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Plasma dynamics and equilibrium

One way to model the dynamics of the plasma contained in a reactor would be to
calculate rigorously the trajectory of each of the charged particles using Newton’s
laws. This is not feasible for many reasons: (i) the number of charged particles is
too large given the typical densities (1016−1018 m−3) and the reactor volume (a
few litres); (ii) charged particles move in response to the electromagnetic (Lorentz)
force associated with electromagnetic fields, which in this case are generated by the
presence and motion of all the other charged particles – that is, by local space charge
and currents; the problem is non-linear and should be solved self-consistently; (iii)
particles experience collisions that modify their velocities and energies on very
short time scales.

Q (i) How many ions are there in a cubic millimetre (V = 10−9 m3) of plasma
of charged particle density n = 1016 m−3?
(ii) How far will an electron travel in t = 0.1 μs when accelerated in vacuum
from rest by an electric field of E = 102 V m−1?
(iii) In a typical low-pressure, electrical discharge plasma a large fraction
of electrons have speeds around v = 106 m s−1 and collide with gas atoms
typically every λ ∼ 10−1 m, depending on the pressure; what is the average
time between successive collisions?

A (i) N = n × V = 107.
(ii) s = 1

2 (eE/m) t2 ≈ 10−1 m.
(iii) τ = λ/v ∼ 10−7 s.

The first level of simplification of the above problem is achieved in particle-in-
cell (PIC) computer simulations. The basic idea behind the PIC method is indeed to
solve Newton’s law and the electromagnetic fields simultaneously, including colli-
sions between particles. However, the difference between a simulated plasma and
a real plasma lies in the representation of the charges, the fields and the space-time
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in which the phenomena occur. In a PIC simulation a large number of neighbour-
ing charged particles are represented by a ‘super-particle’; it is always multiply
charged and has the same charge-to-mass ratio as that of the actual particles. The
large number of charges in a plasma are thus replaced by a much smaller number
of these super-particles. Time and space are discretized and the calculations of
electromagnetic fields and super-particle motions are done iteratively until a steady
state is reached. PIC simulations are useful to understand subtle kinetic phenom-
ena, but the computational time required is often too long to model the general
macroscopic behaviour using purely numerical schemes.

From an analytical point of view, there are two approaches to the modelling
of the plasma dynamics: one based on kinetic theory and the other based on fluid
theory. The first is a microscopic approach and relies on statistical physics. Velocity
(or energy) distribution functions are introduced, f (r, v, t), and the evolution of
these distributions is solved using conservation laws. Kinetic theory is useful to
model non-linear wave–particle interactions and collisionless phenomena such as
stochastic heating. Knowledge of the velocity distribution function is also impor-
tant in detailed calculations of transport and reaction coefficients. However, kinetic
calculations are too complicated to describe the macroscopic behaviour of a plasma
reactor. Most of the fundamental properties described in this text do not require
a kinetic treatment and will be addressed by a macroscopic fluid theory (hydro-
dynamics). For this, macroscopic quantities such as the fluid density n, the fluid
velocity, u, etc. are obtained from integrations over velocity of the distribution
function f (r, v, t).

In the following the basic ideas of kinetic theory will be introduced along with
definitions of distribution functions, thermal equilibrium distributions, and various
averages over these distributions. Some basic concepts of collisions and reactions
will also be presented. The fluid equations will then be introduced – the exact
derivation of these equations, starting from kinetic equations, is beyond the scope
of this text (details can be found in many plasma physics textbooks such as [23]).
The fluid equations will then be combined to obtain particle and energy balance
equations that are the building blocks of the physics described in this book. Finally,
the fluid equations will be linearized to examine the propagation of electromagnetic
and electrostatic perturbations.

2.1 The microscopic perspective

2.1.1 Distribution functions and Boltzmann equation

The kinetic theory of gases is a useful starting point from which to appreciate the
microscopic view of plasmas. Consider N particles with a random distribution of
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positions (r) and velocities (v). The velocity distribution function f (r, v, t) defines
the number of particles being at a given time t inside the six-dimensional elementary
volume of phase space dxdydz × dvxdvydvz. It is sometimes convenient to express
this elementary volume in a more compact notation, namely d3r d3v. The number
of particles dN in the volume d3rd3v in the neighbourhood of the position r, with
velocity around v, is thus

dN = f (r, v, t) d3r d3v. (2.1)

Having defined the velocity distribution function, one can then calculate macro-
scopic quantities by averaging over the velocity coordinates. These macroscopic
quantities are determined by taking the velocity moments of the distribution func-
tion. They are the basic variables of the fluid theory presented in Section 2.2. The
first of these is the particle density defined as

n(r, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (r, v, t) d3v. (2.2)

The average value of any quantity in a distribution of particles is found in
statistical mechanics by integrating over the distribution weighted by that quantity,
divided by the total number of particles in the distribution. It is usual to denote this
process by angled brackets so for example the mean velocity, also called the drift
velocity, is

< v(r,t)) > =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ vf (r, v, t) d3v∫ ∞

−∞
∫ ∞
−∞

∫ ∞
−∞ f (r, v, t) d3v

;

the drift velocity is often given the more concise notation u(r, t). The total particle
flux can therefore be defined as

�(r, t) = n(r, t)u(r, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
vf (r, v, t) d3v. (2.3)

Similarly, the total kinetic energy density in the distribution is given by

w = n(r, t) <
1

2
mv2 > = 1

2
m

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
v2f (r, v, t) d3v, (2.4)

where m is the particle mass. It turns out that the kinetic energy density can
be divided into two components, one associated with the random motion of the
particles and the other associated with the net drift:

w = 3

2
p(r, t) + n(r, t)

1

2
m u(r, t)2; (2.5)
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the first term is identified with the internal energy density, so p(r, t) is the isotropic
pressure, and the second term is due to the net flow of momentum. When the drift
velocity is zero, that is for symmetrical distribution functions, the net momentum
flow is zero and the kinetic energy density is just proportional to the pressure.

Distribution functions obey a conservation equation that has the form of a conti-
nuity equation. Particles enter and leave an elementary volume and can be produced
by ionizating collisions, or destroyed by recombination, within this volume. The
equation governing the evolution of the distribution is called the Boltzmann equa-
tion, and is given by (see for example [2])

∂f

∂t
+ v · ∇rf + F

m
· ∇vf = ∂f

∂t

∣∣∣∣
c

, (2.6)

where the force acting on charged particles is F = q [E + v × B], with q the particle
charge, and E and B the local electric and magnetic fields, respectively. The right-
hand side of Eq. (2.6) is a symbolic representation of collision processes and in
practice it can be difficult to set up a model for what this symbol represents (e.g.,
see [2]). The velocity moments of this equation allow one to construct the fluid
equations, described in Section 2.2.

2.1.2 Thermal equilibrium distributions

Equation (2.6) effectively follows the continuous evolution of the distribution func-
tion in response to the electromagnetic forces acting on the charged particles and to
the various relaxation processes including many types of collisions. Nevertheless,
within a plasma, the distribution function of electrons in particular is often near
a thermal equilibrium distribution called the Maxwellian distribution (also known
as a Maxwell–Boltzmann distribution). The Maxwellian distribution conveniently
relates a characteristic electron temperature to the average energy of electrons and
to the mean speed of electrons. However, in the calculation of ionization or excita-
tion coefficients, it is sometimes important to take account of the deviation of the
actual distribution of electron energies from a Maxwellian.

In the remainder of this section the spatial and temporal dependence of the
distribution function will not be written explicitly, so f (r, v, t) → f (v).

Q Distinguish between v, v and vx.
A v is the velocity vector, v = (v2

x + v2
y + v2

z )1/2 is the magnitude of the velocity
vector (also called the speed) and vx is the x-component of the velocity vector
(effectively the speed in the x-direction).
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Figure 2.1 A one-dimensional Maxwellian velocity distribution normalized so
that the area under the curve is unity: f0(vx) = (m/2πkT )1/2 exp

(−mv2
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)
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The Maxwellian three-dimensional velocity distribution is given by

f (v) = n
( m

2πkT

)3/2
exp

⎛⎝−
m

(
v2

x + v2
y + v2

z

)
2kT

⎞⎠ , (2.7)

where n is the particle number density defined in Eq. (2.2). The distribution function
f (v) is proportional to the number of particles with velocities between v and v + dv.
Figure 2.1 shows the one-dimensional version, the component velocity distribution,
that is obtained by integrating over vy and vz:

f (vx) = n
( m

2πkT

)1/2
exp

(
−mv2

x

2kT

)
.

Using Eqs (2.3) and (2.4), one can evaluate important averaged (mean) quantities.
First note that the net particle flux, Eq. (2.3), in any particular direction must be
zero, because the distribution is symmetrical and thus the drift velocity is zero. One
can still evaluate a characteristic speed by averaging |v| = v over the distribution:

< v > =
( m

2πkT

)3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
v2

x + v2
y + v2

z

)1/2

× exp

⎛⎝−
m

(
v2

x + v2
y + v2

z

)
2kT

⎞⎠ dvxdvydvz. (2.8)
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Q What does the condition of thermal equilibrium require of the mean of a
distribution of particle velocities?

A The mean velocity must be zero otherwise there would be a net flow and
therefore internal processes would not be in equilibrium.

Since the Maxwellian velocity distribution is isotropic (the same in all direc-
tions), the distribution can also be expressed entirely in terms of the scalar speed
rather than the velocity vector, v, and its components, vx, vy, vz. This simplifies the
integral in Eq. (2.8).

The speed distribution fs(v) gives the proportion of particles with speeds between
v and v + dv:

fs(v) = n
( m

2πkT

)3/2
4πv2 exp

(
−mv2

2kT

)
, (2.9)

where the factor of 4π represents an integration over all the angles in which particle
trajectories may point. The density is now recovered by integrating over all possible
speeds,

n =
∫ ∞

0
fs(v) dv.

The mean speed of a particle is then defined by

< v > =
( m

2πkT

)3/2
4π

∫ ∞

0
v3 exp

(
−mv2

2kT

)
dv. (2.10)

This average (or mean) speed, < v >, is also often given the symbols v or c; the
former will be used here. Evaluating the integral in Eq. (2.10) gives

v =
(

8kT

πm

)1/2

. (2.11)

Q According to Figure 2.2, what is the most probable speed for a particle in a
Maxwellian distribution?

A The figure has a peak that corresponds with the most probable speed at
v (m/2kT )1/2 = 1. This corresponds with v = (2kT /m)1/2, which is clearly
not the same as the mean speed v which is about 13% larger.

Electrons have a small mass and, in gas discharge plasmas, a high temperature.
Using the typical value of T ≈ 30 000 K leads to ve ≈ 106 m s−1. This is much
larger than the typical drift speeds observed in the plasma. By contrast, ions are
heavy particles and are close to room temperature, typically T ≈ 500 K, so that for
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Figure 2.2 A Maxwellian speed distribution normalized so that the area under the
curve is unity: fs(v) = (4/
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argon ions vi ≈ 500 m s−1. In Chapter 3 it will be shown that ions leave the plasma
with drift speeds significantly larger than vi. Therefore, except in the very central
region of the plasma, ions are far from thermal equilibrium.

In a similar way, the isotropic distribution of particle speeds can be recast as a
distribution in energy space with fe(ε) being the number of particles with kinetic
energy between ε and ε + dε:

fe(ε) = 2n√
π

(
1

kT

)3/2

ε1/2 exp
(
− ε

kT

)
. (2.12)

Q What is the most probable energy for a particle in a Maxwellian distribution
(Figure 2.3)?

A The most probable energy corresponds with the peak at ε = kT /2.

The kinetic energy density can be found from the velocity distribution by mul-
tiplying the energy distribution by ε = mv2/2 and integrating over all energies:

w = 2n√
π

(
1

kT

)3/2 ∫ ∞

0
ε3/2 exp

(
− ε

kT

)
dε = 3

2
nkT . (2.13)

Since w ≡ n < ε >, the average kinetic energy of a particle is 3kT /2. The distri-
bution is isotropic and any particle is free to move in three independent directions,
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Figure 2.3 A Maxwellian energy distribution normalized so that the area under
the curve is unity: fe(ε) = (2/

√
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suggesting that the average energy corresponds with kT /2 in each of the three
translational degrees of freedom.

Q How can the mean kinetic energy per particle of a Maxwellian distribu-
tion be obtained, considering only energy associated with its motion in the
x-direction?

A Multiply the velocity distribution by mv2
x/2 and integrate over all velocities

to get the total kinetic energy associated with the x components of motion
and then divide by n to get the average energy per particle:

<
mv2

x

2
> =

( m

2πkT

)3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

mv2
x

2

× exp

(
−m(v2

x + v2
y + v2

z )

2kT

)
dvxdvydvz.

The integrals are standard ones and the result confirms the suggestion that
each degree of freedom has a mean thermal energy of kT /2 associated with
it. Note that the characteristic temperature T of a Maxwellian distribution
gives a measure of thermal energy.
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Although the random thermal flux of particles is zero for a Maxwellian distri-
bution, it is useful to have a local measure of the flux crossing any particular plane
at any time as a consequence of the thermal motion of particles. For the particles
crossing the x−y plane in the positive z-direction, this is determined by an integral
over all x and y components of velocity, but only positive z components:

�random = n
( m

2πkT

)3/2
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

0
vz exp

(
−mv2

2kT

)
dvz. (2.14)

Evaluating this integral yields

�random = n

(
kT

2πm

)1/2

.

Using the expression for the random speed in Eq. (2.11), this can also be written

�random = nv

4
. (2.15)

Given the very large difference between the electron average speed and the ion
average speed, the thermal flux of electrons heading towards the plasma boundaries
is very large compared to the thermal flux of ions leaving the plasma. Ions and
electrons are created at the same rate within the plasma volume and the main loss
mechanism is often recombination at the walls. So, to maintain the flux balance at
the wall in the steady state, as will be seen later, the potential in the plasma must
be higher than the potential at the wall. In effect, close to the wall the potential
falls by �φ with respect to the plasma. In that case only electrons with sufficient
perpendicular velocity, vz >

√
2e�φ/m, can reach the wall. The particle flux

leaving the plasma is the same as that reaching the wall; that is,

�wall = n
( m

2πkT

)3/2
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞
√

2e�φ/m

vz exp

(
−mv2

2kT

)
dvz.

(2.16)

Evaluating the integral Eq. (2.16) yields

�wall = nv

4
exp

(
−e�φ

kT

)
. (2.17)

The energy flux leaving the plasma can also be calculated in a similar manner:

Q = n
( m

2πkT

)3/2 m

2

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞
√

2e�φ/m

v2vz exp

(
−mv2

2kT

)
dvz.

(2.18)
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This can be shown to give

Q =
[
nv

4
exp

(
−e�φ

kT

)]
(2kT + e�φ) . (2.19)

The energy flux leaving the plasma is not equal to the energy flux reaching the
wall because some of the energy is deposited in the electrostatic field at the plasma
boundary. The amount of energy flux reaching the wall is only

Qw =
[
nv

4
exp

(
−e�φ

kT

)]
2kT . (2.20)

The term in square brackets is just the number of particles lost to the wall per
square metre per second. The average kinetic energy carried out by each particle
that escapes therefore is 2kT .

Q The SI unit for energy is the joule (J); in atomic, molecular and plasma physics
an alternative energy unit, the electron volt (eV), is formed by dividing the
quantity in joules by the magnitude of the electronic charge, e, so that 1 eV ≡
1.602 × 10−19 J. What is the equivalent temperature in eV of a distribution
with kT = 3.2 × 10−19 J?

A The temperature is said to be “2 eV” because kT /e = (3.2 × 10−19/e) V ≈
2 V.

Exercise 2.1: Electron energy flux to a wall For a Maxwellian electron
population of 1016 m−3 with mean energy 2 eV, calculate the rate of energy
transfer to a wall that is at −10 V with respect to the plasma.

2.1.3 Collisions and reactions

The different types of particle in a plasma (electrons, ions, atoms, free radicals,
molecules) interact in the volume via collision processes that occur on very short
time scales. These collisions can be elastic (without loss of total kinetic energy) or
inelastic (with transfer between the kinetic energy and the internal energy of the
colliding particles).

In the simple situation of weakly ionized plasmas in noble gases, the most
frequent collisions involving charged particles are elastic encounters with neutral
atoms.

Collisions between charged particles (electron–electron, electron–ion and ion–
ion) are not frequent and direct electron–ion recombination is usually negligible
in the volume of low and medium-density plasmas at low pressure. Consequently,
the charged particles tend to be generated in the plasma volume by ionization
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