Spinal Movements continued....

Dr. Asif Islam P7, SMC, U05.

Zero position

All joint range of motion measurements are taken from the zero starting position, if possible.

The range of motion is measured with a goniometer on both sides of zero.

For example, a movement of thirty degrees flexion and ten degrees extension is written:

flexion/extension 30-0-10.

Close-packed position

- The close-packed position is characterized by the following criteria:
- » The joint capsule and ligaments are tight or maximally tensed.
- » There is maximal contact between the concave and convex articular surfaces.
- For example, the shoulder is close-packed
 - when it is positioned in maximal extension and external rotation.
- » Articular surface gliding is maximally reduced and only slight separation with traction forces is possible.
 - Joint play testing and mobilization is difficult to perform at or near the close-packed position.

Joint locking

- Spinal mobilization techniques are most effective and safe when movement is focused ("localized") within the spinal segments to be treated while adjacent segments remain stable ("locked" in a close-packed position) and restrained from following the movement.
- Spinal locking maneuvers are usually used either cranial or caudal to the treated segment.

- The manual therapist locks a spinal segment by placing it in a movement pattern that constrains its movement.
- <u>Noncoupled</u> movement patterns provide the most effective spinal locking (stabilization).
- If a neighboring joint segment is hypermobile or symptomatic with movement into the mobilizing direction (e.g., facet syndromes) it may be necessary to *manually stabilize* these segments opposite to the intended mobilization force.

Bone and joint movement

- Bone movements produce associated joint movements.
- The relationship between a bone movement
 - *(osteokinematics)* and its associated joint movements *(arthrokinematics)* forms the basis for many orthopedic manual therapy (OMT) evaluation and treatment techniques.

- Two types of bone movements are important in our OMT system:
- **Rotations**: <u>curved (angular) movement around an axis</u>
- Translations: <u>linear (straight-lined) movement parallel to an axis in one</u> <u>plane.</u>
- Rotations of bone produce the joint movement of roll-gliding.
- Translations of bone result in the linear joint play movements of traction, compression, and gliding.

Bone movements

Rotatoric (curved) movement

- Standard (anatomical, uniaxial)
- Combined (functional, multiaxial)

Translatoric (linear) movement

- Longitudinal bone separation
- Longitudinal bone approximation
- Transverse (parallel) bone movement

Corresponding joint movements

Roll-gliding

Translatoric joint play

- Traction
- Compression
- Gliding

Standard bone movements

- Standard bone movements are bone rotations occurring around one axis (uniaxial) and in one plane.
- Standard movement is called "anatomical" movement when the movement axis and the movement plane are in anatomical (or cardinal) planes.

Anatomical bone movements beginning at the zero position

- are useful for describing and measuring test movements.
- <u>They provide a standardized method for communicating</u> <u>examination findings</u> that can be reproduced by other health care professionals.
- Anatomical movements of the vertebral bones in the three cardinal planes are described below.

Sagittal plane movements around a frontal axis

- » Flexion (forward or ventral flexion):
- The spinous process moves cranially.
- » Extension (backward or dorsal flexion):
- The spinous process moves caudally.

Frontal plane movements around a sagittal axis:

- » Sidebending (lateral flexion)
- With sidebending to the right, the right transverse process moves caudally and the left transverse process moves cranially.
- The opposite takes place with side bending to the left.

Transverse plane movements around a vertical (longitudinal) axis

Rotation:

- Right rotation is rotation in the clockwise direction viewed from the cranial direction; the spinous process moves to the left.
- The opposite takes place with rotation to the left.

Combined bone movements

- Bone movement that occurs simultaneously around more than one axis (multiaxial) and in more than one plane is called combined, or functional, movement.
- For example, the simultaneous flexion (frontal axis, sagittal plane) with sidebending (sagittal axis, frontal plane) and rotation (vertical axis, transverse plane) is a combined movement.

These movements do not occur purely in cardinal planes and around defined axes, but rather in oblique or diagonal directions.

Classification of Spinal Combined Movements

- We classify spinal combined movements as
- coupled or noncoupled
- according to the degree and nature of movement ease possible when flexion or extension, rotation, and sidebending are combined in various ways.
- Coupled movements:
- <u>have the greatest ease (greatest range, least resistance to</u> <u>movement, softest end-feel).</u>
- Noncoupled movements:

have less ease (less range, more resistance to movement, and a harder end-feel).

- Various combined movement patterns are used in OMT to specifically enhance or limit movement.
- For example,
- using coupled movements for combined spinal joint and soft tissue techniques allows for greater tissue excursion.
- <u>Using non-coupled movements for locking</u> <u>techniques</u> will restrain movement in adjacent vertebral segments.

Coupled movements

- Movement combinations that result in the most ease of movement (the greatest range of movement, least resistance and softest end-feel) are classified as coupled movements.
- coupled movement is easier to perform and is more automatic (non-voluntary) in behavior.
- Depending on whether the spine is in flexion or extension, side bending must be associated with a particular rotation to produce maximum movement ease.

- <u>The range of a coupled movement is greatest when all</u> <u>components</u> of the movement pattern occur <u>simultaneously.</u>
- If one component of movement occurs before the other movement components, the available range of movement in the remaining component directions is reduced.

Noncoupled movements

- Combined movements are classified as
- non coupled movements when they produce less movement ease (more restricted range of movement and a harder end-feel) than coupled movements and the relationship between rotation and sidebending is reversed.

Combined movement patterns in the spine

- Upper cervical spine (above C2):
- Coupling between sidebending and rotation usually occurs to opposite sides, regardless whether those vertebrae are in flexion or extension.
- Sidebending and rotation to the same side will usually produce a noncoupled movement.
- Cervical spine (below C2):
- Coupling between sidebending and rotation usually occurs to the same side, regardless whether those vertebrae are in flexion or extension.

Sidebending and rotation to opposite sides will usually produce a noncoupled movement.

In the thoracic and lumbar spine (from about T4 to L5),

- (from about T4 to L5),
 The positions of flexion and extension alter the coupled relationship between side bending and rotation.
- Thoracic spine in the resting position and in flexion (kyphosis):
- Coupling between sidebending and rotation usually occurs to the same side.
- Sidebending and rotation to opposite sides will usually produce a noncoupled movement.
- Thoracic spine in marked extension (flattened or lordosis):

Coupling between sidebending and rotation usually occurs to opposite sides. Sidebending and rotation to the same side will usually produce a non-coupled movement.

Lumbar spine

- Lumbar spine in the resting position and in extension (lordosis):
- Sidebending usually couples with rotation to opposite sides.
- Sidebending and rotation to the same side will usually produce a non-coupled movement.
- Lumbar spine in marked flexion (kyphosis):
- Sidebending usually couples with rotation to the same side.
- Sidebending and rotation to opposite sides will usually produce a noncoupled movement.