
6 Seismic reflection and refraction

The seismic-reflection and -refraction methods in near-surface geophysical investigations
are based on the introduction of mechanical energy into the subsurface using an active
source and the recording, typically using surface geophones, of the resulting mechanical
response. Passive-source seismic methods also provide important information; these will
be described in Chapter 7. The propagation of mechanical energy into the subsurface
consists, to a large part, of elastic waves. The essential property of an elastic body is that it
returns instantaneously to its original pre-deformed state with the removal of a mechanical
force that changed its size and/or shape. A delayed return to the original state is termed
viscoelasticity. Any permanent deformation, such as ductile deformation or brittle failure,
is a measure of the inelasticity of the body. Significant permanent deformation of the
ground surface can occur in the vicinity of large seismic disturbances such as earthquakes
(e.g. Lee and Shih, 2011) but inelasticity can be safely neglected in most near-surface
active-source or passive-source studies. An important characteristic of elasticity is the
relationship between the strain, or deformation, of a body and the stress, or mechanical
force, that produces the deformation of the body. An excellent review of the elementary
physics of wave motion is found in French (1971).

6.1 Introduction

There are several possible types of elastic wave motion following the introduction of a
seismic disturbance. The particle motion associated with compressional, or P-waves, is
aligned with the direction of wave propagation (Figure 6.1a). The particle motion associ-
ated with shear, or S-waves, is aligned in a direction perpendicular to the direction of wave
propagation (Figure 6.1b). Both vertically polarized (SV, as shown in the figure) and
horizontally polarized (SH) motions are possible. The P- and S-waves are known as body
waves since they are transmitted through the interior of the Earth. As shown by the shaded
cells in the figure, P-waves are associated with a change in size and aspect ratio of an
elementary material volume while S-waves are associated with a change in shape. With
surface Rayleigh, or R-waves, discussed more fully in the next chapter, the particle motion
near the surface is retrograde elliptical (Figure 6.1c, top) and only those particles in the
region close to the surface of the Earth, at depths comparable to the elastic wavelength, are
set into motion. A second type of surface wave motion (Figure 6.1c, bottom) is character-
ized by horizontal particle motion that oscillates transverse to the direction of wave
propagation. Such waves are termed Love waves.
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The following two case histories are presented to introduce the reader to recent applica-
tions of active-source seismology for imaging near-surface geological structures.

Example. High-resolution investigation for seismic hazard evaluation.

Reflection seismology offers a useful technique for seismic hazard assessment based on the
study of buried fault structures. For example, in the New Madrid zone of contemporary
seismicity within the northern Mississippi embayment of the central USA, neotectonic
features are oftentimes obscured by Quaternary sediments. An integrated seismic-reflection
analysis of P- and horizontally polarized SH-wave profiles was undertaken by Bexfield et al.
(2006) to identify potentially reactivated Paleozoic bedrock faults that underlie the Quater-
nary cover. It is important to evaluate the extent of faulting in this area since critical facilities
in this region such as dams, power plants, and bridges along the Ohio River are exposed to
the significant intraplate earthquake hazard within the New Madrid seismic zone.

The P- and SH-wave profiles provide complementary perspectives on the subsurface at this
location. The P-wave velocity responds strongly to the presence of water and the abundant
methane gas since these fluids both affect the bulk modulus k. The SH-wave velocity, with its
greater sensitivity to shear modulus μ, images primarily the solid rock or sediment compon-
ent. The bulk and shear moduli, and their effect on seismic-wave propagation, are discussed
later in this chapter. The SH-waves, despite a lower signal-to-noise ratio, yield higher spatial
resolution in the uppermost 100 m since their wavelength is 0.3–0.5 times those of P-waves.

P-wave motion S-wave motion

surface wave motions

(a) (b)

(c)

Figure 6.1 Particle motions associated with the propagation of seismic waves: (a) compressional; (b) shear (vertically
polarized, SV); (c) two types of surface waves. Direction of propagation in all cases is to the right.
After Grotzinger and Jordan (2010).
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The seismic profiles shown in Figure 6.2 were acquired in wetlands adjacent to the Ohio
River. Drilling in the region has indicated that depth to the Paleozoic bedrock is ~ 80–90 m
beneath fluvial sediments and the underlying Paleocene to Cretaceous clay layers. The
seismic P-wave section (Figure 6.2, bottom) reveals detailed images of bedrock faulting.
Prominent in the profile, for example, are breaks in the bedrock reflector that are inter-
preted as grabens filled with Cretaceous sediments. The SH-wave section (Figure 6.2, top)
does not clearly resolve to bedrock depths but does provide high-resolution images of near-
surface deformation, including fine-scale faulting in the overlying Quaternary–Tertiary
sediments. Many of the faults recognized in bedrock in the P-wave profile appear to
propagate upward into the Quaternary sediments and are observed in the SH-wave profile.

Example. Shear-wave imaging of sinkholes in an urban environment.

Sinkholes in urban areas overlying karst or salt-dominated geology constitute another type
of natural hazard. Human activities such as construction or groundwater utilization typic-
ally increase the potential for new sinkholes to develop or existing ones to re-activate.
Krawczyk et al. (2011) describe the development of a shear-wave seismic imaging system
that they have used to characterize active sinkholes in a built-up area of Hamburg,
Germany. Although the cause of the sinkholes is not yet fully understood, they may be
associated with dissolution of shallow salt and caprock structures. A major reason for
concern is that microearthquake activity recently observed nearby may be a precursor to
the imminent collapse of sinkholes.
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Figure 6.2 SH-wave (top) and P-wave (bottom) seismic profiles in the New Madrid zone of contemporary seismicity
revealing reactivated Paleozoic bedrock normal faults. After Bexfield et al. (2006).
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A 95-kg vibrator source swept through frequencies between 30 and 120 Hz was used to
generate the shear waves. Signals were recorded using a land streamer of 120 geophones
towed along a city street behind a vehicle (Figure 6.3, photo). The geophones were spaced 1
m apart and are preferentially sensitive to the detection of SH-polarized waves. The source
spacing of 2.0 m resulted in ~ 40–50-fold data coverage (see the discussion on common
midpoint profiling later in this chapter). The P-wave signals were largely suppressed by
taking differences of traces acquired with opposite shear-wave polarity. After data process-
ing, the migrated seismic section shown in Figure 6.3 was produced. The upper ~ 10 m of
the section is interpreted as construction in-fill material and sandy layers. The basin-shaped
seismic-reflecting horizon at 20–30 m depth observed within the Quaternary sedimentary
sequence may be indicative of a subsidence feature. A pattern of en-echelon normal faults
seen at ~ 55–80 m depths correlates with the known depth to the top of the salt/caprock
structure. This case study demonstrates how seismic shear-wave analysis can be used for
structural mapping in support of natural-hazard assessment in a noisy urban environment.

6.2 Stress and strain

An overview of the fundamental physics of elasticity is now presented. More complete, yet
still elementary, treatments are given in Telford et al. (1990) and Gudmundsson (2011)
while a more advanced approach may be found in Chapman (2004). The essential
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Figure 6.3 Shear-wave imaging of sinkholes in the city of Hamburg. After Krawczyk et al. (2011).
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quantities in elasticity theory are stress and strain. Suppose a mechanical force is applied to
an elastic body. Stress σ [Pa ¼ 1/Nm2] is defined as the ratio of the applied force [N] to the
area [m2] over which the force acts. A normal stress, or pressure, occurs when the applied
force is directed perpendicular to the area. The pressure is defined herein to be positive if the
normal stress is tensile and negative if it is compressive. A shear stress, on the other hand, is
directed tangential, or parallel, to the area over which it is applied. A arbitrary stress can be
resolved into its normal and shear components. The three stress components (σxx, σyx, σzx) in
the highlighted vertical plane perpendicular to the x-axis are shown in Figure 6.4. Note that
σxx is a normal stress (shown here as tensile) while σyx and σzx are shear stresses.

Suppose the elastic body is in static equilibrium, so that it is not undergoing active
deformation. In this case, the stresses must balance so that there is no net shear or pressure
on the body. Accordingly, the three stress components (σxx, σyx, σzx) on the opposing yz-
plane to the one highlighted in Figure 6.4 must be equal and opposite to the components
shown in the figure. It must also be noted that the tangential stress components, such as σyx
shown in the figure, exert a torque on the elastic body. An inspection of the figure indicates
that, in order for the body to be in static equilibrium, the torque due to σyx must be
counterbalanced by a stress component σxy of equal magnitude acting parallel to the x-axis
in the xz-plane so that σyx¼ σxy. In general, a condition for static equilibrium is a symmetric
stress tensor, σij ¼ σji, for i, j ¼ x, y, z.

The small changes in size and shape that occur in response to stress are called strains.
A simple rigid-body rotation through some angle θ or a rigid-body translation from one
location to another, without a change in size and shape, does not constitute a strain. Strain ε
is a dimensionless quantity defined as the fractional change in the size and shape of a body
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Figure 6.4 The three components of stress in a yz-plane perpendicular to the x-axis.
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subject to loading. Suppose P and Q are two different points inside or on the surface of an
elastic body. Let the vector uP be the displacement of point P and the vector uQ be the
displacement of point Q in response to an applied stress. The strain is non-zero if uP 6¼ uQ
for any pair (P, Q). Strain can also be decomposed into normal and shear components.

Let the three Cartesian components of the displacement vector be denoted as
u ¼ (u, v, w). The diagonal element εii of the strain tensor is the relative increase in length
along the i-axis, where i ¼ x, y, z, such that

εxx ¼ ∂u
∂x

; εyy ¼ ∂v
∂y

; εzz ¼ ∂w
∂z

: ð6:1Þ

The dilatation Δ of a body is its fractional change in volume, given by

Δ ¼ εxx þ εyy þ εzz ¼ ∂u
∂x
þ ∂v
∂y
þ ∂w
∂z

: ð6:2Þ

The diagonal elements of the strain tensor are normal strains and they describe the change
in size of the body. The shear strains are the off-diagonal elements of the strain tensor that
describe a change in shape of the body. The shear strains are defined as

εxy ¼ εyx ¼ ∂v
∂x
þ ∂u
∂y

; ð6:3aÞ

εyz ¼ εzy ¼ ∂w
∂y
þ ∂v
∂z

; ð6:3bÞ

εzx ¼ εxz ¼ ∂u
∂z
þ ∂w
∂x

: ð6:3cÞ

For the very small strains that are relevant to near-surface seismology, a useful idealized
description of the relationship between stress and strain is provided by Hooke’s law. The
law states that a given strain is directly proportional to the stress producing it and,
moreover, the strain occurs simultaneously with application of the stress. A principle of
superposition also applies: when several stresses are present, each stress produces a strain
independently of the others. In an isotropic medium, in which elastic properties do not
depend on direction, Hooke’s law for normal and shear stresses is written as

σii ¼ λΔþ 2μεii, for i ¼ x, y, z; ð6:4aÞ
σij ¼ μεij, for i 6¼ j; ð6:4bÞ

with λ > 0. The quantities (λ, μ) are known as the Lamé parameters. The parameter μ, as
shown by equation (6.4b), determines the amount of shear strain that develops in response
to a given applied shear stress. The parameter μ accordingly is termed the shear modulus.
For liquids, which offer no resistance to shearing forces, the strain is unbounded and μ¼ 0.

The Lamé parameter λ is not often used in applied geophysics. Of more practical
importance is the bulk modulus k

k ¼ 3λþ 2μ
3

, ð6:5Þ

which provides a measure of the resistance of a material to a uniform compressive stress.
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Table 6.1 gives values of shear and bulk moduli for common geomaterials. More
extensive tables of elastic moduli appear throughout the geophysical literature.

6.3 Wave motion

An elastic body will not remain in static equilibrium if it is acted upon by unbalanced
stresses. Suppose for example that the stress on the back face of the cube in Figure 6.4 is
σxx while the stress on the front face is slightly different, σxxþ(∂σxx/∂x)dx. Suppose similar
expressions hold for stresses in other directions. The mass of the cube is dm ¼ ρdxdydz,
where ρ [kg/m3] is the density. To determine the motion caused by the unbalanced stresses,
an infinitesimal version of Newton’s familiar law F ¼ ma applies; for example, the x-
component of the force law is

ρ
∂2u
∂t2

¼ ∂σxx
∂x
þ ∂σxy

∂y
þ ∂σxz

∂z
: ð6:6Þ

We can now use Hooke’s law and the definition of the strain tensor to re-write
Equation (6.6) purely in terms of the displacement u as

ρ
∂2u
∂t2

¼ ðλþ μÞ ∂Δ
∂x
þ μΔ2u, ð6:7aÞ

where Δ2 ¼ ∂2=∂x2 þ ∂2=∂y2 þ ∂2=∂z2 is the Laplacian operator and Δ is the dilatation
defined in Equation (6.2). Similar equations are satisfied by v and w, i.e. the displacements
in the y and z directions, respectively. These are

ρ
∂2v
∂t2

¼ ðλþ μÞ ∂Δ
∂y
þ μΔ2v, ð6:7bÞ

ρ
∂2w
∂t2

¼ ðλþ μÞ ∂Δ
∂z
þ μΔ2w: ð6:7cÞ

Now, differentiate the above three expressions with respect to x, y, and z respectively and
add the results together. This procedure gives

ρ
∂2Δ
∂t2

¼ ðλþ 2μÞr2Δ, ð6:8Þ

Table 6.1 Bulk and shear moduli of common geomaterials

Bulk modulus, k [N/m2] Shear modulus, μ [N/m2]

Limestone 3.7–5.7 2.1–3.0
Granite 2.7–3.3 1.5–2.4
Sandstone 1.25 0.6
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which we immediately recognize as the familiar wave equation

1

V 2
P

∂2Δ
∂t2

¼ r2Δ ð6:9Þ

where VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ 2μÞ=ρp

is the wave velocity. The associated waves are called dilata-
tional, compressional, or P-waves, and VP is the P-wave velocity.

A second set of wave equations may be derived as follows. Subtracting the z-derivative
of Equation (6.7b) from the y-derivative of Equation (6.7c) yields

ρ
∂2

∂t2
∂w
∂y
� ∂v
∂z

� �
¼ μr2 ∂w

∂y
� ∂v
∂z

� �
: ð6:10Þ

If we define the rotational parameter θx ¼ ∂w=∂y� ∂v=∂z then Equation (6.10) simplifies
to the wave equation

1

V 2
S

∂2θx
∂t2

¼ r2θx ð6:11Þ

with the wave velocity VS ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
. There are two other wave equations for θy and θz,

respectively. The waves are called rotational, shear, or S-waves, and VS is the S-wave
velocity. Notice that the P-wave velocity always exceeds the S-wave velocity, VP > VS .
The S-wave velocity is normally about 40–60% but never exceeds about 70% of the
P-wave velocity. Physically, VP is larger than VS since solid materials generally offer
greater resistance to the imposition of compressive forces as opposed to shearing forces.

Near-surface geophysicists routinely use P-waves. As we have already seen, some
studies use shear waves but special sources, receivers, and acquisition and processing
procedures are required to cancel the P-waves. In reflection or refraction studies, surface
Rayleigh R-waves are generally considered as a source of noise, known as ground roll, but
as shown in the next chapter important information can often be extracted from their
analysis and, less frequently, from the analysis of Love waves. A fourth type of seismic
wave is a guided wave, or Lamb wave. This wave is confined to subsurface thin layers and
is sometimes useful for probing underground features such as coal seams, fault zones, and
subsurface voids.

6.4 Seismic waves and elastic moduli

It is worthwhile to look briefly at relationships between the seismic wave velocities VP and
VS and the elastic moduli. These relationships are of great interest to geotechnical engineers
and others who require a knowledge of spatially distributed soil mechanical properties.
Young’s modulus E [N/m2] is a measure of the longitudinal stress to the longitudinal strain
(see Figure 6.5a); roughly speaking, high values of E indicate a stiff material while smaller
values indicate a compliant, or soft material. Poisson’s ratio σ is a dimensionless measure
of the transverse strain to longitudinal strain (Figure 6.5b). The formulas are
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E ¼ F=A

Δl=l
¼ μð3λþ 2μÞ

λþ μ
; ð6:12Þ

σ ¼ Δρ=ρ
Δl=l

¼ λ
2ðλþ μÞ : ð6:13Þ

As mentioned earlier, the shear modulus μ [N/m2] is a measure of the tangential stress to
tangential strain, or shear stiffness, while the bulk modulus k [N/m2] is a measure of the
volume change in response to a change in hydrostatic pressure, or compressibility; see
Figure 6.5c, d. The formulas are

μ ¼ F=A

tan φ
; ð6:14Þ

k ¼ F=A

ΔV=V
¼ 3λþ 2μ

3
: ð6:15Þ

Relationships amongst the seismic velocities and the elastic moduli are

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 4μ=3

ρ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� σÞE

ð1þ σÞð1� 2σÞρ

s
; ð6:16Þ

VS ¼
ffiffiffi
μ
ρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ρð1þ σÞ

s
; ð6:17Þ

where ρ is the density of the medium. It is important to note that both seismic velocities
VP and VS are observed to increase with increasing density, even though it appears
from Equations (6.16) and (6.17) that inverse relationships of the form V ~ 1/√ρ exist.

F

(a) (b)

compressive force,F

(c)

tan φ

(d)

displacement,x        x+Δx

ρ       ρ+Δρ
length, l        l+Δl

tensile force, F

hydrostatic force, F

shear force, F

radius,

volume,V    V+ΔV

length,l      l+Δl

Figure 6.5 Definitions of the elastic moduli: (a) Young’s modulus E; (b) Poisson’s ratio σ; (c) shear modulus μ;
and (d) bulk modulus k.
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The explanation is that the numerators k þ 4μ/3 and μ increase with increasing
ρ faster than 1/ρ decreases.

Certain tasks in geotechnical engineering, including the design of bridge and building
foundations, require a knowledge of the shear strength of the subsurface soil and rock.
Determining an accurate value for the Poisson’s ratio σ is fundamentally important in
such studies. Poisson’s ratio ranges from σ ~ 0.3 in competent sandstone and limestone to
σ ~ 0.45 in unconsolidated sediments. From Equations (6.16) and (6.17) we find

VP

VS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� σÞ
1� 2σ

r
; ð6:18Þ

thus it is evident that Poisson’s ratio can be estimated in situ from a seismic determination
of the velocities VP and VS. Near-surface applied geophysics is shown by this example to
be directly relevant and useful to geotechnical engineers.

6.5 Seismic velocity of geomaterials

As shown in the previous section, the theory of elasticity indicates that the seismic
velocities VP and VS of a homogeneous medium depend on density ρ and the elastic
moduli, k and μ, according to Equations (6.16) and (6.17). However, in many practical
situations, it is of interest to determine the bulk seismic velocities of mixtures of geoma-
terials such as fluid-bearing or clay-bearing sediments and consolidated rocks.

The Nafe–Drake curve is an empirical relationship between the P-wave velocity and
density of water-saturated marine sediments that has been widely used for many years in
exploration and crustal-scale geophysics (see e.g. Fowler, 2005, p.103). Wyllie’s mixing
law (Wyllie et al., 1958),

1

Vbulk
¼ ϕ

V fluid
þ 1 − ϕ
Vsolid

, ð6:19Þ

is used extensively in well log analysis, where ϕ is porosity. It expresses the seismic
P-wave traveltime (~ 1/Vbulk) in a fluid-saturated medium as the porosity-weighted average
of the P-wave traveltimes in the fluid and solid constituents, ~ 1/Vfluid and ~ 1/Vsolid,
respectively. Other mixing laws have been proposed in the literature to explain velocity–
porosity relations, with velocity generally falling as porosity increases. A good review of
the literature on the bulk seismic velocities of various mixtures of geomaterials is given by
Knight and Endres (2005).

Marion et al. (1992) have measured the seismic velocity of water – -saturated,
unconsolidated sand–clay mixtures. They find that bulk VP peaks at a critical value of
the clay content, roughly 40%. The following explanation for this behavior is offered. In
shaly sands (clay content less than critical value), sand is the load-bearing element and
the clay particles are dispersed in the pore space between the sand grains. Increasing the
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clay content of shaly sands fills in the pore space, thereby decreasing the bulk porosity
while stiffening the pore-filling material. Both these effects tend to increase the bulk
velocity. In sandy shales (clay content higher than critical value), the sand grains are
suspended in a clay matrix. In this regime, increasing further the clay content increases
the bulk porosity of the mixture since the porosity of pure clay is higher than that of
pure sand. This increase in bulk porosity causes the velocity in sandy shales to decrease.
Right at the critical value, there is just enough clay to completely fill the space between
sand grains. This configuration is the one of minimum bulk porosity, and hence the
observed peak in seismic velocity. The work of Marion et al. (1992) applies to uncon-
solidated sand–clay mixtures. Gal et al. (1999) point out that, in consolidated sand-
stones, clay can act as a load-bearing element by coating the sand grains and cementing
them together. In such cases, VP increases rapidly and monotonically with increasing
clay content.

A rough guide to the P-wave velocities of selected geomaterials is shown in
Table 6.2. The wide ranges in velocities are due in part to variations in lithology, but
more important in near-surface geophysics are the general rules that unsaturated,
unconsolidated, weathered, fractured, unfrozen, and heterogeneous geomaterials have
lower seismic velocities than their saturated, consolidated, unweathered, intact, frozen,
and homogeneous counterparts. In the near-surface zone of aeration, bulk seismic
velocity is often less than that of water and can become less than that of air. In
anisotropic media such as finely interbedded sediments or fractured rocks, the velocity
parallel to the strike direction is typically greater by 10–15% than the velocity across
the strike.

The effect on seismic velocities of dense non-aqueous-phase liquid (DNAPL) con-
tamination has been examined in the laboratory by Ajo-Franklin et al. (2007). They find
that bulk VP of both natural sandy aquifer and synthetic glass-bead samples is reduced
by up to ~ 15% as trichloroethylene (TCE) saturation increases to ~ 60%. Such high
TCE concentrations have been found at actual contaminated sites but the spatial extent
of the accumulations are typically far below the spatial resolution of seismic
experiments.

For S-waves, Santamarina et al. (2005) quote a range of VS from less than 50 m/s
up to 400 m/s for near-surface saturated soils, rising to 250–700 m/s for lightly
cemented soils.

Table 6.2 Seismic compressional wave velocities

Velocity [m/s] Velocity [m/s]

Air 330 Sandstone 1500–4500
Sand (dry) 200–800 Ice 3000–4000
Clay 1100–2500 Limestone 2500–6500
Sand (saturated) 800–1900 Granite 3600–7000
Water 1450 Basalt 5000–8400
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6.6 Reflection and refraction at an interface

The behavior of a seismic wave incident upon an interface between two elastic media is
shown in Figure 6.6. One part of the wave energy is reflected back into medium 1 while
another part is refracted into medium 2. Elastic waves are distinguished from optical or
acoustic waves in the sense that an incident compressional wave is split into both
compressional and shear reflected and refracted components, a process termed P-to-S
conversion.

The laws of reflection and refraction may be derived using Huygen’s principle. This
principle is helpful to understanding the time evolution of seismic wavefronts. Awavefront
is a surface on which all particles are in the same phase of motion. Huygen’s principle
states that every point along a wavefront can be regarded as a new source of waves. The
future location of a wavefront can therefore be determined by propagating a spherical
wavelet from each point on the current wavefront. As shown in Figure 6.7, let AB be the
seismic wavefront at time t0. After some time interval Δt, the wave will have advanced a
distance VΔt, as shown. Centered on each sampled point on the current waveform we draw
arcs of radius VΔt. The new wavefront A0B0 is simply the envelope of these arcs, as
indicated in the figure. The accuracy of the wavefront construction increases as we draw
arcs from a finer sampling of points on the current waveform.

Consider now a planar wavefront AB incident upon a plane interface between two
materials with P-wave velocities V1 and V2, respectively, as shown in Figure 6.8. When
the point A arrives at the interface, the wavefront is labeled as A0B0. Point B0, at this time, is
at distance V1Δt from the interface. During the time interval Δt that it takes for B0 to reach
point R on the interface, part of the energy at A0 would have traveled the same distance

P (incident) S (reflected) P (reflected)

medium 1

medium 2

ρ1VP1 VS1

ρ2VP1 VS1

P (refracted)
S (refracted)

Figure 6.6 P-wave reflection and refraction at an interface, including P-to-S conversion.
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V1Δt upward back into original medium, while the remainder would have refracted a
distance V2Δt into the underlying medium.

To determine the angles of reflection and refraction, we can use Huygen’s principle.
Accordingly, arcs are drawn with center A0 and radii V1Δt and V2Δt. The new wavefronts,
denoted RS and RT are constructed by drawing tangents to these arcs that intersect point R.
A glance at the geometry of the figure shows that the angle of incidence θ1 is equal to
the angle of reflection θ1

0; this is the law of reflection. Another glance at the figure shows
that V 1Δt ¼ A0R sin θ1 and V 2Δt ¼ A0R sin θ2. Solving both equations for the quantity
A0R=Δt gives

sin θ1
V 1

¼ sin θ2
V 2

¼ p; ð6:20Þ

which is the familiar Snell’s law of refraction. The quantity p in Equation (6.20) is termed
the ray parameter. If the medium consists of a number of parallel layers, the ray parameter
p does not change from its initial value in the first layer as the wave refracts through the

A

B�

B

A�

t=t 0

t=t0+Δt

VΔt

Figure 6.7 Wavefront construction based on Huygen’s principle.
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Figure 6.8 Reflection and refraction of a plane wave.
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stack of layers. An equivalent derivation of the laws of reflection and refraction using
Fermat’s principle of least time (see Figure 6.9), rather than Huygen’s principle, is left as an
exercise at the end of the chapter.

If a P-wave is incident on an interface, it should be noted that the angles of refraction
for both the P-wave and the S-wave can be found by Snell’s law using the appropriate
P-wave and S-wave velocities in Equation (6.20). Since VP2 > VS2, it follows that
sin θP2 > sin θS2. Accordingly, as shown in Figure 6.6, the direction of the refracted
S-wave is closer to the vertical than that of the refracted P-wave. Similarly, the angle of
reflection θS10 of the S-wave for an incident P-wave may be found from a generalized law of
reflection, sin θP10 =VP1 ¼ sin θS10 =VS1.

For P-waves incident on a low-velocity layer in which V2 < V1, Snell’s law predicts that
θ2 < θ1 and thus the wave refracts downward, toward the normal to the interface. Suppose,
instead, that the wave is incident on a relatively fast layer in which V2 > V1. The wave
refracts toward the horizontal interface. It is possible to observe an angle of refraction
θ2 ¼ 90� for the case that the incident angle happens to be θ1 ¼ sin�1ðV 1=V 2Þ. The
refracted wave in this case travels along the interface between the two media. This is the
critically refracted wave and θC ¼ sin�1ðV 1=V 2Þ is called the critical angle. For angles of
incidence that are greater than the critical angle, θ1 > θC , no refraction occurs and there is
total internal reflection of all the wave energy back into the original medium.

The law of reflection and Snell’s law of refraction provide the directions of propagation
of the reflected and the refracted waves, but they do not allow us to calculate the relative
amplitudes of these waves. The partitioning of energy into the reflected and refracted body
waves is described by the Zoeppritz equations (Shuey, 1985). A complete derivation of
these equations, which is not undertaken here, requires to solve the elastic wave equation
subject to conditions that the normal and tangential components of stress and displacement
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V1, fast

V2, slow

θt

Figure 6.9 Fermat’s principle of least time.
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are continuous across the interface. A detailed calculation reveals that the reflection and
refraction coefficients (R, T ) depend in a somewhat complicated fashion on the angle of
incidence, but for P-waves at normal incidence they reduce to

R ¼ ρ2V 2 � ρ1V 1

ρ2V 2 þ ρ1V 1
; ð6:21Þ

T ¼ 2ρ1V 1

ρ2V 2 þ ρ1V 1
; ð6:22Þ

where ( ρ1, ρ2) are the densities and (V1, V2) are the wave velocities of the two media. The
reflection coefficient generally obeys R < 0.2 for stratification within unconsolidated near-
surface geomaterials. The energy reflected at such interfaces is proportional to the square of
the wave amplitude and hence R2 < 4%. Thus, very little of the energy transmitted into the
ground by the seismic source is reflected back to the surface where it may be recorded by
geophones. On the other hand, the top of competent bedrock (say, VP ~ 4500 km/s) lying
below unconsolidated sediments (say, VP ~ 800 km/s) reflects almost 60% of the normally
incident seismic wave energy. The Zoeppritz equations further reveal that most of the
incident energy is partitioned into reflected and refracted P-waves and only a minor amount
is partitioned into reflected and refracted S-waves.

The product ρV that appears in Equations (6.21) and (6.22) is termed the acoustic
impedance. It is often stated that the seismic-reflection method provides images of subsur-
face discontinuities in acoustic impedance.

6.7 Diffraction

Seismic energy is diffracted if awave encounters a subsurface featurewhose radius of curvature
is smaller or not significantly larger than the seismic wavelength, λ ¼ V/f. Seismic wave-
lengths are large (e.g. λ¼ 5.0 m for V¼ 1.5 km/s and f¼ 300 Hz; typical values encountered
in practice) so that understanding diffraction effects is very important in near-surface seismic
interpretation. While a rigorous theoretical description of diffraction is beyond the scope of
this book, to first order a diffracted wavefront can be constructed using Huygen’s principle.

Consider a vertically propagating seismic plane wave that is incident on a sedimentary
bed that pinches out, forming a type of wedge, as shown in Figure 6.10. The energy
contained in the part of the wavefront that strikes the tip of the wedge scatters in all
directions (Keller, 1957). In essence, the wedge tip acts as a point scatterer, or diffractor.
As shown in the figure, diffracted seismic energy also propagates beneath the wedge.

6.8 Analysis of idealized reflection seismograms

A simplified analysis of seismic-wave propagation uses rays, which are semi-infinite lines
oriented perpendicular to wavefronts and pointing in the direction of wave propagation.
A ray changes direction if the propagating wavefront encounters a change in acoustic
impedance. Ray paths are used to indicate the various routes of wave propagation between a
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seismic source (transmitter, TX) and a geophone (receiver, RX). There are three important
ray paths in the simple one-layer scenario shown in Figure 6.11. These paths trace the fastest
routes of direct, reflected, and refracted seismic energy from TX to RX and hence they satisfy
Fermat’s principle of least time. It proves insightful to analyze the traveltime of the P-waves
along these paths. Let x be the TX–RX separation distance. The direct P-wave traveltime
along path 1 is very simply given by the distance divided by the velocity, τ1(x) ¼ x/V1.

The traveltime τ2(x) for the primary P-wave reflection, shown as path 2 in Figure 6.11, is
given by

τ2ðxÞ ¼ 2

V 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ x

2

� �2
r

, ð6:23Þ

reflected wave

diffracted wave

sedimentary pinch-out
(wedge)

incident wave

Figure 6.10 Diffraction by a wedge.
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where the h2 þ ðx=2Þ2 term corresponds to the slant distance shown in Figure 6.12.
The square of the traveltime Equation (6.23), given by

τ22ðxÞ ¼ τ20ðxÞ þ
x2

V 2
1

, ð6:24Þ

describes a hyperbola with intercept (or zero-offset traveltime) τ0 ¼ 2h/V1. The hyperbolic
increase in traveltime τ2 with increasing TX–RX offset x is called the normal moveout. An
idealized seismogram showing a P-wave reflection is shown in Figure 6.13. The hyperbolic
curve in the figure has been computed using the values h¼ 1.0 m and V1¼ 1500 m/s. Each
vertical trace in the seismogram corresponds to a single geophone response. The collection
of traces, displayed in this manner, is termed a shot gather.

2
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1 RXTX

h

surface

slow, V1 
(e.g. weathered layer)

fast, V2 
(e.g. bedrock)

Figure 6.11 Important ray paths between seismic source (TX) and geophone (RX): (1) direct P-wave; (2) reflected P-wave;
(3) refracted P-wave.
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Figure 6.12 Geometry associated with the primary P-wave reflection.
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A plot of τ22 vs x
2 would give a slope of 1=V 2

1, according to Equation (6.24), and an
intercept of τ20 ¼ 4h2=V 2

1. Thus, an analysis of the slope and intercept of the τ22 vs x
2 plot

enables a determination of the layer thickness h and the layer velocity V1.
Notice that the idealized seismogram, with its hyperbolicP-wave reflection event, does not

display an accurate image of the subhorizontal velocity contrast between the slow weathered
layer and the fast bedrock shown in Figure 6.11. The apparent curvature of the subsurface
reflector is due to the variable distance x between the TX and each RX in the geophone array.
The subhorizontal velocity contrast would have been accurately imaged if, however, each
seismic trace was due to a separate TX located in the same position as each geophone. This
hypothetical TX–RX configuration is termed the zero-offset data-acquisition geometry.

A normal moveout (NMO) correction can be applied to each seismic trace. This
procedure converts the seismogram into one that would have been measured for zero-
offset acquisition across the geophone array. The NMO correction has the effect of
straightening out the hyperbolic moveout curves and thereby providing an accurate image
of the subhorizontal reflector (see Figure 6.13). Notice that the reflector at the left-most
seismic trace (close to zero TX–RX offset, x ¼ 0) is already very nearly in its correct
position. Multiples, and any other events that have reflected from more than one interface
within the subsurface, do not exhibit a normal moveout.
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horizontal reflection
after NMO correction
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Δτ=x2/2τ0V1

reflection hyperbola

Figure 6.13 Idealized seismogram (shot gather) of primary P-wave reflection showing hyperbolic moveout curve and
NMO-corrected horizontal reflector.
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It is clear from an inspection of the idealized seismogram that the NMO correction Δτ to
each seismic trace should be

ΔτðxÞ ¼ τ2ðxÞ � τ0 ð6:25Þ
since the reflection hyperbola is τ2(x) and the zero-offset two-way traveltime is τ0.

Applying an NMO correction is a good diagnostic to distinguish horizontal reflectors in
the subsurface from diffraction hyperbolas, multiple reflections, and dipping interfaces.
Only the primary reflections from subhorizontal interfaces will align horizontally after
the NMO correction. Diffracted arrivals from a lateral discontinuity are illustrated in
Figure 6.14. Notice they do not exhibit the normal moveout behavior.

The traveltime equations must be modified if a dipping reflector is present. Consider
the path of the primary reflected ray associated with a dipping interface, as shown in
Figure 6.15. The location of the reflection point P on the interface is determined by the
requirement that the angle of ray incidence, measured with respect to the normal to the
interface, equals the angle of reflection. Notice that the geophone (RX) in Figure 6.15 is
placed down-dip from the seismic source (TX). Alternatively, a geophone could be placed
up-dip from the source.

The down-dip traveltime τD from TX to RX is readily computed as the length of the
seismic ray path divided by the velocity V of the medium which it traverses. To facilitate
the computation and to gain further insight into seismic imaging of a dipping interface, it is
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Figure 6.14 Idealized seismogram showing: (1) primary P-wave reflection; (2) diffracted wave from the edge shown in the
insert; and (3) the standard NMO-corrected arrivals. For these calculations, h¼ 3.0 m; V1¼ 1500 m/s, and location
of the edge, xE ¼ 2.0 m.
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useful to introduce the hypothetical image source I shown in the figure. The image source I
is placed at the same perpendicular distance h from the dipping interface as the actual
source TX. The traveltime τD is then calculated using the distance from the image I to the
geophone RX as if the image were embedded in a homogeneous medium of velocity V. The
result, using the law of cosines, is

τD ¼ dist ðI � RX Þ
V

¼ 1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ð2hÞ2 � 2x ð2hÞ cos π

2
þ φ

0@ 1A
vuuut

¼ 2h

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ 4hx sin φ

4h2

0@ 1A
vuuut ;

ð6:26Þ

where x is the distance from TX to RX and φ is the dip angle. Notice that the angle at TX
subtended by I and RX is π/2 þ φ [rad]. Similarly, if the source location is kept the same
but the geophone RX is now moved to the other side of the TX, such that the seismic ray
path is up-dip, the traveltime becomes

τU ¼ 2h

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 4hx sin φ

4h2

� �s
: ð6:27Þ

The dip angle φ can be estimated in practice by measuring both seismic traveltimes τU and
τD; this is accomplished by first placing the TX up-dip from the RX array, and then locating
the TX down-dip.

6.9 Vertical and horizontal resolution

According to the Rayleigh criterion (Zeng, 2009), the vertical resolution of seismic waves
is ~ λ/4, where λ¼ V/f is the seismic wavelength. The frequency f is the dominant, or central,
frequency carried by the seismic wave packet. For a typical near-surface geophysical applica-
tion, with seismic waves propagating in a material of velocity V ¼ 1.5 km/s at f ¼ 300 Hz,

TX RX

velocity, Vh

dip, j

Ph

image, I

Figure 6.15 Primary reflection from a dipping interface.
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the seismic wavelength is 5.0 m. Hence, the vertical resolution is approximately 1.25 m. This
means that two interfaces separated by less than 125 cm cannot be individually resolved by the
returned seismic signal, as measured by a geophone. This result can be contrasted with
exploration-scale geophysics in which dominant source frequencies are commonly 30 Hz or
lower. In that case, the seismic wavelength in the same material is greater than 50 m, such that
interfaces separated by less than 12.5 m cannot be individually resolved.

While the thickness of a fracture in a rock may not be resolved if the aperture is less than
~ 125 cm, the fracture certainly could be detected as an acoustic impedance discontinuity if
the seismic properties of the fracture fill materials contrast sufficiently to those of the host
material. In this sense, the ability to detect a fracture must be distinguished from the ability
to determine its aperture.

The vertical resolution of a thin layer is illustrated in Figure 6.16 using an idealized
seismic wave packet consisting of a single sinusoidal pulse. Of course, no practical
seismic source could generate such an idealized packet; it is employed here simply to
illustrate the concept of vertical resolution. The primary ray path 1 in Figure 6.16
indicates a reflection from the top of a thin layer of thickness d whereas the primary
ray path 2 shows a reflection from the bottom of the thin layer. The slight difference in the
lengths of paths 1 and 2 is manifest as a difference in phase ψ of the two seismic wave
packets recorded by the geophone RX. The greater the difference in path length, the
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Δψ=3π/4
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surface

Figure 6.16 Resolution of a thin layer.
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greater the difference in phase. If the phase difference is Δψ < π, the two arrivals are
somewhat merged together in the resulting geophone response (which is the sum of the
two waves 1 and 2; shown as “1 þ 2” in the bottom part of the figure). The geophone
response resolves the thin layer as two separate arrivals only as the phase difference
increases beyond Δψ > π. The critical phase difference Δψ ¼ π corresponds to a path-
length difference of one-half the seismic wavelength, λ/2. A full wavelength λ would
change the phase of the seismic wave packet by 2π. Thus, keeping in mind that the
geophone response records the two-way traveltime of seismic wave arrivals, the layer
thickness must satisfy d > λ/4 in order for it to be seen as two distinct events on a
geophone. This result is strictly valid for small TX–RX offsets x such that x << h, where
h is the depth to the top of the thin layer.

The horizontal resolution of the seismic-reflection method intuitively cannot be better
than ~ Δx/2, where Δx is the geophone spacing. However, a straightforward analysis
indicates that the horizontal resolution of an interface at depth h beneath the surface can
also not be better than the Fresnel-zone radius

D0 e ffiffiffiffiffiffiffi
2λh

p
, ð6:28Þ

which is often larger than Δx/2. A simple justification of Equation (6.28) can be made as
follows. Seismic energy emanates from a source TX into the subsurface in all directions.
Three particular ray paths are shown in Figure 6.17a. The path labeled 1 is the primary
reflection, and is the fastest purely reflected path to the geophone. A certain amount of
energy, however, is carried in the two paths labeled 2 since, in reality, the reflection is not
from an idealized point (Lindsey, 1989) but is generated by integration over a circular area
which might be termed the seismic footprint. This accords with an extended Huygens
principle (Sein, 1982) in which the incident planar wavefront, where it strikes the interface
at a given location, acts as a source of downward-propagating refracted spherical wavelets
and upward-propagating reflected spherical wavelets.

As shown in the figure, the two rays labeled 2 strike the reflecting interface at a distance
±D/2 from the primary reflection point at the TX – RX midpoint. Energy carried along
these two paths arrives somewhat later than energy carried along path 1. If the phase
difference between either of the wave packets propagating along ray path 2 and the wave
packet propagating along ray path 1 satisfies Δψ < π, then the geophone response will not
see these packets as distinct arrivals but rather they will appear merged together.

The horizontal resolution at a given depth h is therefore defined as the horizontal
distance D along a reflecting horizon within which all reflected energy recorded at a given
geophone arrives with phases that are within π of each other. The horizontal resolution is
usually referenced to the zero-offset configuration in which the TX–RX separation distance
is x ¼ 0, but it can also be defined for a given non-zero offset x, as we show in the
following.

The length of ray path 1 in Figure 6.17a is given by

l1ðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ x

2

� �2
r

ð6:29Þ
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while the length of either of the ray paths labeled 2 is given by

l2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðx� DÞ2

4

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðxþ DÞ2

4

s
: ð6:30Þ

The difference Δl ¼ l2 – l1 in the two path lengths, normalized by one-half the seismic
wavelength λ/2, is plotted in Figure 6.17b versus the horizontal distance D/D0 along the
reflecting horizon. The parameters h¼ 10 m and λ¼ 1.6 m were chosen such that D0 ~ √32
~ 5.5 m, using Equation (6.28). Different curves are plotted for different TX–RX separ-
ation distances x.

Notice that the curve for the zero-offset configuration x ¼ 0 passes very close to the
critical point Δl ¼ λ/2 when D ¼ D0. This indicates that the horizontal resolution is given,
to a very good approximation, by Equation (6.28) in this case. The graph in Figure 6.17b
also shows that the horizontal resolution worsens as the TX–RX separation distance x
increases. For example, consider the curve for the case x ¼ 2h. The curve crosses the
critical point Δl¼ λ/2 at D ~ 1.7D0 ~ 9.35 m. This indicates that the horizontal resolution is
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Figure 6.17 Horizontal resolution of the seismic-reflection method. (a) Fresnel-zone concept; (b) Path length difference Δl
as a function of horizontal distance D.
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70% worse in the case x ~ 2h compared to the ideal zero-offset case. In other words, the
lateral resolution of the seismic-reflection method degrades with increasing distance
between the shotpoint and the receiver. It makes intuitive sense that the seismic footprint
should grow larger as the incident angle becomes shallower.

6.10 Common midpoint profiling

The accuracy of a reflector image can be improved if the seismic shotpoints and receivers
are arranged such that each location along the reflecting horizon is illuminated from a
number of different perspectives. This is readily accomplished using the common midpoint
(CMP) profiling method. CMP data acquisition involves moving the shotpoint and receiver
array forward in regular increments and shooting at each successive move. A subset of the
resulting shot records can then be selected to simulate an acquisition that consists of a
symmetric configuration of n seismic TX–RX pairs about a common midpoint P, as shown
in Figure 6.18. In other words, individual traces that share a common midpoint are
collected from the various shot records. This is termed a CMP gather. The benefit of this
procedure is that a single reflection point on a subsurface interface is sampled n times.
A CMP profile constructed in this manner is said to have n-fold data coverage.

After NMO corrections of the form (6.25) are applied, according to the TX–RX offset,
each seismic trace in the CMP gather becomes effectively a zero-offset trace. The n NMO-
corrected traces are then ready to be averaged, or stacked, to enhance the signal-to-noise
(S/N) ratio. Generally, the improvement in S/N ratio due to stacking a number of traces
acquired with the same TX–RX acquisition geometry can be understood as follows.
Suppose the amplitude of a seismic-reflection signal is S, while the average noise ampli-
tude is N. Assuming the noise to be random, the S/N ratio of the stacked trace is related to
the S/N ratio of an individual trace by the fundamental formula

S

N
ðnÞ ¼ ffiffiffi

n
p S

N
ð1Þ: ð6:31Þ
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Figure 6.18 Common midpoint profiling, CMP.
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There is a diminishing reward for increasing the stack number n, as shown by Equation
(6.31). For example, doubling the S/N ratio requires stacking four shot records. Increasing
the S/N by an order of magnitude requires stacking 100 shot records.

The effect of stacking on an idealized seismic trace that consists of a single sinusoidal
pulse signal embedded in random noise is shown in Figure 6.19a. The signal occupies the
middle 10% of the trace, as can be seen in the figure. The background noise is generated by
a Gaussian random-number generator. The S/N ratio is defined in this case to be the rms
(root mean squared) amplitude of the middle 10% of the trace divided by the rms amplitude
of the remainder of the trace. It is evident from the figure that the S/N ratio increases with
increasing stack number n, as expected. The sinusoidal pulse is easy to discern in the case
n ¼ 100, but difficult to detect visually in the case n ¼ 1. The behavior of the S/N
improvement, defined as the S/N ratio for n traces, normalized by the S/N ratio for a single
trace, is shown in Figure 6.19b. Note that the “root-n” improvement in S/N ratio, as
prescribed by Equation (6.31), is approximately satisfied.

CMP profiles with n-fold data coverage can offer a tremendous improvement in resolv-
ing subsurface reflectors relative to data of single-fold coverage. However, traditional CMP
profiling quickly becomes laborious since it is necessary to uproot the entire array of n
geophones and shift it forward by one station increment in order to advance the common
midpoint by one station increment. CMP data acquisition is greatly simplified however
with the use of a roll-along switchbox.

The effect of the switchbox is to automatically shift a geophone array by one station
increment along a survey profile. Instead of manually picking up and moving the geophone
array, the equivalent task can be accomplished simply by advancing the knob on the
switchbox by one unit. The concept is illustrated in Figure 6.20. To keep the illustration
simple, imagine an array of eight geophones connected via the switchbox to a four-channel
seismograph (in practice, these numbers are more likely to be in the range of hundreds of
geophones and tens or hundreds of channels). Suppose the four active geophones are RX1–
RX4 when the switchbox is at position 1, as shown in the top part of the figure. Then, after
the shot is recorded at this setting, the switchbox is advanced to position 2, thereby
activating RX2–RX5. At the same time, the shotpoint (TX) is moved forward one station
increment. This process continues until all switchbox settings have been used. The result
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Figure 6.19 (a) Improvement of S/N ratio with stacking number n; (b) Plot of S/N-ratio improvement with √n.
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(a four-fold CMP profile) is the same as if a smaller array of four geophones had been
manually shifted after each shot by one station increment.

6.11 Dip moveout

A major complication to CMP analysis occurs in the presence of dipping reflectors. In the
presence of dip, the subsurface reflection point unfortunately is not the same for all
common-midpoint TX–RX pairs (Figure 6.21). Notice that reflection points P1 and P2

are not coincident, and neither of the reflection points lie directly beneath the common
midpoint. The NMO correction could be modified to accommodate a single dipping
interface but more problematic is the case of multiple dipping reflectors that have different dip
angles. Such cases are often encountered in aeolian or fluvial cross-bedded sedimentary systems
or salt domes, for example, where gently dipping beds make contact with a steeply dipping
structure. The CMP stacking process breaks down and the data quality actually deteriorates
with increasing n. The imaging ofmultiple dipping reflectors can be greatly improved, however,
by an application of dip-moveout (DMO) processing prior to performing the CMP stack. Here
we outline just the essential concepts of DMO since the details of the algorithm are beyond the
scope of the book. Good introductions to DMO are provided in Deregowski (1986) and Liner
(1999).

The aim of NMO/CMP-stack processing is to identify, adjust the timing, and then gather
traces that have the same reflection point on a subsurface reflector. If a dipping reflector of
unknown dip angle is present, the location of the reflection point is not known, and hence a
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Figure 6.20 Roll-along data acquisition.
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CMP gather cannot be made. However, only certain locations for the reflection point are
possible. Simple geometry shows that the reflection point must be located on the ellipse in
Figure 6.22, where the TX and RX are at each focus. A standard NMO correction assumes
that the reflection originated from the horizontal segment located immediately below the
midpoint. But each of the reflector segments shown in Figure 6.22 is an equivalent
possibility, in the sense that they could equally explain the observed traveltime between
the TX and RX.

The equivalent reflector segments are shown again in Figure 6.23a. The zero-offset
locations (labeled 1–5) associated with each segment are also shown. In Figure 6.23b are
shown the traces that would have been recorded had the TX and RX been co-located at
each of the locations 1–5. These are the zero-offset traces, and the traveltimes of the first
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Figure 6.21 On a dipping reflector there is not a single point of reflection for all common-midpoint trace pairs, such as TX1–RX1
and TX2–RX2.
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Figure 6.22 A reflection event seen at the RX can come from any point on the ellipse.
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three of them are also indicated. The familiar NMO traveltime, for example, is
τ3 ¼ 2L3=V . Since we don’t know the actual dip of the reflector, we still don’t know
which one of these zero-offset traces to choose as the DMO-adjusted trace, but we do know
that one of them must be correct.

Furthermore, the five zero-offset locations and traces that have been so far been
considered are not the only possibilities. There are many other locations between the
original TX and RX. In Figure 6.23c are shown all the possible zero-offset traces (actually,
for two dipping reflectors). The portion of this plot that contains the highest amplitudes is
whimsically known as a DMO smile, for an obvious reason. Again, this plot shows the
zero-offset traces for every conceivable dip angle of the reflector.

The foregoing analysis shows that a single reflection event recorded on a single trace can
be expanded into a multiplicity of zero-offset traces and then plotted to reveal a DMO
smile. The NMO-corrected trace runs through the center of the DMO smile, as shown. By
performing a similar DMO analysis on the next trace from the next TX–RX pair along the
seismic survey profile, we can construct another DMO smile that partially overlaps the first
one. In fact, we can construct an entire sequence of partially overlapping DMO smiles, one
for every TX–RX pair along the seismic survey profile. Once we have all these DMO
smiles, we simply add them together. This process produces the correct zero-offset image
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reflector; (b) some of the zero-offset traces; (c) all possible zero-offset traces, for two dipping reflectors, forming two
DMO smiles. After Liner (1999).
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of the dipping reflector horizon in the subsurface. The stacking process works because the
reflected energy from the actual dipping horizon is common to all of the DMO smiles such
that constructive interference occurs when they are added together. Destructive interference
occurs elsewhere. Hence, the correct trace from each of the DMO smiles is naturally
selected by the stacking process. Interestingly, multiple dipping horizons with different dip
angles are all correctly imaged and appear at their proper locations and orientations within
the subsurface. Additional details, including a discussion of the close relationship between
DMO and migration, is found in the tutorial article by Liner (1999), to which the interested
reader is referred.

6.12 Attenuation

The theory of elasticity governed by Hooke’s law predicts reversible stresses and strains in
which no energy is lost during the transmission of a seismic wave. An ideal elastic wave
nevertheless diminishes in amplitude as it propagates due to its geometric spreading.
Moreover, its energy is partitioned as it is scattered by heterogeneities, and undergoes
reflection, refraction, and P-to-S-wave conversion at acoustic impedance boundaries. Real
seismic waves, however, continuously lose energy via the absorption of energy by the
medium.

Consider a seismic wave propagating in a homogeneous medium and suppose that it
has an amplitude A0 at some distance r0 from its source. Neglecting the scattering
contributions, the amplitude of the wave at some greater distance r > r0 from the source
is given by

AðrÞ ¼ A0
r0
r

� �
exp½�αðr � r0Þ�, ð6:32Þ

where the geometric spreading is described by the 1/r falloff and the exponential decay is
due to energy absorption with attenuation coefficient α.

The 1/r form of the geometric spreading term in Equation (6.32) is due to the fact that
the seismic energy associated with a spherical wave at some distance r from a source is
distributed over the surface of a sphere of radius r. The surface area of a sphere is 4πr2.
Hence, the seismic energy should fall off as 1/r2. The seismic energy is proportional to the
square of the wave amplitude, hence the latter decreases as 1/r. This energy-loss mechan-
ism is termed geometric spreading since it is independent of the elastic properties of the
medium.

The seismic attenuation coefficient α, on the other hand, does depend on the elastic
properties of the medium and also on frequency. The physical causes of intrinsic seismic
attenuation are not fully understood. Friction has been suggested as an absorption
mechanism. Recent developments in the theory of poroelasticity propose that a large
portion of the intrinsic loss in a saturated porous medium is caused by viscous fluid
motions that arises in response to mechanical wave excitation (e.g. Pride et al., 2004).
This mechanism is termed wave-induced fluid flow. In the scenario described by Muller
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et al. (2010) and depicted in Figure 6.24, fluid flows from compliant regions toward
stiffer regions (as shown by the arrows in the second and third panels) during the
compressional portion of an elastic wave cycle of period T, and vice versa during the
expansive, or dilatational portion of the cycle (shown in the fourth panel). Wave-induced
fluid flow as an attenuation mechanism is thought to be particularly effective in geoma-
terials for which the length-scale of the heterogeneities is mesoscopic, that is, the
heterogeneities are much larger than typical pore sizes but smaller than the seismic
wavelength. Decisive field-scale studies which permit the elaboration of the physical
mechanisms responsible for attenuation of seismic wavefields have not yet been carried
out in near-surface geophysics.

The attenuation of higher-frequency waves is much larger than that of lower-frequency
waves. Typical values of the attenuation coefficient vary from α ~ 0.25–0.75 decibels/
wavelength [dB/m]. Thus, at large ranges compared to the longest seismic wavelength
excited by the source, seismic pulses tend to become smoothed out and are of apparently
long duration. In this sense, the Earth acts as a low-pass filter.

In a viscoelastic medium subject to a shear stress, the material undergoes some
permanent shear deformation. Other types of irreversible seismic responses are possible
in the presence of large strains or strain rates, including brittle failure, buckling or
bending of engineered structures, various types of plastic deformation, and soil or sand
liquefaction. The inelastic deformation of near-surface geomaterials in response
to conventional seismic imaging sources such as hammers, shotguns, and vibrators is
normally insignificant and is neglected in most active-source near-surface geophysical
surveys.

t = 0 t < T/2 t ~ T/2 t > T/2 t ~ T

compliant
region

stiffer
region

compression dilatation

FPO
Figure 6.24 Seismic attenuation caused by wave-induced fluid flow in association with mesoscopic heterogeneities, after Muller

et al. (2010).
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6.13 Seismic refraction

The seismic-refraction method is similar to the reflection technique, the primary difference
being that arrival times of horizontally refracted waves instead of near-vertical reflected
waves are analyzed. The TX–RX offsets in refraction studies are generally larger than
those of reflection studies, with the result that the slow-moving surface waves, or ground
roll, is much less of a concern. The seismic-refraction method is a simple and popular
technique used by geophysicists, geotechnical engineers, and others to gather basic site
geological information such as depth to bedrock beneath an unconsolidated overburden.

Consider again seismic excitation of the two-layer model shown in Figure 6.11; in
particular, we are now interested in the ray path labeled 3. The ray incident at some critical
angle iC travels along the interface as a P-wave with velocity V2. The angle of refraction is
equal to rC ¼ 90�. This is shown as the horizontal portion of ray path 3 in Figure 6.11.
From Snell’s law, written in the form

sin iC
V 1

¼ sin rC
V 2

, ð6:33Þ

with sin rC ¼ 1, the critical angle is given by

iC ¼ sin�1
V 1

V 2
: ð6:34Þ

As the critically refracted wave propagates along the subsurface interface, energy is
transmitted continuously into the upper and lower layers in accordance with Huygen’s
principle. At some RX location on the surface, sufficiently far from the TX, the first arrival
of seismic energy is that which has emerged from the interface at the same critical angle iC.
This is shown as the upward portion of ray path 3 in Figure 6.11.

For small TX–RX separations, the first arrival is the direct P-wave, shown as ray path 1
in Figure 6.11. However, at some critical separation distance, x ¼ xC, known as the cross-
over distance, the direct wave is overtaken by the critically refracted wave. The latter is
sometimes known as a head wave since it is the first to arrive at RX locations in the region
x > xC.

From an inspection of the geometry of ray path 3 in Figure 6.11, it is straightforward to
show that the traveltime T(x) of the head wave is

TðxÞ ¼ 2h

V 1 cos iC
þ x� 2h tan iC

V 2
: ð6:35Þ

The first term in the above equation originates from the upward and downward portions of
the ray path while the second term corresponds to the horizontally propagating part. Using
Snell’s law for critical refractions in which

sin iC ¼ V 1

V 2
; ð6:36aÞ
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cos iC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 � V 2
1

q
V 2

; ð6:36bÞ

tan iC ¼ V 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 � V 2
1

q ; ð6:36cÞ

Equation (6.35) reduces to

TðxÞ ¼ x

V 2
þ
2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 � V 2
1

q
V 1V 2

: ð6:37Þ

The traveltime Equation (6.37) predicts that refracted waves, unlike the hyperbolic move-
out of reflected waves, move out linearly with TX–RX separation x. The slope of the T(x)
curve is 1/V2. Thus, one can obtain V1 from the slope of the direct-wave arrival (which
moves out according to T(x) ¼ x/V1) and V2 from the slope of the head-wave arrivals. The
layer thickness h can be determined by extrapolating the head-wave arrival back to the
origin since

T 0 ¼ Tð0Þ ¼
2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 � V 2
1

q
V 1V 2

: ð6:38Þ

The moveout curves of the direct wave, critically refracted wave, and reflected wave are
illustrated in the idealized seismogram (shot gather) shown in Figure 6.25. The parameters
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Figure 6.25 Idealized refraction seismogram.
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V1 ¼ 800 m/s; V2 ¼ 2500 m/s and h ¼ 2 m were chosen for the calculation. Notice that the
refracted wave is the first arrival beyond the cross-over distance xC at which the direct and
refracted arrivals are simultaneous. The primary reflected arrival is never the first arrival.
Notice also that the refracted arrival does not appear on the traces at short TX–RX offsets, x
< 2h tan iC. Instead, it merges with the primary reflection arrival, as shown in the figure.
This behavior is easily understood by an inspection of ray path 3 in Figure 6.11.

In seismic-refraction studies, first arrivals are typically picked manually from observed
shot gathers. This can become a time-consuming process for large two- and three-
dimensional (2-D and 3-D) surveys. In addition, it is not always possible to precisely
identify the first-arriving energy as, by definition, it is a small signal and moreover it often
occurs in the presence of noise. Examples of first-arrival picks are provided in Figure 6.26
(left panels) from a 3-D refraction experiment at a contaminated site by Zelt et al. (2006).
The picked first arrivals are shown by the horizontal markers on the individual traces of the
shot gathers. Figure 6.26 (right panels) shows the location of the two shotpoints (large
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dots) relative to the locations of the receivers (small dots). The traces selected for display at
the left are from those receivers located within narrow azimuthal cones of the shotpoints.
The cones are marked by the solid lines in the right panels.

A dipping subsurface interface can also be analyzed using the seismic-refraction
method. Consider the ray path shown in Figure 6.27. The RX is located down-dip from
the TX. The dip angle φ measures the inclination of the subsurface bed. The lower medium
has a faster seismic velocity than the upper medium. The dip angle φ can be estimated from
measurements of up-dip and down-dip traveltimes. The head-wave traveltime curve TD(x)
for a small dip angle φ such that cos2φ ~ 1 is given by

TDðxÞ ¼ 2hD cos iC
V 1

þ x sin ðiC þ φÞ
V 1

, ð6:39Þ

which shows that the down-dip refracted wave moves out with apparent velocity VD ¼ V1/
sin (iCþ φ). Similarly, the apparent up-dip velocity is VU¼ V1/sin (iC – φ). The dip angle is
then given by

φ ¼ 1

2
sin�1

V 1

VD

� �
� sin�1

V 1

VU

� �� �
: ð6:40Þ

The derivation of Equation (6.40) is left as an exercise for the reader.
It is a simple matter to compute traveltime curves for a medium consisting of

multiple refracting horizons. The two-layer case is illustrated in Figure 6.28 (bottom).
Recall that the traveltime for a single refracted arrival, along the path labeled 1, can be
written as

t1ðxÞ ¼ x

V 2
þ 2h cos θC1

V 1
, ð6:41Þ
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Figure 6.27 Seismic-refraction path for a dipping interface.
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where θC1 is the critical angle of refraction for the interface between media 1 and 2. The
curve t1(x) of Equation (6.41) is shown as the middle straight-line segment in Figure 6.28
(top), with slope 1/V2.

Suppose that a layer of faster velocity V 3 > V 2 underlines the two-layer medium. At
sufficiently large TX–RX offsets, the deeper refraction will eventually overtake the shallower
refraction. The traveltime curve t2(x) for the refraction along the path labeled 2 is readily
computed by applying Snell’s law at each of the interfaces to determine the path geometry,

sin θC1
V 1

¼ sin θC2
V 2

¼ 1

V 3
: ð6:42Þ

where θC2 is the critical angle of refraction for the interface between media 2 and 3. It is
straightforward to generalize the traveltime curve to the case of an n-layermedium. The result is

tnðxÞ ¼ x

Vn
þ

Xn�1
i¼1

2hi cos θCi
V i

: ð6:43Þ

Note that Equation (6.43) provides an accurate description of the observed traveltime curve
only in the case in which each bed layer is fast enough and thick enough to contribute first-
arriving energy over a significant portion of the overall time–distance curve to permit its slope
to be analyzed correctly. It is possible to have a “hidden layer” in a standard refraction analysis.
In such cases, the hidden bed is either too thin or its velocity is not sufficiently greater than
those of the overlying beds to contribute a first arrival at any TX–RX offset distance x.
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Figure 6.28 Traveltime curves (top) and ray paths (bottom) for the two-layer refraction geometry.
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6.14 Practical considerations

The seismic-reflection and -refraction methods work well in fine-grained, saturated sedi-
ments where attenuation is low and excellent mechanical coupling to the ground can be
achieved by the source and the geophones. The methods fare relatively poorly in loose, dry,
coarse-grained, or disturbed sediments.

A sample seismic record acquired at the Texas A&M University main campus in College
Station is shown in Figure 6.29. A sledgehammer source was used with geophone spacing
of 3.0 m. The near-surface geology consists of ~ 10 m of heavy floodplain clay deposits
overlying a soft plastic shale. This particular record shows a high-frequency (>100 Hz) air
wave with linear moveout traveling at its characteristic value of ~ 330 m/s; a refracted head
wave traveling at ~ 1735 m/s within the fast subsurface shale layer; possible reflected
waves; and the ubiquitous low-frequency (20–30 Hz) dispersive ground roll traveling with
velocities in the range ~ 160–313 m/s.

The choice of seismic source requires careful consideration. The frequency content of a
seismic source depends on the near-surface geology and the source coupling to the ground.
Good coupling may be attained with a sledgehammer source using a heavy strike plate with
a large surface area. If explosives or a shotgun is used, the charge should be detonated in a
tightly packed, water-saturated hole. The role of the water is to fill void spaces in which
elastic energy would otherwise be dissipated. It is highly advised to test the performance of
a number of different sources prior to conducting data acquisition over the full survey area.
For imaging reflections from the uppermost 3–10 m of the subsurface, a source should
produce significant energy at frequencies above ~ 250–300 Hz. Baker et al. (2000)
compared the performance of various impulsive sources, including a 4.5 kg sledgehammer
and two different rifles (30.06 and .22 caliber). At a test site in Kansas, the most coherent
reflection images were obtained using the .22-caliber rifle with subsonic ammunition since
this combination generated the largest amount of high-frequency energy. Important char-
acteristics of some commonly used seismic sources are listed in Table 6.3.

An electromagnetic geophone (see Figure 2.3, left), which is the type of ground-
movement sensor most commonly used in near-surface geophysics, detects the relative
motion between a magnet and a coil. The magnet, being rigidly coupled to the plastic case
of the geophone, is directly coupled to the ground. The coil is wrapped around the magnet
and loosely coupled to it by means of a leaf spring. The movement of the magnet relative to
that of the coil introduces, by Faraday’s law of electromagnetic induction, an electromotive
force (emf) in the coil which is recorded as an output voltage.

Good ground coupling of the geophone should be ensured using a long spike. The
geophone should be firmly planted into solid or fully saturated ground beneath any organic
litter or other poorly consolidated surface materials. Dry sand is a poor environment for
geophones because of the high absorption of energy. A simple mechanical model of a
geophone consisting of a series arrangement of parallel springs and dashpots is shown in
Figure 6.30a. The theoretical response of the model mechanical system to a ground forcing
of the form F0 exp (iωt) is easily calculated (Krohn, 1984), as shown below.
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Table 6.3 Seismic source characteristics

Source Repeatability Frequency [Hz] Cost

Hammer Fair–good 50–200 $
Weight drop Good 50–200 $$
Explosives Fair 50–200 $$
Shotgun/rifle Very good 100–300 $$
Vibrator Poor 80–120 $$$



Mechanical analysis of the geophone. As a first step, neglect the internal mechanisms
inside the geophone and suppose the system to consist of a single undifferentiated mass m2

undergoing damped oscillations in the presence of a driving force F0 exp (iωt) that
represents harmonic ground motion at frequency ω. The geophone is then approximated
by a simple spring and a viscous resistance in parallel arrangement, see Figure 6.30a. The
associated spring force is given by Hooke’s law FS ¼ �k2ξ with spring constant given by
k2. The restoring force FS is proportional to the displacement ξ of the geophone; as the
spring is stretched, the force becomes stronger and acts in opposition to further extension.

Friction against the motion of the geophone due to its imperfect coupling to the ground
results in damping of the oscillations. The friction force FR is proportional to the velocity
of the geophone (French, 1971) such that

FR ¼ �b2 dξdt , ð6:44Þ

where b2 is the mechanical resistance. The negative sign indicates that the friction force
opposes the motion of the geophone. The equation of motion for the damped oscillation is
obtained by the force balance

m2
∂2ξ
∂t2
þ b2

∂ξ
∂t
þ k2ξ ¼ F0 exp ðiωtÞ, ð6:45Þ

which in the frequency domain has the solution

ξðωÞ ¼ F0=m2

ðω2
2 � ω2Þ þ iωγ2

, ð6:46Þ

where γ2 ¼ b2=m2. In Equation (6.46), the parameter ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
is termed the resonant

frequency. The maximum amplitude of ξ(ω) will occur when the in-phase term in the
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denominator vanishes, that is, at the resonant frequency ω ¼ ω2. Note that the system is
said to be critically damped if the special condition ω2 ¼ γ2=2 is met. The amplitude of the
oscillations of a critically damped system is zero. Equation (6.46) is the complete solution
for the displacement of a rigid mass m2 undergoing damped oscillations driven by
harmonic ground motion of the form F0 exp (iωt).

Now the mechanical analysis should take into account the internal magnet and coil of the
geophone. The internal spring constant is k1 and the internal mechanical resistance is b1.
The magnet–coil system can be assumed to be driven by the motion of the external case,
described by Equation (6.46), in which case a new balance of forces yields the equation of
motion of mass m1 in Figure 6.30a,

m1
∂2z
∂t2
þ b1

∂z
∂t
þ k1z ¼ m2

∂2ξ
∂t2

¼ �b2 ∂ξ∂t � k2ξ, ð6:47Þ

where z is the displacement of mass m1. Since all terms in Equation (6.47) are harmonic
with frequency ω, it is a simple exercise in algebra to solve this equation in the frequency
domain. This results in the geophone response function R(ω) given by

RðωÞ ¼
� ω

ω1

� �2
1þ i ω

ω2

� �
η2

h i
1� ω

ω1

� �2
þ i ω

ω1

� �
η1

� �
1� ω

ω2

� �2
þ i ω

ω2

� �
η2

� � , ð6:48Þ

where η1 ¼ γ1=ω is the damping factor of the magnet–coil system and η2 ¼ γ2=ω is that of
the ground coupling. The damping factor describes how close a system is to critical
damping; the value η ¼ 0 corresponds to free oscillations (no damping), while η ¼ 2
corresponds to critical damping. Both the parameter γ1 ¼ b1=m1 and the resonant fre-
quency ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
of the geophone magnet–coil system are under control of the

geophone designer. The physical significance of the response function R(ω) is that it is
proportional to the acceleration of the mass m1, that is, R(ω) ~ ω2z(ω).

The response function amplitude |R( f )|, where f ¼ ω/2π is the frequency [Hz], is plotted
in Figure 6.30b for different values of the ground-coupling damping factor η2. A standard
geophone is assumed in this calculation, with resonant frequency ω1 ¼ 8 Hz and damping
factor η1 ¼ 1.4, or 70% of the critical value. These are typical geophone design values. It is
also assumed that the resonant frequency of the ground coupling is ω2 ¼ 200 Hz. The
figure illustrates the effect of imperfect ground coupling on the frequency response of a
geophone. As the ground-coupling damping factor η2 gets larger, the effect is an overall
reduction in the amplitude of the geophone response and a flattening of the amplitude
spectrum. A peak in the response function amplitude |R( f )| indicates frequencies of ground
motion to which the geophone is most sensitive. Thus, the effect of loose coupling of the
geophone to the soil (i.e. a large value of η2) is a great reduction in the sensitivity to the
ground motion at its resonant frequency, in this case 200 Hz. The geophone therefore
should be firmly planted in the soil, or buried, to keep the damping factor η2 as low as
possible.

Once the geophone output voltage is measured, the signal is amplified, filtered, and
stored in a digitized form on a seismograph. The main characteristics of a seismograph are
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dynamic range and the number of channels. The dynamic range is the ratio of the largest
measureable signal to the smallest measureable signal, as mentioned earlier in Chapter 2.
Near-surface geophysical applications typically utilize 16-bit (20384, or 96 dB) dynamic
range. The number of channels (usually 36–48, or more) is the number of geophones
whose response can be simultaneously recorded.

6.15 Seismic data processing

A number of data processing steps must be performed in order to convert seismic-reflection
shot gathers into migrated depth sections that are ready for geological interpretation. The
discussion here will be brief. The classic reference for exploration-scale seismic data
processing is Yilmaz (2001). The course notes of Baker (1999) provide a good overview
of data-processing procedures that are relevant to near-surface geophysics. Chapters 2, 9,
and 11 of this book also contain information on basic data processing.

Gain control. It is often required to amplify the small geophone signals recorded in a
near-surface geophysical survey. Since seismic waves attenuate exponentially with dis-
tance, and are subject to spherical wavefront spreading, the return amplitudes from
reflectors at depth are generally much lower than the amplitudes returned from shallower
reflectors. Similarly, returns on the far-offset geophones are much smaller than those on
geophones that are placed close to the source. Amplifier gains on each channel should be
set in order to roughly equalize the signal amplitudes, thus permitting a better visualization
of deeper reflectors especially at the far-offset geophones. This procedure is termed gain
control.

Bandpass filtering. Filters may be used to suppress unwanted events and highlight
events of interest on seismic-reflection records. The essentials of filtering were discussed
earlier in Chapter 2. A number of filtering operations are specialized to seismic-reflection
data processing. For example, mutes are routinely used to blank out refraction first-breaks,
airwave and/or ground-roll energy from shot gathers. A bandpass filter reduces the
amplitude of the frequency components of a signal that reside outside a specified band.
In many cases, surface waves can be effectively removed by bandpass filtering. Surface
waves are unwanted low-frequency events that can obscure or interfere with higher-
frequency seismic reflections. An example of bandpass filtering of a shot gather acquired
with a 1-kg hammer source at 0.25-m receiver spacing on the Matanuska glacier is Alaska
is shown in Figure 6.31. The predominant frequencies are above 800 Hz for the wanted
reflections from within the ice layer and from debris-rich ice at the base of the glacier,
while the frequency content of the unwanted surface waves was considerably lower.
Accordingly, a bandpass filter with pass band 700–1200 Hz proved effective in attenuating
the surface waves while preserving the reflections, as shown on the right side of the figure.
In this example, the surface waves were relatively non-dispersive with a group velocity of
~ 1700 m/s while the body waves traveled much faster, at 3600 m/s.

Refraction-statics correction. Refraction statics (Gardner, 1967) are adjustments that are
made to the timing of individual seismic traces which take into account factors such as
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near-surface lateral velocity variations, undulations of a shallow refracting horizon, and
irregular terrain. The results of a refraction-statics correction are better estimates of the
traveltimes to deeper reflectors. The new traveltimes are the ones that would have been
recorded if the near-surface layer were homogeneous and/or the terrain and the shallow
refracting horizon were level. With static-corrected data, deeper reflection events from
horizontal layers generally exhibit an improved normal moveout, such that NMO stacks are
more coherent than they would have been in the absence of the refraction-statics correction.
Essentially, a refraction-statics correction enables better control on deeper reflector imaging
by removing the deleterious effects of near-surface lateral velocity variations on traveltimes.

Docherty and Kappius (1993) have cast a refraction-statics correction into a linear
inverse problem (see Chapter 11). In two dimensions, the situation they treat is illustrated
in Figure 6.32. The observed refraction first-arrival traveltime tij between the TX–RX pair
(i, j) is inverted for the down-going and up-going delay times (si and rj, respectively) and
the slownesses σk along the undulating refractor horizon. The latter is discretized into cells
of width k. The delay time si is the time taken for the signal to propagate from the source
down to the refractor horizon while the delay time rj is the time taken for the signal to
propagate upward from the refractor horizon to the receiver at the surface. The time-delay
equations are
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Figure 6.31 Surface-wave attenuation using bandpass filtering. After Baker et al. (2003).
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tij ¼ si þ rj þ
XP

k¼1
dkσk , ð6:49Þ

for each of the TX–RX pairs and P is the number of cells discretizing the refractor horizon.
The equations in (6.49) constitute a set of linear constraints that connect the measured
delay times tij to the unknown model parameters (si, rj, σk). The system of equations can be
solved using one of the linear-inversion techniques discussed later in Chapter 11.

Velocity analysis. Another critical step in the basic seismic data-processing sequence
is to determine the stacking velocity V that should be used in the NMO correction
(Equation (6.25)). Velocity analysis is a process that is performed on CMP gathers. Recall
that a CMP gather is a collection of traces that contains reflections from the same point on a
subsurface horizon; for horizontal strata, the reflection point lies directly beneath the
common TX–RX midpoint. Velocity analysis can also be performed on CMP super-
gathers. A CMP supergather is a collection of adjacent CMP gathers plotted together. If
lateral velocity variations are sufficiently small, all reflection points in a CMP supergather
are presumed to reside within the same Fresnel zone on the subsurface horizon. Velocity
analysis can also be performed in the presence of dipping layers, in which case the stacking
velocity V is used in the DMO process.

In a simple form of velocity analysis known as constant-velocity stacking (CVS), the
stacking velocity is presumed to be uniform throughout the subsurface. A sequence of
regularly spaced values of stacking velocity is tried in the NMO correction procedure, with
the optimal value being the one that best appears to flatten out the hyperbolas and provide
good lateral continuity of reflectors on the CMP (super)gather. The CVS technique is
normally applied manually, with the interpreter looking simultaneously and qualitatively
comparing different CMP gather or supergather displays, each one having been NMO-
corrected using a different stacking velocity.

A less subjective, automated method of velocity analysis involves the construction and
analysis of a semblance plot. Semblance is a robust (noise-tolerant) measure of the
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Figure 6.32 Refraction ray path associated with an undulating near-surface horizon for the (i, j)- th TX–RX pair.
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similarity between a large number of trial hyperbolas and the actual hyperbolas present on
a CMP (super)gather. A semblance contour plot is constructed with the trial stacking
velocity on the horizontal axis and the zero-offset time, or equivalently an apparent depth,
on the vertical axis. The best stacking velocity, for a given apparent depth, corresponds to
the highest value of the semblance. An example of a semblance-based velocity analysis of
a CMP supergather appears in Figure 6.33. The stacking velocity curve (solid line, left
panel) is chosen as one that joins regions of high semblance values. Using this velocity
function in the NMO process tends to flatten out the hyperbolic reflection events seen in the
CMP supergather (middle and right panels).

Linear τ–p filtering. Another means of separating primary reflection events from other
types of source-generated energy such as surface waves, refractions, direct waves, and
guided waves is via a linear τ–p transformation. The essential mathematics of the trans-
formation (Diebold and Stoffa, 1981) is summarized in Appendix C for a simple three-
layer case without dip. As shown in the appendix, transforming a shot gather from the
familiar t–x domain into the linear τ–p domain converts events that have linear moveouts,
such as direct, guided, and surface waves, into points. Hyperbolic reflecting events in the
t–x domain are mapped into elliptical-shaped curves in the linear τ–p domain. This
property facilitates the separation of wanted reflected signals from the remaining source-
generated energy, which in reflection imaging is regarded as noise. After filtering, an
inverse τ–p transformation is performed to reconstruct the original shot gather in the t–x
domain, without the source-generated noise.

A linear τ–p transformation of a synthetic shot gather is illustrated in Figure 6.34a, from
a paper by Spitzer et al. (2001). The synthetic data are generated from a four-layer velocity
model by a finite-difference simulation and are plotted for convenience using the reduced
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Figure 6.33 (Left) Determination of stacking velocity by passing a continuous curve through regions of high (red) values of
semblance; (middle) an uncorrected CMP supergather; (right) the NMO-corrected CMP supergather using the
stacking-velocity function in the left panel. After Spitzer et al. (2003).
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traveltime t' ¼ t þ 30� x=1700 [ms]. The velocity model contains a dipping reflector.
Moreover, near-surface waveguiding effects and surface waves are included in the simula-
tion. The results of the linear τ–p transformation are shown in Figure 6.34b. The black line
outlines the pass region of the τ–p filter. The pass region is selected as one which contains
mainly the elliptic-shaped curves characteristic of reflection events (see Appendix C). The
results of the inverse linear τ–p transformation are shown in Figure 6.34c. Note that the
energy from model reflectors A, B, and C is enhanced. The source-generated noise that was
removed using this procedure is shown in Figure 6.34d.

Migration. As described already, CMP stacking of NMO-corrected traces assume that all
energy originates from a single point on a subhorizontal reflecting horizon located directly
beneath the TX–RX midpoint. This assumption is not correct in the presence of dipping
reflectors or in the case of diffractions from edges. The purpose of migration is to image
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Figure 6.34 The results of linear τ–p processing on synthetic data: (a) finite-difference simulated shot gather plotted using
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subsurface dipping reflectors and diffracting points at their correct positions within the
subsurface, essentially undoing the effects of wave propagation. Over the past decade,
sophisticated algorithms have emerged for migrating seismic data on exploration length
scales (Etgen et al., 2009). An excellent survey of the development of migration from its
historical roots to its modern application in the oil and gas sector is given in Gray et al.
(2001).

Migration can be applied either before or after the CMP stack. A small number of near-
surface geophysicists have applied DMO/pre-stack migration and some have investigated
post-stack migration. It has been found, however, that data quality must be very high for
migration to be successful. Especially in the uppermost several tens of meters, strong
velocity contrasts and heterogeneities are present, leading to severe static effects and
dominant source-generated noise. Migration in this case can introduce significant artifacts
and can actually degrade a geological interpretation; thus migration is not always used for
very shallow applications. For seismic acquisition layouts that probe to greater depths, in
the range of ~ 200–500 m, data quality is typically better such that pre-stack migration is
often effective (G. Baker, personal communication.)

There are two types of migration: reverse-time and depth migration. Reverse-time
migration does not attempt to develop a geologically reasonable subsurface velocity
model; rather it uses an ad hoc velocity function that produces a pleasing image containing
coherent reflections. Depth migration is more involved as it first tries to estimate and then
utilize an accurate model of the subsurface velocity distribution. In areas of structural
complexity, however, the velocity distribution can be very difficult to determine. There are
many different migration procedures used in geophysics. A detailed exposition of the
various possibilities is beyond the scope of the book but I can refer the reader to Etgen
et al. (2009). Herein, only the elementary reverse-time Kirchhoff method is discussed. The
discussion is drawn largely from a tutorial on the Stanford Exploration Project website,
sepwww.stanford.edu.

Consider the seismic experiment portrayed in Figure 6.35, left, in which seismic energy
propagates downward and outward from a source (TX), reflects from a subsurface horizon,
and then propagates upward to a co-located receiver (RX). Notice in this scenario that three
primary reflection events will be recorded; these are shown on the illustration. The
multiplicity of reflected arrivals is a consequence of the undulations in the reflecting
horizon. Now suppose the co-located TX–RX pair is moved along the acquistion surface,

TX/RX geophones

exploding reflectorzero-offset section

Figure 6.35 The exploding-reflector concept. Adapted from material on the Stanford Exploration Project website, sepwww.
stanford.edu.
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as shown. A zero-offset time section can be constructed. However, the undulating horizon
would not be correctly imaged in the section since, as we have already seen, the single
horizon produces multiple reflection events.

Figure 6.35, right, is a schematic illustration of the exploding-reflector concept attributed
to Loewenthal et al. (1976). The main idea is that we would get exactly the same zero-
offset time section if, instead of moving the single TX–RX pair along the profile, each
point on the subsurface horizon were somehow to simultaneously explode and we could
record the resulting signals with a geophone array spread across the surface. The observed
wavefields u(x, t) in the two experiments, the actual one at left and the hypothetical one at
right, would be identical (with the exception that the traveltimes in the hypothetical
experiment are just one-half those of the actual experiment). The exploding-reflector
concept is simple yet powerful. In fact, the reader should be able to judge the validity of
the exploding-reflector concept by thinking about Huygens principle, which states that
each point on a reflecting wavefront acts as a spherically spreading point source.

Figure 6.36 illustrates how the exploding-reflector concept can be used to predict the
wavefield due to reflections from an undulating horizon. At top left is shown a single
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Figure 6.36 Forward modeling using the exploding-reflector concept.
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exploding point reflector at some location (x0, z0) in the subsurface. This explosion acts as a
point source of spherically expanding seismic energy. An analysis of the normal moveout
of this energy reveals that it should appear to a surface geophone array as a diffraction
hyperbola with its apex at (x0, t0), as shown at top right. The transformation from depth to
time is given by the familiar hyperbolic equation

V 2t2 ¼ ðx� x0Þ2 þ z20: ð6:50Þ
The middle panels show the corresponding situation for two exploding point reflectors, in
which case two diffraction hyperbolas should be observed by the geophone array. It should
now be clear that a dipping reflecting horizon can be modeled as a continuous line of
exploding point reflectors. Three of these explosions are shown for simplicity at bottom
left. The dipping reflecting horizon appears on the geophone array as the superposition of
many diffraction hyperbolas; again, just three of these are shown at bottom right. This
example shows how the exploding-reflector concept can be used to predict the wavefield
generated by seismic excitation of a physical Earth structure. The next task is to consider
the reverse process, namely, how to construct an image of the physical Earth structure
based on an observed seismic wavefield.

Figure 6.37 describes the key aspect of the Kirchhoff imaging principle. We work in two
dimensions for simplicity although the generalization to three dimensions is straightfor-
ward. At left are shown two samples of an observed seismic wavefield u(x, t). At right,
these two data points are transformed from time t into depth z using the transformation
(6.50). The seismic energy u0 that is observed at location (x0, z0) could have arrived there
from any point or points on a circle of radius Vt0, where V is the velocity of the medium;
similar remarks apply for the energy u1 at location (x1, z1). We therefore construct two
circular mirrors, as shown: a smaller one of radius Vt0 centered on (x0, z0) that has strength,
or reflectivity, u0; and a larger one of radius Vt1 centered on (x1, z1) that has strength, or
reflectivity, u1. We construct a similar circular mirror for each data sample in the wavefield.
Then, we simply add all the circles together to produce the Kirchhoff image.

To understand how Krichhoff imaging works, consider the following. Suppose the
seismic energy observed at u0(x0, t0) and u1(x1, t1) originated from just a single exploding
reflector. That reflector must be located at one of the two intersection points of the circles.

RX position, x RX position, x

time, t depth, z

u0( x0, t0)

u1( x1, t1)

Figure 6.37 Kirchhoff imaging principle.
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Adding the two circles together produces the largest amplitudes at the intersection points. In
other words, the two possible locations of the reflector contribute most to the summation.
A more detailed imaging example is shown in Figure 6.38. The left panels show, using two
different display formats, the modeled wavefield due to a dipping reflector (compare to
Figure 6.36, bottom right). This wavefield has again been computed based on the
exploding-reflector concept. Notice that the dip of the reflector is not correct. The apparent
dip is shallower than the actual dip. At right are shown the Kirchhoff circular mirrors. The
reconstructed image is the superposition of the circular mirrors. Notice that the greatest
amplitudes in the image are found, as desired, along the actual dip of the reflector.

3-D example. An example of a complete suite of 3-D seismic-reflection data-processing
steps is given by Kaiser et al. (2011). This study of an active, oblique-slip segment of the
Alpine fault zone in New Zealand is one of the first published reports on a 3-D near-surface
seismic survey. While a 3-D dataset is clearly more time-consuming to acquire and process
than a 2-D counterpart, a 3-D survey permits better imaging of complex fault geometries,
including out-of-plane reflectors and diffractors. The acquisition layout in the New Zealand
survey included 24 parallel source lines and 27 parallel receiver lines, each of ~ 500 m
length, running perpendicular to the fault strike. The source spacing was 8 m and the
receiver spacing was 4 m, which resulted in an average fold of ~ 20. The line spacing was
~ 10 m. Due to cost and time constraints, most of the TX–RX pairs however were nearly
in-line, resulting in a limited azimuthal coverage. Ideally, a 3-D seismic survey would
consist of full, densely sampled TX–RX azimuthal coverage.

Pre-stack processing steps included deconvolution, mutes, static corrections, τ–p
filtering, velocity analysis on CMP supergathers, and NMO and DMO corrections. The
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Figure 6.38 Kirchhoff reverse-time imaging of a dipping reflector. Adapted from material on the Stanford Exploration Project
website, sepwww.stanford.edu.
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effects of some of the pre-stack processing steps on a typical shot gather are shown in
Figure 6.39. It is easily seen in the figure that the result of the pre-stack processing provides
a better definition of the near-surface reflections, along with suppression of source-
generated noise.

The post-stack processing included bandpass filtering, followed by 3-D depth migration.
The migration algorithm collapsed most of the diffractions that were evident on the
unmigrated sections. The interpreted main fault strand (AF) dipping at ~ 80�, along with
a subsidiary fault strand (SF), are indicated by the dotted lines in the migrated 2-D section
at Figure 6.40, left. The strong reflecting events C1 and C2 are from, respectively, the
footwall and the hanging wall of the fault in late-Pleistocene basement. The borehole
intersects the basement at ~ 26–30 m depth, in agreement with the location of the basement
seismic reflector. The A and B reflectors are due to stratification within the overlying
glaciolacustrine and glaciofluvial sediments. The migrated full 3-D volume is shown in

0
(a) FB

C2

C2m

A

GR

(c) (d)

(b)
50

100

150

200

tim
e 

[m
s]

channel no . 40 80 12080 120

Figure 6.39 Effects of pre-stack processing steps on a high-resolution shot gather from an Alpine fault zone, New Zealand;
A ¼ air wave, GR ¼ ground roll, FB ¼ first breaks, C2 ¼ basement reflection, C2M ¼ basement reflection
multiples; (a) raw shot gather with automatic gain control (AGC) applied; (b) deconvolution and bandpass
filter applied; (c) static (refraction and residual) corrections applied; (d) mutes and τ–p filtering applied; after
Kaiser et al. (2011).
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(Figure 6.40, right) in which it can be seen that the fault zone is imaged continuously along
the strike of the main strand.

6.16 Ray-path modeling

The propagation of seismic waves though heterogeneous elastic media, possibly containing
acoustic impedance discontinuities, can be approximated by ray tracing. By analogy with
geometric optics, seismic wavefront tracking in the high-frequency approximation is
described by rays. A ray is a narrow, pencil-like beam that reflects and refracts at material
interfaces and bends as it travels in materials characterized by a continuously varying
velocity structure. The ray approximation is excellent if the seismic wavelength is small in
comparison to the characteristic length-scale of the material heterogeneities. Ray tracing
constitutes the forward modeling component of many popular seismic tomographic recon-
struction algorithms (e.g. Zelt et al, 2006).

Here we provide the classical derivation of ray trajectories x(t) and z(t) in a 2-D acoustic
medium (Eliseevnin, 1965). The acoustic wave equation is

∂2p
∂x2

þ ∂2p
∂z2

¼ 1

c2
∂2 p
∂t2

, ð6:51Þ

where c(x, z) is the acoustic wave speed and p is the pressure field. An acoustic medium
can support compressional but not shear waves. Assume that the pressure field is time
harmonic, p(x, z, t) ~ exp( – iωt). We can expand the pressure field into a power series in
inverse powers of frequency,

pðx, zÞ ¼ exp ð�iωτÞ
X∞

n¼0

un
ðiωÞn ð6:52Þ

for which τ(x, z) is a traveltime, or pseudophase, function and un(x, z) is an amplitude function.
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Figure 6.40 High-resolution near-surface reflection data from the Alpine fault zone, New Zealand: (a) a migrated 2-D section
extracted from the migrated 3-D volume shown in (b); after Kaiser et al. (2011).
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The series is rapidly convergent for the high frequencies at which the ray approximation
is valid. Inserting Equation (6.52) into (6.51) and keeping the highest-order terms results in
the eikonal equation

∂τ
∂x

� �2

þ ∂τ
∂z

� �2

� n2 ¼ 0, ð6:53Þ

where n2 ¼ 1/c2 is the squared wave slowness function.
The eikonal equation describes the spatial distribution of the traveltime τ(x, z) function in

a medium characterized by acoustic wavespeed c(x, z). The interpretation of the traveltime
function is that, for any location (x, z) within the medium, the first wave arrives at time
t ¼ τ. Hence, solving the eikonal equation provides a method for predicting the first-
arriving waveform at any location throughout the medium. To see how the ray trajectories
x(t) and z(t) are related to the eikonal equation, consider the ray shown in Figure 6.41. Let s
be the distance along the ray such that c(x, z) ¼ ds/dt.

From the figure, we can see that dx ¼ ds cos θ and dz ¼ ds sin θ. Then it follows that

dx

dt
¼ cos θ

ds

dt
¼ c ðx, zÞcos θ; ð6:54aÞ

dz

dt
¼ sin θ

ds

dt
¼ c ðx, zÞsin θ: ð6:54bÞ

We can use Equations (6.54a, b) to propagate the ray forward from point (x0, z0) if we
know the angle θ. Once the ray arrives as the new point (x1, z1) we need to know the new
ray direction θ. To find an equation for dθ/dt, the eikonal equation (6.53) is re-written as

1

n2
∂τ
∂x

� �2

þ 1

n2
∂τ
∂z

� �2

¼ 1 ¼ cos2θ þ sin2θ, ð6:55Þ

from which we can identify cos θ ¼ ð1=nÞ ∂τ=∂x and sin θ ¼ ð1=nÞ ∂τ=∂z. After some
algebra, the details of which can be found in Eliseevnin (1965), the following equation
is obtained:
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Figure 6.41 A ray emanating from point (x0, z0).

175 6.16 Ray-path modeling



dθ
dt
¼ ∂c
∂x

sin θ � ∂c
∂z

cos θ : ð6:56Þ

Together, Equations (6.54) and (6.56) represent a system of ordinary differential equations
whose solutions determine ray paths through an inhomogeneous acoustic medium. A ray-
tracing algorithm simply integrates this system of equations through time from t ¼ 0 and a
given source location (x0, z0). The geometry of a ray path is heavily influenced by the initial
take-off angle θ0.

In areas of structural complexity, iterative ray tracing can be used to determine a seismic
velocity model that is consistent with the seismic observations. The typical assumption is
that reflections mark boundaries between undulating layers of uniform velocity. The
essential rule is that the rays obey Snell’s law at each interface. Some examples of ray
tracing in complex geology are shown in Figure 6.42. Information about the subsurface is
obtained only for those regions that are illuminated by rays. Note that, for each of the three
subsurface sources shown in Figure 6.42 right, rays that emanate with slightly different
take-off angles can follow very different pathways and provide information about very
different structures within the model.

In Figure 6.43, it is shown how ray tracing can be used to understand complex wavefront
morphologies, such as a triplication, which can develop even for relatively simple struc-
tures such as a slow anomaly embedded in a faster host medium. The convoluted shape of
the wavefront at time t þ Δt may also be understood by applying Huygen’s principle to the
wavefront at time t. The three arc segments labeled 1, 2, and 3 comprising the triplication
form a characteristic “bowtie” structure. The inset in the figure shows that the signal at the
receiver contains three distinct arrivals corresponding to the three ray paths. The first
arrival is via ray path 1, which has traversed only the faster host medium. The second and
third arrivals are via ray paths 2 and 3, respectively, which have traversed the slower
anomalous zone.
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Figure 6.42 (Left) Rays traced from a subsurface source (green dot) through a complex-shaped fast-velocity anomaly
to the surface (after Gjoystdal et al. 2007). (Right) Different ray paths are possible in complicated
models, such as this one containing a pinchout, overturned fold, and anomalously fast body
(after Hauser et al., 2008).
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6.17 Illustrated case studies

The following two case studies illustrate recent developments of the seismic-reflection and
-refraction techniques for near-surface investigation.

Example. 3-D refraction tomography at a contaminated site.

A 3-D seismic-refraction survey at a Superfund site within Hill Air Force Base in Utah is
described by Zelt et al. (2006). A long history at this location of using chlorinated solvents
as an industrial cleansing agent has led to the infiltration of DNAPL contaminants below
ground surface and their pooling at the base of a surficial sand and gravel aquifer of 2–15 m
thickness. The water table is at 9–10 m depth. The refraction survey objective was to
image, over an area of ~ 0.4 ha, a paleochannel incised into the top surface of an
impermeable silty clay layer that underlies the aquifer. A static array of 601 40-Hz
geophones connected to data loggers sampling at 1 ms was laid out in 46 parallel lines,
each containing either 13 or 14 geophones, with 2.1-m line spacing and 2.8-m station
spacing. A total of 596 shots were deployed using a .22-caliber rifle, with each shotpoint
nominally located, where possible, within 0.3 m of a geophone. The maximum TX–RX
offset distance is 102 m. The resulting shot gathers were minimally filtered using a
bandpass filter to remove ground roll and a 60/120-Hz notch filter to remove cultural
electrical noise caused by routine base activities. A few of the first-arrival picks, and the
survey geometry, were shown earlier in Figure 6.26.

The 3-D regularized tomographic algorithm described by Zelt and Barton (1998) was used
to convert the observed first-arrival traveltimes into a subsurface velocity model. The
algorithm, which uses ray tracing as the forward module, favors subsurface models which
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Figure 6.43 Ray paths for a medium containing a slow velocity anomaly showing a triplication. The bottom, top, and middle
rays are respectively the first, second and third arrivals at the receiver. After Hauser et al. (2008).
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contain smooth spatial variations in the velocity structure; i.e. spatially rough velocity
models are suppressed. A discussion of tomographic methods and their regularization
appears later in this book in Chapter 12. The starting 1-D velocity model, along with
horizontal and vertical slices through the preferred final 3-D tomogram, are shown in Figure
6.44. It is easily seen that a low-velocity zone outlines the shape of the incised paleochannel
inferred from drilling and well data. This case study demonstrates both the feasibility and
utility of tomographic reconstruction of the near-surface 3-D seismic velocity distribution
beneath a contaminated site located at an active military-industrial facility.

Example. Reflection imaging of a buried subglacial valley.

Buried subglacial valleys that form as continental ice sheets retreat are interesting geo-
physical targets since they often do not have a distinctive geomorphological signature, they
provide a record of climate history, and they can host valuable resources such as ground-
water, sand and gravel aggregates, and methane gas. Ahmad et al. (2009) describe a high-
resolution seismic-reflection survey conducted over a subglacial valley in northwestern
Alberta, Canada to determine its architecture and to study the hydrological and mechanical
processes beneath retreating ice sheets.

The study area is covered by Quaternary glacial deposits left in the wake of Wisconsin
glaciation ~ 10 ka. The underlying bedrock is Cretaceous shales ~ 100 Ma, beneath which
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Figure 6.44 3-D refraction tomography at a contaminated site: (a) starting 1-D velocity model; (b) horizontal slice at depth
z ¼ 10 m through the final preferred tomogram; (c) vertical slice at location y ¼ 41 m; green and white contours
mark the incised paleochannel inferred from well data. After Zelt et al. (2006).
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are Paleozoic carbonates ~ 340 Ma. The presumably steep-walled valley is filled with
~ 300-m drift, mainly stratified tills and coarse-grained glaciofluvial and glaciolacustrine
sediments. A previously known geophysical log intersected a shallow, high-resistivity
(30–100 Ω m) gas-bearing zone at 64–72-m depth.

The objective of the reflection survey was to image the uppermost ~ 350 m. Acquisition
parameters included 4-m geophone spacing and 24-m shotpoint spacing along a 10-km
profile using a source consisting of a vibrator swept in frequency from 20–250 Hz and a
240-channel seismograph. A standard CMP data processing sequence was used with
average fold ~ 40. Strong near-surface lateral heterogeneity due to muskeg caused trouble-
some statics that affected the traveltimes to deeper reflectors. Stacking velocities were
determined using a semblance-based velocity analysis. Higher velocities were found to the
west that indicated the presence of a thick Cretaceous sequence there. Seismic-refraction
analysis and a co-located electrical resistivity tomography (ERT) profile strongly supported
this inference.

The final processed reflection profile is shown in Figure 6.45. It shows some washed-out
zones marked “w” that extend vertically through the section. These do not contain any
reflections and could be associated with free gas saturation. The Cretaceous–Paleozoic
unconformity marked “pK” at ~ 300 m depth is the most conspicuous reflecting horizon; it
is present all along the profile except in the washout zones. The pK reflection horizon
appears to undulate but this could be caused by lateral velocity variations in the overlying
zones. Lower velocities occur toward the east, associated with thickening of the low-
velocity Quaternary fill and the absence of Cretaceous strata. These low velocities tend also
to “pull down” the pK reflector. The reflection data poorly image the putative steep valley
wall (suggested by the refraction and ERT data) at ~ 3–4 km along the profile. There are
some reflectors contained within the Quaternary fill marked as “Q1” and “Q2”. There is
some concern that these might be multiply reflected events but generally they indicate
internal stratification within the Quaternary fill layer.
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Figure 6.45 Seismic-reflection profile from a buried subglacial valley, Alberta, Canada. See text for details.
After Ahmad et al. (2009).
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Problems

1. Show that the law of reflection and Snell’s law of refraction may be derived from
Fermat’s principle of least time, which states that the ray path from a seismic source to
a seismic receiver is the one that minimizes the traveltime along the path.

2. Assuming that the TX–RX offset distance x is much less than the layer thickness h,
which of course is not always a good assumption in near-surface geophysics, show
that the NMO correction is approximately ΔT(x) ~ x2/2T0V1

2.
3. Consider a reflection seismic experiment that includes both diffraction from an edge

and multiple reflections. Show that the diffraction hyperbola and the multiple reflec-
tions do not align horizontally if an NMO correction based on the primary reflection is
applied to each trace. Use the same x << h approximation as in the previous exercise.

4. Assume that the velocity V is known in a reflection experiment over a dipping
interface. Derive expressions for down-dip and up-dip traveltimes τD and τU based
on a single source location and a single (moveable) geophone. How might the dip
angle φ and depth to the interface h be derived from the two traveltime measurements,
assuming that the dip angle φ is small enough that the depth h to the interface is
approximately the same for both the up-dip shot and the down-dip shot. What
additional measurement, apart from the direct-wave traveltime, should be made if
the velocity V is also to be determined?

5. Show that the seismic-refraction cross-over distance xC, beyond which the head wave
arrives earlier than the direct wave, is given by the formula

xC ¼ 2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV 2 þ V 1Þ=ðV 2 � V 1Þ:

p
6. Consider a down-dip refraction experiment. (a) Show that the head-wave traveltime

curve TD(x) is given by Equation (6.39), which implies that the down-dip refracted
wave moves out with apparent velocity VD ¼ V 1=sinðiC þ φÞ: (b) Using a similar
analysis, show that the apparent up-dip velocity is VU ¼ V 1=sinðiC � φÞ: (c) Show
that the dip angle is given by Equation (6.40).

7. Consider a short pulse consisting of the superposition of two equal-amplitude sinus-
oidal waves each of the form exp[i(ωt – βx)] and oscillating at closely spaced
frequencies ω ± Δω/2 and wavenumbers β ± Δβ/2. Show that the pulse consists of
beats, which move with a group velocity vg that is related to the phase velocity vp of
the individual sinusoids by vg ¼ vp þ βdvp/dβ.

8. Show that the bulk modulus, for an elastic body under hydrostatic pressure, is the ratio
of the pressure p to the dilatation Δ.

9. Derive Equation (6.7a) starting from Equation (6.6).
10. Show that the refraction traveltime curve t2(x) for propagation through a two-layer

Earth is given by the equation
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t2ðxÞ ¼ x

V 3
þ 2h2

V 2
cos θC2 þ 2h1

V 1
cos θC1,

where the upper layer is characterized by thickness and velocity (h1, V1), the underlying
layer by (h2, V2) and the terminating halfspace by velocity V3. This equation is the form of
a straight-line segment with slope 1/V3 and intercept given by the sum of the last two terms.
11. Derive the eikonal Equation (6.53).
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