons presumably appear at their
actual depth beneath the surface.

9.7 Advanced GPR data processing

Advanced processing steps are not always required but are briefly summarized here for the
convenience of the reader. Most often, the basic processing steps outlined above are
sufficient to make a useful geological interpretation. Advanced processing methods include
deconvolution, f–k filtering, and migration.
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Figure 9.18 225 MHz GPR data. The left panel shows original radargram; right panel, after topographic correction.
After Cassidy (2009).
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Figure 9.19 Radar velocity analysis by diffraction hyperbola fitting. After Cassidy (2009).
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Deconvolution is the process of removing the effect of the transmitted source wavelet
from the measured radar traces, in an attempt to expose the idealized impulse response of
subsurface layers. A discussion of convolution and deconvolution, mainly in the context of
seismic data processing, appears in Chapters 2 and 11, respectively. Since the source
wavelets of GPR are considerably more complex than their seismic counterparts, and the
medium is dispersive, deconvolution is more challenging and therefore is used infrequently
in GPR data processing.

The f–k filter operates as a bandpass filter in both time and space simultaneously. The
two-dimensional (2-D) spatiotemporal radar data are first Fourier transformed into the
frequency–wavenumber, or (f, k) domain. Then, a pass region in (f, k) is selected. Energy
outside the pass region is attenuated and then the data are inverse-Fourier transformed back
into the original time–space (t, x) domain. This filter can be used to suppress or enhance
dipping events depending on their orientation.

A multitude of seismic migration algorithms have been developed with great success in
petroleum exploration geophysics (e.g. Etgen et al., 2009). The main goal of migration is
to undo the effects that the finite-velocity wave propagation bestows on measured time
sections. Specifically, migration collapses diffractions back to their causative point sources
and re-positions dipping events to their correct subsurface locations (see Chapter 6 for
further details). Migration requires that the subsurface velocity is known; this is usually
estimated in GPR by a common midpoint (CMP) analysis or the diffraction-fitting proced-
ure described above. A seismic migration algorithm however cannot be bodily taken over
and applied to GPR data owing to the vectorial nature of electromagnetic wave propaga-
tion. Instead, specifically designed vector migration algorithms must be developed. These
are presently under active investigation (e.g. Streich and van der Kruk, 2007; Streich et al.,
2007). Successful schemes must take into full account polarization effects and antenna
radiation patterns.

9.8 Electromagnetic plane waves

A practical understanding of the GPR technique is enhanced by a basic knowledge of the
underlying theory of electromagnetic wave propagation in conductive media. The classical
equations that govern the behavior of electromagnetic (E, B) fields in source-free regions
are the Maxwell equations

r� H ¼ J þ ε
∂E
∂t

; ð9:7Þ

r � E ¼ � ∂B
∂t

; ð9:8Þ

where ε is the dielectric permittivity of the medium, along with the constitutive relations

J ¼ σE; ð9:9Þ
B ¼ μH ; ð9:10Þ
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where σ is the electrical conductivity and μ is the magnetic permeability of the
medium. Following Wangsness (1986), we eliminate the magnetic field B from the
above set of equations, giving rise to the vector damped wave equation for the electric
field E,

r2E � μσ
∂E
∂t
� με

∂2E
∂t2

¼ 0; ð9:11Þ

while there is a similar damped wave equation for B.
Any Cartesian component ψ ¼ (Ex, Ey, Ez, Bx, By, Bz) of the electric E or magnetic B

fields satisfies the scalar damped wave equation

r2ψ � μσ
∂ψ
∂t
� με

∂ 2ψ
∂t2

¼ 0: ð9:12Þ

It should be noted that in spherical or cylindrical coordinates, the various components of
(E, B) do not satisfy scalar dampled wave equations, as in Equation (9.12), since the unit
vectors in these coordinate systems depend on position.

In a non-conducting medium (σ ¼ 0), such as air to an excellent approximation, the
damped wave equation reduces to an ordinary lossless wave equation

r2ψ � με
∂ 2ψ
∂t 2

¼ 0: ð9:13Þ

In the most general situation, the scalar function ψ ¼ ψ(r, t) is an arbitrary function of
position and time. In the specific case of a plane wave, which we can assume without
loss of generality to be propagating in the ẑ direction, the function ψ reduces to a
planar wavefront form ψ ¼ ψ(z, t) such that for any x, y the function ψ is a constant
(see Figure 9.20). Inserting the planar wavefront form into Equation (9.13) reduces it to the
one-dimensional lossless wave equation

zz0

propagation
 direction

x

y
ψ(z0)=constant

Figure 9.20 Snapshot of a planar wavefront, which moves to the right with velocity v.
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∂ 2ψ
∂z 2

� 1

v 2
∂ 2ψ
∂t 2

¼ 0, ð9:14Þ

where v ¼ 1=
ffiffiffiffiffi
με

p
is the wave velocity.

In vacuum, the electromagnetic wave velocity assumes the light value c ¼ 1=
ffiffiffiffiffiffiffiffiffi
μ0ε0

p
. In

geological media, the magnetic permeability normally obeys μr > 1 and dielectric
permittivity similarly obeys εr > 1, such that the electromagnetic wave velocity is reduced
relative to the speed of light.

The wave equation (9.14) can be conveniently solved using the separation of variables
technique in which a solution is posited in the form ψ ¼ Z(z)T(t) as a product of a function
of z only and a function of t only. Inserting the separable form Z(z)T(t) into the wave
equation (9.14) and re-arranging gives

1

Z

∂ 2Z

∂z 2
¼ 1

v 2
∂ 2T

∂t 2
¼ �k 2, ð9:15Þ

where k2 is a constant independent of z and t. Thus, the scalar wave equation has separated
into two ordinary differential equations

∂2Z
∂z2

þ k2Z ¼ 0; ð9:16Þ

∂ 2T

∂t 2
þ ω 2T ¼ 0; ð9:17Þ

where ω ¼ kv is the angular frequency. The constant k is termed the wavenumber. The
general solutions of Equations (9.16) and (9.17) are of the form Z(z) ~ exp (±ikz) and T(t)~
exp (±iωt). A plane electromagnetic wave propagating in the� ẑ direction therefore has the
form

ψðz, tÞ ¼ ψ0expðikz� iωtÞ: ð9:18Þ

Since ψ corresponds to any Cartesian component of the electromagnetic field (E, B) we
can write

Eðz, tÞ ¼ E0expðikz� iω tÞ ŷ; ð9:19Þ
Bðz, tÞ ¼ �B0expðikz� iω tÞ x̂; ð9:20Þ

where E and B are not independent of each other but are linked by the Maxwell equations.
Note that E and B, as given by Equations (9.19) and (9.20) are completely in phase with
each other, that is, their amplitudes wax and wane in tandem when viewed as a function of
position or as a function of time. A sketch of the electromagnetic field associated with a
propagating lossless electromagnetic plane wave is shown in Figure 9.21a.

The behavior of an electromagnetic plane wave changes fundamentally in a conducting (or
lossy)medium, σ 6¼ 0. In this case, the one-dimensional scalar dampedwave equation becomes

∂2ψ
∂z2

� μσ
∂ψ
∂t
� με

∂2ψ
∂t2

¼ 0: ð9:21Þ
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Application of the separation of variables technique indicates that the separation constant
k2 generalizes to

k2 ¼ ω2μεþ iωμσ ð9:22Þ
such that the wavenumber is the complex quantity

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2μεþ iωμσ

p
ð9:23Þ

which can be decomposed into its real and imaginary parts, k ¼ α þ iβ. These are readily
shown to be, from Equation (9.23),

α ¼ ω

ffiffiffiffiffi
με
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

ωε

� �2
r

þ 1

" #1=2

; ð9:24Þ

β ¼ ω

ffiffiffiffiffi
με
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

ωε

� �2
r

� 1

" #1=2

: ð9:25Þ

Inserting the complex wavenumber k ¼ α þ iβ into the scalar damped wave equation gives

ψðz, tÞ ¼ ψ0expð�βzÞexpðiαz� iωtÞ; ð9:26Þ
which can be compared directly with the lossless case, Equation (9.18). An important
aspect of electromagnetic plane-wave propagation in a conducting medium is the presence
of the attenuation factor exp ( –βz). In the diffusive regime σ � ωε, the parameter
β ! 1=δ where δ is the electromagnetic skin depth introduced in the previous chapter.
The oscillating function exp (iαz) in Equation (9.26) is governed by the real part of a
complex k, i.e. Equation (9.24), rather than the real constant k ¼ ω√με as in the lossless
case. The general form of the electric field E can be written as

Eðz, tÞ ¼ E0expð�βzÞexpðiαz� iω tÞ: ð9:27Þ
In the lossless case, it follows directly from the Maxwell equations that the electric and
magnetic fields are linked by the equation B ¼ ðk=ωÞ ẑ � E. Thus, E, B, and ẑ form a
mutually orthogonal triad. In the lossy case, the (E, B, ẑ) vectors remain mutually orthog-
onal. However, since k is complex, the (E, B) vectors are no longer in phase with each
other, as indicated by the sketch in Figure 9.21b. It is straightforward to demonstrate that
the phase difference between E and B is Ω where

(a) (b)propagation
direction E field

B field
B field

E field

Figure 9.21 Electromagnetic plane-wave propagation: (a) lossless case; (b) lossy case.
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tanΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

q
� Q, ð9:28Þ

with Q ¼ ωε/σ. The appearance of a phase difference between E and B is a consequence of
the non-zero conductivity of the medium.

9.9 Plane-wave reflection from an interface

The electric or magnetic field at a point in space and time has both a magnitude and a
direction and is thus a vector. However, the vectorial nature of electromagnetic waves is
sometimes ignored by GPR practitioners. Polarization describes the orientation and mag-
nitude of the field vector as the wave propagates and interacts with heterogeneities and
buried targets. The polarization characteristics of GPR are useful for defining buried-target
properties such as size, shape, orientation, and composition.

Suppose the E-field vector is always directed along a certain straight line. In that case,
the E field is said to be linearly polarized. If the tip of the E-field vector instead sweeps out
a circle as it propagates, it is circularly polarized. In the general case, the E-field vector is
elliptically polarized. As described above, the electric E and magnetic B fields are mutually
orthogonal to each other and to the direction of wave propagation. Let the direction of
propagation be denoted again by ẑ, in which case the electric field can be decomposed into
two components

Exðz, tÞ ¼ Ex0expð�βzÞcosðω t � αz� φX Þ; ð9:29aÞ
Eyðz, tÞ ¼ Ey0expð�βzÞcosðω t � αz� φY Þ: ð9:29bÞ

The quantities Ex0 and Ey0 are the amplitudes of, respectively, the x and y components of the
electric-field vector. Consider now a plane electromagnetic wave propagating in a general
direction p̂ in a lossless, non-magnetic medium 1 characterized by dielectric constant ε1.
The wave is obliquely incident, with some incidence angle θi, onto a planar interface
beneath which the medium 2 is characterized by a different dielectric constant ε2, as shown
in Figure 9.22. The problem is to determine the reflection and refraction coefficients.

The electromagnetic wave is said to be horizontally polarized if, as shown in Figure
9.22, the electric-field vector E points in the horizontal direction, i.e. the vector E lies in a
plane that is perpendicular to the vertical plane of incidence. This is also known as the TE
(transverse electric) mode of wave propagation. The magnetic-field vector H then lies in
the vertical plane of incidence, as shown, and is orthogonal to the electric-field vector and
the direction of propagation p̂. According to Figure 9.22, we have p̂ ¼ sinθi x̂ þ cosθi ẑ.

The interaction of the incident plane wave with the interface is governed by the
fundamental electromagnetic boundary conditions (continuity of the tangential compon-
ents of the electric and magnetic fields) as well as Snell’s law of refraction

sinθi
sinθt

¼
ffiffiffiffi
ε2
ε1

r
, ð9:30Þ
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and the law of reflection, θi¼ θr. The angle of transmission is θt and the angle of reflection is θr.
The lossless TE-mode electromagnetic plane wave propagating in the p̂ direction is

described by an electric-field vector (of unit amplitude, for convenience)

Eieexpðik1 p̂	 r̂Þ ŷ ¼ expðik1½pxxþ pzz�Þ ŷ ¼ expðik1½xsinθi þ zcosθi�Þ ŷ; ð9:31Þ
where we have made use in the last expression of the geometric identities cos θi ¼ pz/|p|
and sin θi ¼ px/|p|, and k1 ¼ ω

ffiffiffiffiffiffiffiffiffi
μ0ε1

p
is the characteristic wavenumber of medium 1.

The total electric-field E1 in medium 1 is the sum of the incident field Ei and a reflected
field Er which propagates as a plane wave, according to the law of reflection, in the
direction q̂ ¼ sinθi x̂ � cosθi ẑ. A reflection coefficient R is defined as the ratio of the
amplitudes of the reflected and the incident electric fields, R ¼ |Er|/|Ei|. We have

E1 ¼ Ei þ Er ¼ expðik1½xsinθi þ zcosθi�Þ ŷ þ RTEexpðik1½xsinθi � zcosθi�Þ ŷ ð9:32Þ
where the subscript TE on the reflection coefficient reflects the case of a horizontally
polarized incident plane wave. Similarly, we can write the electric-field vector E2 in
medium 2 as a transmitted wave

E2 ¼ Et ¼ TTEexpðik2½xsinθt þ zcosθt�Þ ŷ ð9:33Þ
with transmission coefficient generally defined by T ¼ |Et|/|Ei|. It remains now to find the
unknown TE-mode reflection and transmission coefficients (RTE, TTE) via application at the
interface z ¼ 0 of the fundamental electromagnetic boundary conditions.

Enforcing the continuity of the electric field, which is tangential to the interface since E
is oriented in the ŷ direction, gives

E1jz¼0 ¼ E2jz¼0; ð9:34aÞ
expðik1xsinθiÞ þ RTEexpðik1xsinθiÞ ¼ TTEexpðik2xsinθtÞ:
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Figure 9.22 A horizontally polarized (TE-mode) plane electromagnetic wave obliquely incident upon a planar interface
separating two lossless dielectric media.
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The latter equation must hold for all x along the interface, including x ¼ 0. In that case,

1þ RTE ¼ TTE, ð9:35Þ
which provides the first constraint on the reflection and transmission coefficients. We now
enforce continuity of the tangential magnetic-field component, Hx. An expression for Hx in
terms of the electric field is obtained from Equations (9.8) and (9.10), keeping in mind the
symmetry E ¼ Eyðx, zÞ ŷ,

∂Ey

∂z
¼ iμωHx: ð9:36Þ

Thus, continuity of Hx at the interface z ¼ 0 is equivalent to

∂E1

∂z
jz¼0 ¼

∂E2

∂z
jz¼0: ð9:37Þ

Inserting Equation (9.37) into Equations (9.32) and (9.33) yields the second constraint on
the unknown set of coefficients RTE and TTE,

k1cosθið1� RTEÞ ¼ k2cosθtTTE: ð9:38Þ
Solving Equations (9.35) and (9.38) for the reflection coefficient RTE yields the final result

RTE ¼
ffiffiffiffi
ε1

p
cosθi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � ε1sin

2θi
p

ffiffiffiffi
ε1

p
cosθi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � ε1sin

2θi
p : ð9:39Þ

For the special case of normal incidence, θi ¼ 0, this expression reduces to a familiar form

RTE ¼
ffiffiffiffi
ε1

p � ffiffiffiffi
ε2

pffiffiffiffi
ε1

p þ ffiffiffiffi
ε2

p , ð9:40Þ

which is the result earlier quoted in Equation (9.3).
The case of vertically polarized, or TM- (transverse magnetic-) mode wave propagation

is characterized by an electric-field vector E lying in a plane that is parallel to the vertical
plane of incidence. The TM-mode reflection coefficient is, by a similar analysis,

RTM ¼ κcosθi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ � sin2θi

p
κcosθi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ � sin2θi

p , ð9:41Þ

where κ¼ ε2/ε1. A graph of the reflection-coefficient amplitudes |RTE| and |RTM| as function
of the incident angle θi, is given in Figure 9.23, for different values of the underlying
dielectric ε2. Equations (9.39) and (9.41) are known as the Fresnel equations.

Note that both amplitudes |RTE| and |RTM| approach 1.0, corresponding to total reflection,
for grazing incident angles of θi!90�. Also, as expected, the reflection coefficients tend to
vanish as the interface contrast κ!1, that is, ε2!ε1 ¼ ε0. Finally, for the TM mode, it is
interesting to note that there exists a range of incident angles θi ~ 55–70� over which there
is no reflection.
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9.10 Analysis of thin beds

The detection of thin layers has long been of interest to explorationists engaged in seismic
imaging of stratified petroleum reservoirs. Near-surface applications such as landslide
hazard assessment or fractured-rock aquifer characterization also require imaging of thin
subsurface rock layers as these sometimes define planes of slope instability or pathways for
subsurface contaminant transport. The classic theoretical work on thin-bed analysis in
seismology was performed by Widess (1973) who concluded that a bed as thin as λ/8 can
be resolved, where λ is the dominant wavelength of the probing seismic signal. A more
practical limit is suggested however by Rayleigh’s criterion of λ/4. Below this limit,
reflected signals from the interfaces at the top and bottom of the bed merge together and
cannot be separated. Zeng (2009) recently showed that the practical resolution limit is
affected by the shape of the source wavelet. Better resolution can be achieved with an
asymmetric wavelet compared to a symmetric one.

Resolving a thin layer in GPR is more challenging than its seismic counterpart. The
practical resolution limit is only ~ 3λ/4 (Bradford and Deeds, 2006). The reduced capability
of GPR to resolve thin layers owes mainly to the highly dispersive nature of the geological
medium in which electromagnetic waves propagate. In a dispersive medium, a propagating
wavelet rapidly becomes distorted and experiences large phase shifts upon reflection and
transmission at material interfaces (Hollender and Tillard, 1998). Thus, it becomes difficult
to recognize distinct returns from the top and bottom of a thin bed that have the same or
similar shape as the transmitted wavelet. Detailed modeling of electromagnetic wave
propagation in dispersive, heterogeneous geomaterials is normally required to determine
whether a bed of a given thickness and material type can be resolved.

An important problem in GPR thin-bed analysis is to determine the bed reflectivity, since
that can provide important information about the composition of the fill material. For
example, the thin bed could be a fracture that contains a hazardous liquid contaminant.
Consider the electromagnetic wave incident on a bed of thickness d and permittivity ε2,
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Figure 9.23 Reflection-coefficient amplitude for (a) TE-mode and (b) TM-mode plane waves as a function of incidence angle,
with ε1 ¼ ε0.
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shown in Figure 9.24. The angles of incidence θi, reflection θr, and transmission θt obey
Snell’s law, Equation (9.30). The background medium has permittivity ε1. The reflection
and transmission coefficients depend on the polarization of the incident wave, as described
in the previous section. Deparis and Garambois (2009) derive the following formula for the
reflectivity of the thin layer,

RðωÞ ¼ R12ðωÞ 1� exp½�iφðωÞ�
1� R2

12ðωÞexp½�iφðωÞ�
, ð9:42Þ

in which φ(ω) ¼ 2dk2(ω)cos θi, and R12(ω) is either the TE- or TM-mode reflection
coefficient (Equation (9.39) or (9.41)), depending on the polarization of the incident wave.

It is easy to see that R(ω) given in Equation (9.42) reduces to its appropriate values for
the limiting cases of a bed of zero thickness, and a bed of infinite thickness. Indeed, as
d!0 it follows that R!0, which is the value that would be expected if the bed were absent.
Also, as d!∞ one obtains R!R12, which is the correct form for a lower halfspace of
dielectric permittivity ε2.

While the theoretical expression for thin-bed reflectivity (Equation (9.42)) is quite simple,
a number of idealizations were used in its derivation. Practically speaking, it is a difficult task
to estimate reflectivity from measured amplitudes of GPR reflections (Bradford and Deeds,
2006; Deparis and Garambois, 2009). Factors that were not taken into account in the
development of Equation (9.42) include: the shape of the source wavelet; the TX and RX
radiation patterns; the coupling of the antennas to the ground; and scattering and reflection
losses along the wave-propagation path. Despite these difficulties, Bradford and Deeds
(2006) successfully analyzed GPR reflectivity variations with TX–RX offset, using a
methodology similar to seismic amplitude versus offset (AVO) analysis (Castagna, 1993).

9.11 GPR antennas

Proper interpretation of GPR images can be modestly enhanced with a rudimentary
understanding of the theory of antennas. An antenna, for our purposes, is a radiating
current element whose dimensions are comparable to an electromagnetic wavelength. The
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Figure 9.24 GPR reflection and transmission associated with a thin bed.
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electric-current distribution, which is established by connecting the antenna to a power
supply, is not uniform over the length of an antenna. Following Wangsness (1986), we
consider the electromagnetic field radiated by a simple antenna consisting of a straight wire
of length 2l oriented in free space in the ẑ-direction. It is of interest to determine the
electric field E(r, θ) at some point in the far field, or radiation zone, defined by kr >> 1,
where k ¼ ω

ffiffiffiffiffiffiffiffiffi
μ0ε0

p ¼ ω=c is the characteristic wavenumber of free space.
An oscillating electric dipole is equivalent to a current element so it is natural to

visualize the long, straight antenna as an assemblage of current elements I 0ðz0Þdz0. We
use an unprimed coordinate system to describe the position of an observation point P and a
primed coordinate system to describe the position of a source point z0, such as the one
occupied by the current element I0dz0 indicated in Figure 9.25. Each such current element
I 0ðz0Þdz0 generates an electric field dE, with the total electric field E being the superposition
of the contributions from each of the constituent current elements.

The electric field dE of an oscillating infinitesimal dipole is well known and is of the
form

dE ¼ � iωμ0I
0ðz0Þdz0

4πr0
sinθ0expðikr0 � iωtÞθ̂ 0 ð9:43Þ

where

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z02� 2rz0cosθ

p
, ð9:44Þ

and θ̂
0
is the unit vector perpendicular to r̂0. The total electric field E of the long straight

antenna is readily obtained by integrating Equation (9.43) over the length of the antenna.
In the radiation zone we have r >> λ, where λ ¼ 2π/k ¼ 2πc/ω is the electromagnetic

wavelength in free space. Let us also assume that we are interested in computing E at a
distant point P such that r >> 2l. In that case, for any element z0 of the antenna, the
relationship jz0j 
 r holds. In that case, Equation (9.44) reduces to
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Figure 9.25 Calculation of the electric field of a long-straight-wire antenna carrying an oscillating electric current. After
Wangsness (1986)
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r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rz0cosθ

p
� r � z0cosθ, ð9:45Þ

where use has been made of the binomial approximation
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p eð1þ x=2Þ for x << 1.
We can also use the approximation that 1=re1=r0 for distant P, although we cannot likewise
assume that exp(ikr/) ~ exp(ikr). We also use the approximation for distant P that the polar
unit vectors are parallel, θ̂

0
¼ θ̂. Putting all this together results in

E ¼ � iωμ0
4πr

sinθexpðikr � iωtÞθ̂
ðþl
�l

expð�ikz0cosθÞI 0ðz0Þdz0: ð9:46Þ

This is the general expression for the electric field E in the radiation zone for a straight
antenna of length 2l carrying an arbitrary electric current distribution I 0ðz0Þ. The simplest
GPR antenna is a half-wave antenna in which the length of the antenna is equal to one-half
of the electromagnetic wavelength, that is, l ¼ λ/4. The simplest electric current distribu-
tion for a half-wave antenna is the fundamental mode

I 0ðz0Þ ¼ I0coskz
0, ð9:47Þ

in which the current vanishes at the ends of the antenna and is maximum at the center,
z0 ¼ 0, where it is equal toI 0ðz0Þ ¼ jI0j. The electric-current distribution given by Equation
(9.47) vanishes at the ends of a half-wave antenna.

The electric field E for a half-wave antenna is now readily found by inserting the
electric-current distribution, Equation (9.47), into the general expression, Equation
(9.46). It is straightforward to integrate Equation (9.46) and hence to show that the electric
field E radiated by a half-wave antenna, in the radiation zone, is given by

E ¼ � icμ0I0
2πrsinθ

cos
π
2
cosθ

� �
expðikr � iωtÞθ̂, ð9:48Þ

and that the electric field vanishes at all points P that are aligned with the antenna, i.e. at
θ ¼ 0 and θ ¼ π. The radiation-zone electric field E pattern in free space looks very similar
to the electric field of an infinitesimal dipole.

The electric-field distribution produced by a straight-wire antenna is affected substan-
tially by the presence of the dielectric Earth. Consider an infinitesimal electric-dipole
antenna lying on an air–soil interface in which the underlying medium is characterized
by a permittivity ε1¼ 4ε0 and conductivity σ1 ~ 0, which is appropriate for a dry sandy soil.
Suppose the horizontal electric dipole (HED) source is located in the plane of the page and
directed to the right, as shown in Figure 9.26, left. The radiated electromagnetic field from
this source has been computed using the finite-difference time-domain (FDTD) simulation
code of Sassen (2009). The computations reveal that spherical waves propagate radially
outward from the source into both the air and the soil. The electromagnetic wave velocities
v ¼ 1=

ffiffiffiffiffi
με

p
of the two media are different, hence the appearance of boundary waves to

ensure continuity of tangential electric and magnetic fields across the interface. The
boundary waves include a head wave propagating in the soil and an evanescent wave
traveling in the air. The evanescent wave travels at the velocity of a ground wave and its
amplitude decays exponentially with height above the interface. The head wave is the
electromagnetic equivalent of a seismic critically refracted wave.
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In Figure 9.26, right, the double-halfspace model is supplemented by a small air-filled
cavity located in the ground. In this simulation, a reflected wave appears to be propagating
back towards the GPR antenna and then upward into the air. The interaction of the primary
double-halfspace field with the cavity also generates a complex pattern of refracted and
diffracted body waves in the lower medium, as shown.

9.12 GPR radiation patterns

The previous section has demonstrated numerical solutions for GPR wave propagation in a
heterogeneous lossless dielectric medium using the FDTD method. An analytic solution
exists for the electromagnetic field radiated by a horizontal electric dipole lying on the
interface between two semi-uniform dielectric media characterized by ε0 (above) and ε1
(below); it is given in the classic paper by Engheta et al. (1982).

The TE- and TM-mode radiation patterns of such a transmitter located on the surface of
a ground with dielectric constant ε1 ¼ 3.2ε0 are shown in Figure 9.27, top panel. The TE-
mode pattern is the one that is generated when the dipole antenna is directed out of the
page. The TM-mode pattern is generated when the dipole antenna lies within the plane of
the page. The radiation patterns show, on an imagined vertical plane placed in the far-field
in front of the page, how the electric-field strength changes as a function of direction
relative to the antenna. The far-field is defined as any distance from the antenna for which
r� maxðl, λÞ, where l is the length of the dipole and λ is the radar wavelength. The radial
axis on the polar plot is a logarithmic measure of relative field strength, relative to the field

head wave head wave

body wave body wave cavity

reflection

air wave air wave

air, εr=1 air

earth, εr=4 earth

HED HED

evanescent
wave

Figure 9.26 (Left) Snapshot of electric fields at t ¼ 9 ns into a dielectric halfspace, shown in the vertical plane of the horizontal
electric dipole (HED) source (300-MHz Ricker wavelet). (Right) Reflected and diffracted waves due to a 0.3-m3

buried cavity. Plot dimensions: 2 m � 2 m. After Sassen (2009).
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strength at some reference point. For the present discussion, it suffices to note that the
higher the field strength in a given direction, the further the radiation pattern extends
toward the outer radius of the polar plot in that direction.

Both patterns show that electromagnetic energy is directed preferentially into the
ground. Some of the energy, however, is directed uselessly into the air, adding unwanted
noise to the GPR measurements. The leakage of signal into the air in some cases can be
partially overcome (Annan, 2009) by carefully designing a proper shield to cover the
antenna. The TE pattern shows that the greatest depth of signal penetration occurs at
azimuths ~ 235� and ~ 305�. The TM pattern exhibits three subsurface lobes, along with
two subsurface nulls located at ~ 240� and ~ 300�. The illumination of a buried target by
the antenna is efficient if the target is located inside a lobe but inefficient if it is located
inside a null region.
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Figure 9.27 (a) Far-field TE- (top left) and TM- (top right) mode antenna directivity; (bottom) TE-mode antenna directivity as a
function of ground permittivity. After Annan (2009).
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The TE-mode radiation patterns that develop as the dielectric constant of the ground is
varied between ε1 ¼ 3.2ε0 – 81ε0 is shown in Figure 9.27, bottom. It can be seen that
electromagnetic energy spreads out laterally and vertically from the antenna as the ground
dielectric constant decreases. This implies that the antenna scans a wider subsurface area in
front of it when the ground dielectric constant is low. In other words, the antenna generally
has a larger footprint in dry ground versus wet ground.

Avisualization of the three-dimensional radiation pattern from an infinitesimal electric dipole
located on a homogeneous dielectric, non-conducting subsurface is shown in Figure 9.28.
A semi-analytic technique developed by van der Kruk (2001) was used for the calculation. The
dipole in this case is oriented in the x̂ direction while the quantity plotted is the strength of the ŷ
component of the electric-field vector E at a fixed distance 5.0 m (3.1 wavelengths) from the
antenna, i.e. in the far-field. The projection of the 3-D pattern onto the “E-plane” would
correspond to a TM-mode radiation pattern like the one shown in the previous figure, while a
similar projection onto the “H-plane” corresponds to a TE-mode radiation pattern.

9.13 Target polarization

It is of interest to explore the interaction of a transmitted electromagnetic field with a compact
subsurface target. The response of a cylinder is discussed here since elongated objects such as
buried pipelines are commonly found in environmental and engineering geophysical surveys.
Pipes scatter energy into preferential directions depending on the incident radar wave polar-
ization relative to the orientation of the pipe. It is required that enough energy scatters from the
target to reach the surface and permit a measurement by the receiver antenna (Radzevicius and
Daniels, 2000). Preferential scattering may result in depolarization of the incident E-field, in
which the scattered field has a different direction of polarization than the incident field.

To describe electromagnetic scattering from cylinders, it is intructive to consider the
following two situations. The first is a TM-mode excitation in which the incident E-field

E-plane H-plane

|Ey|

z
xy

80 MHz
ε1=5.3ε0
d=3.1λ

Figure 9.28 Example of a 3-D GPR radiation pattern. After Streich (2007).
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aligned with the long axis of the cylinder. The second is a TE-mode excitation in which the
incident E-field is perpendicular to the long axis of the cylinder. As shown in Figure 9.29a,
a TM-mode GPR survey is attained in practice when TX and RX dipole antennas are both
aligned parallel to the long axis of the cylinder. A TE-mode survey configuration (Figure
9.29b) is attained when both are orthogonal to the long axis. In each case, the survey
direction is orthogonal to the long axis.

To detect the pipe at the receiver antenna, the incident field must couple strongly with
the cylinder and cause it to act as an efficient secondary radiator. The resulting scattered
field must then contain a significant component that is in alignment with the RX dipole
axis, since a RX dipole preferentially responds to that component. Consider first the TM-
mode survey configuration. The field that radiates from the TX dipole is polarized mainly
in the direction of the dipole axis. The incident field then propagates into the subsurface,
with its polarization direction parallel to the long axis of the cylinder. There should follow
a strong coupling with the target, since the incident electric field is mainly tangential to the
long axis and this component is required by fundamental boundary conditions to be
continuous across material interfaces. Since the incident field and the long axis of the
target are aligned, there is almost no depolarization. Hence, the cylinder radiates a
substantial scattered electric field that is polarized mainly in the same direction as the
incident field. Accordingly, as shown in Figure 9.29c, a strong GPR signal is recorded by
the RX dipole.
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Figure 9.29 GPR survey configurations: (a) TM mode; (b) TE mode. GPR field data (200 MHz) of a pipe buried at 1.5-m depth
in a silty sand soil showing the effect of TX and RX orientation relative to target, (c) TM mode; (d) TE mode.
After Sassen and Everett (2005).
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Now consider the TE-mode survey configuration. Here, the TX dipole axis is oriented in
a direction orthogonal to the long axis of the cylinder. The incident field, since it is
polarized in alignment with the TX dipole axis, should not couple strongly to the target
since the tangential component of the field is very small. The cylinder in this case does not
act as an efficient secondary radiator. Nevertheless, since induced currents flow most
readily along the long axis of the cylinder, any scattered field that does emerge from the
cylinder is likely to be polarized mainly along-axis. However, the RX dipole is oriented
such that it most efficiently responds to scattered fields that are polarized across-axis.
Accordingly, as shown in Figure 9.29d, the cylinder is not detected by the TE-mode
experiment.

The foregoing conclusion applies to the GPR detection of both metallic pipes and high-
dielectric plastic pipes for which the permittivity of the pipe exceeds that of the host soil.
However, for low-dielectric plastic pipes embedded in a high-dielectric medium, such as an
air-filled PVC pipe in wet sand, a full mathematical analysis of the scattering of cylindrical
electromagnetic waves indicates that the GPR signature of the pipe is actually stronger in a
TE-mode experiment. The reader is referred to Radzevicius and Daniels (2000) for further
details.

Since the capability of a GPR experiment to image a buried elongated cylinder
depends on the orientation of the TX and RX dipoles relative to the long axis of the
target, it is advisable if time and resources permit to acquire data in both the TE- and
TM-mode configurations. A third configuration, crossed-dipoles, in which the TX and
RX dipole axes are perpendicular, can also be used profitably to image depolarizing
subsurface targets. In fact, Sassen and Everett (2009) describe a polarimetric GPR
technique for imaging subsurface fractures of unknown orientation. In this technique,
data from all three configurations (TE, TM, and crossed-dipoles) are acquired over a 2-D
survey grid and, at each measurement point, they are assembled into a 2� 2 scattering
matrix. The scattering matrix is then rotated to determine which TX–RX dipole alignment
would have generated the strongest coupling to the target. The rotation angle determines
the strike of the target while the largest eigenvalue of the scattering matrix provides the
strength of the coupling.

9.14 GPR guided waves

Near-surface guided waves can be established using ground-penetrating radar if the ground
contains a low-velocity layer whose thickness is comparable to an electromagnetic wave-
length (Strobbia and Cassiani, 2007; van der Kruk et al., 2009). The analysis of guided
waves in such layers can reveal information about soil moisture conditions or the presence
of contaminants. In a typical situation, a wet soil layer resides beneath the high-velocity air
layer (v ¼ c ¼ 0.3 m/ns) and above an impermeable bedrock. A soil layer in the vadose
zone, by virtue of its high water content, generally has a low velocity. Other situations in
which guided waves might be set up include a permafrost layer or a wet-soil horizon
overlying dry sand or gravel.
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In guided-wave energization, a significant fraction of the transmitted signal from the
GPR antenna propagates horizontally at low attenuation within the low-velocity layer.
Guided waves are dispersive, that is, the propagation velocity is a function of frequency.
Low-frequency components appear to propagate faster than higher-frequency components
with the result that the transmitted pulse broadens and becomes distorted with increasing
source–receiver separation. Guided waves can dominate GPR reflections and refractions
and hence complicate the interpretation of data acquired in the WARR, or variable-offset,
mode.

Consider a simple planar waveguide formed by a low-velocity layer v1 ¼ c/√ε1 of
thickness h, surrounded by two higher-velocity layers v0 ¼ c/√ε0 and v2 ¼ c/√ε2. For
convenience, the GPR antennas are assumed to be oriented as shown in Figure 9.30, such
that the TE mode is energized. A TM-mode waveguiding effect is also possible but not
discussed here.

As shown in the figure, a wave incident on the lower (v1, v2) interface at an angle θ
greater than the Snell critical angle is totally reflected so that jRTE

12 j ¼ 1. Similar remarks
apply to a wave incident on the upper (v0, v1) interface, such that jRTE

10 j ¼ 1. The total
internal reflection of this wave is a characteristic feature of ideal waveguiding. Outside the
layer in this case, there are only evanescent waves that do not radiate significant energy
into the underlying layer (say, bedrock) or overlying layer (say, air). Inside the layer, the
total internal reflection implies a greatly reduced attenuation of the horizontally propagat-
ing wave. Less efficient, or leaky, waveguides can be formed when the reflection coeffi-
cients at the top and bottom are less than unity.

It is shown in Appendix E that a waveguide can support waves propagating in the ŷ
direction of the form Ex ~ exp[i(kyy – ωt)]. The quantity ky is the wavenumber in the
direction of the wave propagation. However, only certain modes, or waves with certain
combinations (ky, ω) of frequencies and wavenumbers, can propagate within the wave-
guide. In particular, from Appendix E, the waveguide modes must satisfy the non-linear
constraint equations

α1h ¼ tan�1
α2
α1

� �
þ tan�1

α0
α1

� �
þ mπ; m ¼ 0, 2, 4,… ðevenÞ ð9:49Þ

where αi ¼ μ0εiω
2 � k2y .
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Figure 9.30 TE-mode excitation of a low-velocity GPR waveguide. After van der Kruk et al. (2009).
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The value m ¼ 0 corresponds to the first waveguide mode, the value m ¼ 2 represents
the first higher mode; m ¼ 4 is the second higher mode, and so forth. For each mode
m, Equation (9.49) can be viewed as an implicit equation f(ky, ω) ¼ 0 in the two
variables ky and ω, assuming a waveguide of fixed thickness h and dielectric constants
ε0, ε1, ε2. In other words, Equation (9.49) represents, for each mode m, a non-linear
constraint on the horizontal wavenumber and frequency. For a given frequency ω, the
allowed wavenumbers ky are those that make f(ky, ω) vanish. In this way, a dispersion
relation ky(ω) is constructed. Define the waveguide phase velocity to be v(ω) ¼ ω/ky(ω).
The phase velocity is a measure of the apparent velocity, within the waveguide, of signals
of a given frequency.

An example of the waveguiding effect with h ¼ 1.0 m is shown in Figure 9.31, left.
Notice that the waveguide signal propagation velocity varies between that of the bedrock
(in this case v2 ¼ 0.15 m/ns), at low frequency, to that of the soil (v1 ¼ 0.1 m/ns) at higher
frequencies. The fundamental (m ¼ 0) mode carries most of the guided energy. Notice that
the higher waveguide modes exist only above a certain cut-off frequency that depends on
m. The dispersive nature of guided waves, that is v ¼ v(ω), implies that the radar signals
spread out with increasing distance traveled along the waveguide; the behavior known as
shingling is shown in Figure 9.31, right, and it is an effect that is often seen in practical
radargrams. Notice that the individual waveguide modes are not easy to identify in the
radar image.

Further insight into GPR guided-wave behavior is provided by van der Kruk et al.
(2009) using the FDTD forward-modeling approach. In Figure 9.32 snapshots are
shown of the electric field Ex(y, z) due to transient pulse excitation of a surface
waveguide structure. The snapshots reveal trapped electromagnetic energy inside the
waveguide and two TE modes can be identified. A leading TE0 mode has a single-peak
amplitude over the vertical range of the waveguide, while a trailing TE1 mode has a more
complicated bimodal signature with alternating positive (red) and negative (blue) peak
amplitudes.
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Figure 9.31 (Left) Fundamental mode and first five higher modes in a simple asymmetric waveguide. (Right) Radargram with
strongly dispersive guided waves. After Strobbia and Cassiani (2007).
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9.15 GPR illustrative case histories

Example. Coastal sedimentology.

Ground-penetrating radar has been widely used in sedimentology (Neal, 2004), a discipline
that has long relied on seismic sequence stratigraphy as the primary interpretive tool. GPR
interpretation is based on identifying radar surfaces and radar facies contained within the
sections, combined with ground truth obtained from traditional geological information
such as aerial photographs, outcrops, cores, and trenches. The basic assumption underlying
a successful GPR interpretation is that bedding structures which cause reflections can be
recognized in radar sections and that non-geological reflections are readily identified and
either ignored or removed via data processing. As in the seismic techniques, the knowledge
and experience of the GPR interpreter remains key to making accurate and reliable
sedimentological inferences. There are many potential pitfalls in the data-acquisition,
processing, and interpretation stages of both techniques.

In a recent sedimentological application, GPR was used successfully on the Florida Gulf
Coast barrier islands to characterize the depth and lateral extents of erosional surfaces and
washover deposits associated with hurricane landfalls (Wang and Horwitz, 2007). The
interpreted water table is shown in Figure 9.33, as is the base upon which the 2004
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Figure 9.32 Simulations of the electric field Ex within a surface waveguide structure at times (a) t ¼ 50 ns and (b) t ¼ 100 ns
after a pulse is transmitted from the transmitter (TX). The lowest two TE waveguide modes are identified. After van
der Kruk et al. (2009).
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3 ¼ void space; data courtesy Mary Jo Richardson and Wilf Gardner.
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Hurricane Ivan washover was deposited. The GPR data proved in this case to be useful in
characterizing coastal geomorphological alterations and shoreline-shaping processes that
accompany large storms.

Example. Voids beneath reinforced concrete.

In 2006, a residential garage in central Texas built on expansive clay soil shifted ~ 3.8 cm
during an extended dry period. A foundation engineer tried to stabilize the garage floor
by raising it, installing piers around its perimeter, and injecting grout into the newly
created void spaces. Months later, rainfall was observed to infiltrate beneath the raised
concrete floor suggesting that the void spaces had not been adequately filled. Further
shifting of ~ 2.0 cm occurred over the next three years. A 1.0 GHz GPR survey of the floor
with ~ 15-cm station and ~ 15-cm line spacing was then conducted with an objective to
determine the extent of the voids. The resulting series of depth slices shown in Figure 9.34
clearly reveals the rebar grid, the original concrete support beams, a support pier installed by
the engineer, in addition to a number of putative void spaces. The latter were subsequently
confirmed by drilling. The identified void spaces were then filled with pressurized grout in a
second attempt at stabilizing the garage floor. This successful case history demonstrates how
GPR data were used to guide a small-scale geotechnical remediation project.

Problems

1. Show that electric field E and the magnetic field B for lossless plane-wave propagation
are linked by B ¼ ðk=ωÞ ẑ � E and hence the three vectors E, B, and ẑ (the direction of
propagation) are mutually orthogonal.

2. Show that the real and imaginary parts of the complex wavenumber
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2μεþ iωμσ

p
are given by Equations (9.24) and (9.25).

3. Show that the phase difference between the electric field E and the magnetic field B isΩ
where tanΩ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p
� Q, and Q¼ ωε/σ. Does E lead or lag B when the plane wave

is viewed as a function of position, for a fixed instant of time? What about the case
when the plane wave is viewed as a function of position?

4. Consider a vertically polarized (TM-mode) plane wave obliquely incident on the planar
interface separating two lossless dielectric media. The electric-field vector E is parallel
to the plane of incidence and orthogonal to the propagation direction p̂. The magnetic-
field vector H is perpendicular to the plane of incidence and parallel to the interface.
Show that the reflection coefficient in this case is given by
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