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INTRODUCTION

The application of chemical kinetics to even homogeneous solutions is
often arduous. When kinetic theories are applied to heterogeneous soil
constituents, the problems and difficulties are magnified. With the latter in
mind, one must give definitions immediately for two terms—Kkinetics and
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chemical kinetics. Kinetics 1s a general term referring to time-dependent
phenomena. Chemical kinetics can be defined as the “‘study of the rate of
chemical reactions and of the molecular processes by which reactions occur
where transport is not limiting” (Gardiner, 1969). In soil systems, many
kinetic processes are a combination of both chemical kinetics or reaction-
controlled kinetics, and transport-controlled kinetics. In fact, many of the
studies conducted thus far on time-dependent behavior of soils and soil
constituents have been involved with transport-controlled kinetics and not
chemical kinetics. The reasons for this are discussed later.

There are two salient reasons for studying the rates of soil chemical
processes: (1) to predict how quickly reactions approach equilibrium or
quasi-state equilibrium, and (2) to investigate reaction mechanisms. There
are a number of excellent books on chemical kinetics (Laidler, 1965;
Hammes, 1978; Eyring et al., 1980; Moore and Pearson, 1981) and chemi-
cal engineering kinetics (Levenspiel, 1972; Froment and Bischoff, 1979) that
the reader may want to refer to. The purpose of this chapter is to apply
principles of chemical kinetics as discussed in the preceding books to soil
chemical processes.

RATE LAWS

Differential Rate Laws

To fully understand the kinetics of soil chemical reactions, a knowledge
of the rate equation or rate law explaining the reaction system is required.

By definition, a rate equation or law is a differential equation. In the
following reaction (Bunnett, 1986),

aA + bBB——yY + zZZ (2.1)

the rate is proportional to some power of the concentrations of reactants A
and B and/or other species (C, D, etc.) present in the system. The power
to which a concentration is raised may equal zero (i.e., the rate may be
independent of that concentration), even for reactant A or B.

For reactions occurring in liquid systems at constant volume, reaction
rate is expressed as the number of reactant species (molecules or ions)
changed into product species per unit of time and per unit of volume of the
reaction system. Rates are expressed as a decrease in reactant concentra-
tion or an increase in product concentration per unit time. Therefore, if the
substance chosen is reactant A, which has a concentration [A] at any time
t. the rate is (—d[A])/(dr), while the rate with regard to a product Y having
a concentration [Y] at time ¢ is (d[Y])/(dt).
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However, the stoichiometric coefficients in Eq. (2.1), @, b, y, and z, must
also be considered. One can write

d[Y]/dt _ —d[A]/dt
y a

where k is the rate constant and « is the order of the reaction with respect
to reactant A and can be referred to as a partial order. Similarly, the partial
order B is the order with respect to B. These orders are experimental
quantities and are not necessarily integral. The sum of all the partial
orders, a, B, ... is referred to as the overall order (n) and may be
expressed as,

= k[A]"[B]?: - (2.2)

n=a+ B+ (2.3)

Once the values of a, B, etc. are determined, the rate law is defined.
Reaction order is an experimental quantity and conveys only information
about the manner in which rate depends on concentration. One should not
use order to mean the same as ‘“‘molecularity,”” which concerns the number
of reactant particles (atoms, molecules, free radicals, or ions) entering into
an elementary reaction. An elementary reaction is one in which no reac-
tion intermediates have been detected, or need to be postulated to describe
the chemical reaction on a molecular scale. Until other evidence is found,
an clementary reaction is assumed to occur in a single step and to pass
through a single transition state (Bunnett, 1986). The stoichiometric coef-
ficients in the denominators of the differentials of Eq. (2.2) guarantee that
the equation represents the rate of reaction regardless of whether rate of
consumption of a reactant or of formation of a product is considered.

Rate laws are determined by experimentation and cannot be inferred
only by examining the overall chemical reaction equation (Sparks, 1986).
Rate laws serve three primary purposes: (1) they permit the prediction of
the rate, given the composition of the mixture and the experimental value
of the rate constant or coefficient; (2) they enable one to propose a mech-
anism for the reaction; and (3) they provide a means for classifying reac-
tions into various orders.

Kinetic phenomena in soil or on soil constituents can be described by
employing mechanistic rate laws, apparent rate laws, apparent rate laws
including transport processes, or mechanistic rate laws including transport
(Skopp, 1986).

Mechanistic Rate Laws

Definition and Verification. The use of mechanistic rate laws to study
soil chemical reactions assumes that only chemical kinetics phenomena are
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being studied. Transport-controlled kinetics which involve physical aspects
of soils are ignored. Thus, with mechanistic rate laws, mixing and/or flow
rates do not influence the reaction rate (Skopp, 1986).

The objective of a mechanistic rate law is to ascertain the correct
fundamental rate law. The reaction sequence for determination of mecha-
nistic rate laws may represent several reaction paths and steps either purely
in solution or on the soil surface of a well-stirred dilute soil suspension. All
processes represent fundamental steps of a chemical rather than a physical
nature (Skopp, 1986).

Given the following elementary reaction between species A, B, and Y,
the chemical equation is

A+2B ==Y (2.4)

A forward reaction rate law can be written as
d[A]/dr = ~k,[A][B]? (2.9)

where &, is the forward rate constant.
The reverse reaction rate law for Eq. (2.4) can be expressed as

d[A]/dt = +k_, [Y] (2.6)

where k_, is the reverse rate constant.

For chemical kinetics to be operational and thus Egs. (2.5) and (2.6) to
be valid, Eq. (2.4) must be an elementary reaction. To definitively deter-
mine this, one must prove experimentally that Eq. (2.4) and the rate law
are valid.

To verify that Eq. (2.4) is indeed elementary, one can employ experi-
mental conditions that are dissimilar from those used to ascertain the rate
law. For example, if the k values change with flow rate, one is determining
nonmechanistic or apparent rate coefficents. This was the case in a study by
Sparks er al. (1980b), who studied the rate of potassium desorption from
soils using a continuous flow method (Chapter 3). They found the apparent
desorption rate coefficients (k) increased in magnitude with flow rate
(Table 2.1). Apparent rate laws are still useful to the experimentalist and
can provide useful time-dependent information.

The determination of mechanistic rate laws for soil chemical processes is
very difficult since microscopic heterogeneity is pronounced in soils and
even for most soil constituents such as clay minerals, humic substances,
and oxides. Heterogeneity can be enhanced due to different particle sizes,
types of surface sites, etc. As will be discussed more completely in Chapter
3. the determination of mechanistic rate laws is also complicated by the
type of kinetic methodology one uses. With some methods used by soil and
environmental scientists, transport-controlled reactions are occurring and
thus mechanistic rate laws cannot be determined.
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TABLE 2.1 Effect of Flow Velocity on the Magnitude of the k; of
the Ap and B22t Soil Horizons from Nottoway County”

ky(h ')
Flow velocity
Horizon (ml min‘t) Al-saturated Ca-saturated
Ap 0.0 0.83 1.11
0.5 0.85 1.18
1.0 0.87 1.23
1.5 0.91 1.32
B22t 0.0 0.33 0.26
0.5 0.37 0.28
1.0 0.41 0.30

“These k) values were obtained by plotting a regression line of the triplicate
kj values (determined in triplicate experiments) versus flow velocity. The r
values were 0.970 and 0.973 for the Ap and B22t horizons, respectively. which
werc significant at the 19 level of probability. From Sparks et al. (1980b), with
permission.

Skopp (1986) has noted that Eq. (2.5) or (2.6) alone, are only applicable
far from equilibrium. For example, if one is studying adsorption reactions
near equilibrium, back or reverse reactions are occurring as well. The

- complete expression for the time dependence must combine Egs. (2.5) and
(2.6) such that,

d[A)/dt = —k,[|A][B]* + k_.[Y] 2.7

Equation (2.7) applies the principle that the net reaction rate is the
difference between the sum of all reverse reaction rates and the sum of all
forward reaction rates.

Determination of Mechanistic Rate Laws and Rate Constants. One can
determine mechanistic rate laws and rate constants by analyzing data in
several ways (Bunnett, 1986; Skopp, 1986). These include ascertaining
initial rates, using integrated rate equations such as Eqs. (2.5)—(2.7) di-
rectly and graphing the data, and employing nonlinear least-square tech-
niques to determine rate constants.

Graphical Assessment Using Integrated Equations Directly. Another
way to ascertain mechanistic rate laws is to use an integrated form of
Eq. (2.7). One way to solve Eq. (2.7) is to conduct a laboratory study and
assume that one species is in excess (i.e., B) and therefore, constant. Mass
balance relations are also useful. For example [A] +[Y] = A, + Y, where
Y, is the initial concentration of product. One must also specify an initial
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condition to solve rate equations. For example, Eq. (2.7) can be solved
by assuming that [B] is constant and Y, = 0 and letting the initial condition
be specified by A = Aj att = 0. Dropping the brackets from Eq. (2.7) for
the sake of simplicity one obtains (Skopp, 1986):

A/Ao = {k_y + ke exp[—t(ke + k- DI}/ (ke + k-)) (2.8)

where k. = kB
Equation (2.5) can also be integrated using the same initial conditions
and one obtains a first-order equation (Skopp, 1986):

A/Ay = exp(—k.) (2.9)

If Eq. (2.9) is appropriate, a graph of log (A/Ag) vs. ¢ should yield a
straight line with a slope equal to —k.. However, based on this result
alone, it is tenuous to conclude that Eq. (2.5) is the only possible inter-
pretation of the data and that a straight-line graph indicates a first-
order reaction. One can make these conclusions only if no other reaction
mechanisms result in such a graphical relationship.

Similar arguments hold for the integrated form of Eq. (2.6) when
Y=Y,att=0and A = Y, — Y such that

AlYy =1 — exp(k_t) (2.10)

The solution to Eq. (2.7) assuming [B] is constant and A, = 0 is (Skopp,
1986),

AlYy = [k_/(ke + k)1 —exp[—t(k. + k_]} (2.11)

Graphs of log (1 — A/Y}) vs. t are commonly used to test the validity of
Eq. (2.10). However, Eq. (2.11), like Eq. (2.8), shows more complex
behavior than simple graphical methods reveal. Thus, one should be
cautious about making definitive statements concerning rate constants and
particularly mechanisms, based solely on data according to integrated equa-
tions like those in Egs. (2.9) and (2.10) unless other reaction mecha-
nisms have been ruled out.

Often when time-dependent data are plotted using an equation for a
particular reaction order, curvature results. There are several explanations
for this. It can be caused by an incorrect assumption of reaction order. For
example, if first-order kinetics is assumed but the reaction is second-order,
downward curvature is observed (Bunnett, 1986). If second-order kinetics
is assumed but the reaction is really first-order, upward curvature results.
Curvature could also be due to fractional, third, or higher reaction orders
or to mixed reaction orders.

If a reaction progresses to a state of equilibrium that is short of
completion, a kinetic plot based on the assumption that the reaction went
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to completion shows downward curvature with an eventual zero slope.
Curvature can also be caused by temperature changes during an experi-
ment. Decreasing temperature causes downward curvature, and increasing
temperature results in upward curvature (Bunnett, 1986). These changes
can result if temperature is not held constant during an experiment, or if
the temperature of the sorptive solution is not the same as that used in the
kinetic run.

Curvature can also be caused by side reactions. However, these reactions
do not always cause deviations from linearity (Bunnett, 1986). This is
another reason one should not make definitive conclusions about a linear
kinetic plot.

The graphical method of determining k values from integrated equations
works well if the points closely approximate a straight line or if they scatter
randomly. Sometimes one can draw a straight line through every point;
thus, the slope of the line is adequate for evaluation of k (Bunnett, 1986).

Initial Rate Method. Using integrated equations like Egs. (2.5), (2.6),
or (2.7) to directly determine a rate law and rate constants is risky. This is
particularly true if secondary or reverse reactions are important in equa-
tions like (2.5) and (2.6). One sound option is to establish these equations
directly using initial rates (Skopp, 1986).

With this method, the concentration of a reactant or product is plotted
versus time for a very short initial period of the reaction during which the
concentrations of the reactants change so little that the instantaneous rate
is hardly affected (Bunnett, 1986).

The initial rate is the limit of the reaction rate as time reaches zero.
Using the initial rate method, one could ascertain Egs. (2.5) and (2.6)
by finding out how the initial rates (lim d[A]/dt) depend on the initial
concentrations (A, B, Y). Experiments are conducted such that initial con-
centrations of each reactant are altered while the other concentrations
are constant. It is desirable with this method to have one reactant in much
higher concentration than the other reactant(s).

With the initial rate method, one must use an extremely sensitive
analytical method to determine product concentrations (Bunnett, 1986).
Titration methods may not be suitable, particularly if low levels of product
concentration are present. Therefore, physical techniques such as spec-
trophotometry or conductivity are utilized.

Least-Squares Techniques. The value of k can also be obtained using
least-squares techniques. This statistical method fits the best straight line to
a set of points that are supposed to be linearly related. The formula for a
straight line is

y=mx+b (2.12)
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The most tractable form of least-squares analysis assumes that values of
the independent variable x are known without error and that experimental
error is manifested only in values of the dependent variable y. Most kinetic
data approximate this situation, since the times of observation are more
accurately measurable than the chemical or physical quantities related to
reactant concentrations (Bunnett, 1986). The straight line selected by
least-squares analysis is that which minimizes the sum of the squares of the
deviations of the y variable from the line.

The slope m and intercept b can be calculated by least-squares analysis
using Egs. (2.13) and (2.14), respectively.

nZxy— 2xy
1 - m = . 2.13
Slope = m = S =53y (2.13)
. EyExS = Ba Sy
Intercept = b = el e (2.14)

nZx?— (Sx)?
where # is the number of data points and the summations are for all data
points in the sets. For further information on least-squares analysis, one

can consult any number of textbooks including those of Draper and Smith
(1981) and Montgomery and Peck (1982).

Apparent Rate Laws

Apparent rate laws include both chemical kinetics and transport-
controlled processes. One can ascertain rate laws and rate constants using
the previous techniques. However, one does not need to prove that only
elementary reactions are being studied (Skopp, 1986). Apparent rate laws
indicate that diffusion or other microscopic transport phenomena affect the
rate law (Fokin and Chistova, 1967). Soil structure, stirring, mixing, and
flow rate all affect the kinetic behavior when apparent rate laws are
operational.

Transport with Apparent Rate Law

A fourth type of rate law, transport with apparent rate law, is a form of
apparent rate law that includes transport processes. This type of rate-law
determination is ubiquitous in the modeling literature (Cho, 1971; Rao
et al., 1976; Selim et al., 1976a; Lin et al., 1983). Kinetic-based transport
models are more fully described in Chapter 9. With these rate laws,
transport-controlled kinetics are emphasized more and chemical kinetics
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less. The apparent rate can often depend on water flux (Skopp and War-
rick, 1974; Overman et al., 1980) or other physical processes. One also
usually assumes either first- or zero-order kinetics is operational.

Transport with Mechanistic Rate Laws

Here one makes an effort to describe simultaneously transport-
controlled and chemical kinetics processes (Skopp, 1986). Thus, an at-
tempt is made to describe both the chemistry and physics accurately. For
example, outflow curves from miscible displacement experiments on soil
columns are matched to solutions of the conservation of mass equation.
The matching process introduces a potential ambiquity such that ex-
perimental uncertainties are translated into model uncertainties. Often, an
error in the description of the physical process is compensated for by an
error in the chemical process and vice-versa (i.e., Nkedi-Kizza ef al., 1984).

EQUATIONS TO DESCRIBE KINETICS OF REACTIONS ON SOIL
CONSTITUENTS

Introduction

A number of equations have been used to describe the kinetics of soil
chemical processes (see, e.g., Sparks, 1985, 1986). Many of these equa-
tions offer a means of calculating rate coefficients, which then can be used
to determine energies of activation (E), which reveal information concern-
ing rate-limiting steps. Energies of activation measure the magnitude of
forces that must be overcome during a reaction process, and they vary
inversely with reaction rate.

However, as noted earlier, conformity of kinetic data to a particular
equation does not necessarily mean it is the best model, nor can one
propose mechanisms based on this alone.

First-Order Reactions

Derivations. According to the usual convention, one lets a represent
the initial concentration [A]y, of species A, b the initial concentration [B],,
of species B, and y the concentration of product Y or Z [see Eq. (2.1)] at
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any time (Bunnett, 1986). For a first-order reaction,

dy

7 k[A] = k(a — y) (2.15)
Rearranging,
YV kd (2.16)
a—y
Integrating,
—In(@a —y) +Ina = kt (2.17)
Or, using base 10 logarithms,
—log(a — y) + loga = -k—t (2.18)
2.30

Eq. (2.17) can also be written as,
—In[A] + In[A]q = k¢ (2.19)

Equation (2.17), (2.18), or (2.19) indicates that a plot of the negative of
the logarithm of [A] or of (a — y) versus time should be a straight line with
slope k or k/2.30. As noted earlier (Section IIB, 2b), obtaining such a
linear plot from experimental data is a necessary but not sufficient condi-
tion for one to conclude that the reaction is kinetically first-order. Even if
the kinetic plot using a first-order equation is linear over 90% of the
reaction, deviations from the assumed rate expression may be hidden
(Bunnett, 1986). When other tests confirm that it is first-order, the rate
constant k, is either the negative of the slope [Eq. (2.17) or (2.19)] or 2.30
times the negative of the slope [Eq. (2.18)].

One way to test for first-order behavior is to carry out the rate deter-
mination at another initial concentration of reactant A, such as double or
half the original, but preferably 10-fold or smaller (Bunnett, 1986). If the
reaction is first-order, the slope according to Eq. (2.17) or (2.18) should be
unchanged. It 1s also necessary to show that reaction rate is not affected by
a species whose concentrations do not change considerably during a reac-
tion run; these may be substances not consumed in the reaction (i.e.,
catalysts) or present in large excess (Bunnett, 1986).

The half-life (¢,,,) of a reaction is the time required for half of the
original reactant to be consumed. A first-order reaction has a half-life that
is related only to k and is independent of the concentration of the reacting
species. After one half-life, (a — y) equals a/2, and Eq. (2.17) can be
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rewritten as,

a
_ln; + ln d'= kf]/Z

e

Consolidating and rearranging,

In2 0.693
by === == (220
k k
The half-life depends on reactant concentration and becomes longer the
less concentrated the reactant. Thus, it can take a long time to reach a
satisfactory infinity value for a second-order reaction.

Application of First-Order Reactions to Soil Constituents. Many inves-
tigations on soil chemical processes have shown that first-order kinetics
describe the reaction(s) well. Single or multiple first-order reactions have
been observed for ionic reactions involving: As(III) (Oscarson et al.,
1983), potassium (Mortland and Ellis, 1959; Burns and Barber, 1961;
Reed and Scott, 1962; Huang et al., 1968; Sivasubramaniam and Talibu-
deen, 1972; Jardine and Sparks, 1984; Ogwada and Sparks, 1986b), ni-
trogen (Stanford et al., 1975; Kohl er al., 1976; Carski and Sparks, 1987),
phosphorus (Amer et al., 1955; Griffin and Jurinak, 1974; Li et al., 1972;
Vig et al., 1979), copper (Jopony and Young, 1987), lead (Salim and
Cooksey, 1980), cesium (Sawhney, 1966), boron (Griffin and Burau, 1974;
Carski and Sparks, 1985), sulfur (Hodges and Johnson, 1987), aluminum
(Jardine and Zelazny, 1986), and chlorine (Thomas, 1963). First-order
equations have also been used to describe molecular reactions on soils and
soil constituents, including pesticide interactions (Walker, 1976a.b; Rao
and Davidson, 1982; McCall and Agin, 1985). Data from these studies
have been fitted to first-order equations by methods described earlier.

Sparks and Jardine (1984) studied the kinetics of potassium adsorption
on kaolinite, montmorillonite, and vermiculite (Fig. 2.1) and found that a
single first-order reaction described the data well for kaolinite and smectite
while two first-order reactions described adsorption on vermiculite. One
will note deviations from first-order kinetics at longer time periods, parti-
cularly for montmorillonite and vermiculite, because a quasi-equilibrium
state is reached. These deviations result because first-order equations are
only applicable far from equilibrium (Skopp, 1986); back reactions could
be occurring at longer reaction times.

Griffin and Jurinak (1974) studied B desorption kinetics from soil and
observed two separate first-order reactions and one very slow reaction.
They postulated that the two first-order reactions were due to desorption
from two independent B retention sites associated with hydroxy-Al, —Fe,
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Figure 2.1. First-order plots of potassium adsorption on clay minerals where K, is quantity
of potassium adsorbed at time r and K. is quantity of potassium adsorbed at equilibrium.
{From Sparks and Jardine (1984), with permission.]

and —Mg materials in the clay fraction of the soils. The third or lowest
reaction rate was attributed to diffusion of B from the interior of clay
minerals to the solution phase.

There are dangers, however, in attributing multiple slopes, obtained
from plotting time-dependent data according to various kinetic equations,
to different sites for reactivity. This is particularly true when the only
evidence for such conclusions is multiple slopes. Even if one finds, for
example, that data are best described by two first-order reactions, one
should not then conclude that two mechanisms are operable. Such conclu-
sions are analogous to deciding that multiple slopes obtained with the
Langmuir equation are indicative of different sorption sites and mechan-
isms (see, e.g., Harter and Smith, 1981) One should refrain from making
such judgments unless other lines of evidence also point to multiple reac-
f10n sites.

There are several ways to determine kinetically that multiple first-order
or other reaction order slopes are present, and that they indicate different
sites or mechansims for sorption. One could determine rate-limiting steps
(Chapter 5), E values could be measured, or materials that affect specific
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Figure. 2.2. First-order kinetics for potassium adsorption at three temperatures on Eves-
boro soil, with inset showing the initial 50 min of the first-order plots at 298 and 313 K. Terms
are defined in Fig. 1. [From Sparks and Jardine (1984), with permission. ]

colloidal sites (blocking agents) could be used to isolate different sorption
sites.

An example of the last one can be found in the work of Jardine and
Sparks (1984). They found that potassium adsorption and desorption in a
soil conformed well to first-order reactions at 283 and 298 K and that two
apparent simultaneous first-order reactions existed (Fig. 2.2). The first
slope contained both a rapid reaction (rxn 1) and a slow reaction (rxn 2).
The second slope described only rxn 2. The difference between the two
slopes yielded the slope for rxn 1. The first reaction conformed to first-
order kinetics for about 8 min, after which time a second apparent reaction
proceeded for many hours. Sparks and Jardine (1984) used different block-
ing agents, including cetyltrimethylammonium bromide (CTAB), which
sorbed only on external surface sites (Fig. 2.3), to show that the two slopes
were describing two reactions on different sites for potassium adsorption—
desorption. Based on the CTAB results, rxn 1 was ascribed to external
surface sites of the organic and inorganic phases of the soil that were
readily accessible for cation exchange. Reaction 2 was attributable to less
accessible sites of organic matter and interlayer sites of the 2:1 clay
minerals such as vermiculitic clays that predominated in the < 2 um clay
fraction.

Another way to more directly prove or disprove mechanisms based
on different time-dependent slopes is to use spectroscopic techniques.
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Figure 2.3. First-order kinetics for potassium adsorption at 298 K on Evesboro soil treated
with cetyltrimethylammonium bromide (CTAB). Terms are defined in Fig. 1. [From Jardine
and Sparks (1984), with permission.]

Methods such as nuclear magnetic resonance (NMR), electron spectros-
copy for chemical analysis (ESCA), electron spin resonance (ESR), in-
frared (IR), and laser raman spectroscopy could be used in conjunction
with rate studies to define mechanisms. Another alternative would be to
use fast kinetic techniques such as pressure-jump relaxation, electric field
pulse, or stopped flow (Chapter 4), where chemical kinetics are measured
and mechanisms can be definitively established.

Other Reaction-Order Equations

Zero-Order Reactions. Zero-order reactions have been applied to
describe potassium (Mortland, 1958; Burns and Barber, 1961), chromium

(Amacher and Baker, 1982), and nitrogen reactions in soils (Patrick, 1961;
Broadbent and Clark, 1965; Keeney, 1973).

Second-Order Reactions. If one considers a reaction according to
Eq. (2.1), which is overall second-order but first-order in A and first-order
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in B, then according to the symbolism used earlier (Bunnett, 1986),

dy
2 Ha=y)b-y) (2.21)
Rearranging,
dy
=k dt
(@ —=y)b—y)
Integrating,
1 b(a -y
Ml ol ) (O (2.22)

d—B T al—y)
Equation (2.22) is valid only if a # b. An alternate form of Eq. (2.22) is

e y b
+In—=(a - 2.23
In R In = (@ — b)kt (2.23)
or,
a—y b (a— b)kt
| S (o). 2.24
gy tleer =55 e

Thus, plots of the logarithm of [(a — y)/(b — v)] versus time should be
linear with slopes (¢ — b)k or (a — b)k/2.30, depending on which type of
logarithm is used.

If the experiment is arranged so that the initial concentrations of A and

B are equal or if the reaction is second-order in reactant A, Eq. (2.21)
becomes,

Y _ ia— v
s k(a — y) (2.25)

Upon rearrangement and integration,

1 1
— ==kt (2.26)
a-y a

a plot of the reciprocal of (¢ — y) versus time is linear with slope k.

Whereas the half-life for a first-order reaction is independent of reactant
concentration, that for a second-order reaction is not. If one inserts a/2 for
(a — y) in Eq. (2.26), one obtains

1
o it 2.27
2™ ak ( )
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Phosphate reactions on calcite (Kuo and Lotse, 1972; Griffin and
Jurinak, 1974) have been described using second-order reactions. Also,
recent work on Al reactions in soils has employed second-order reactions
(Jardine and Zelazny, 1986).

Kuo and Lotse (1972) derived a second-order equation, which is
presented below, and used this equation to describe the rate of PO,
sorption on CaCOj; and Ca-kaolinite. This equation considered both the
change in PO, concentration in solution and the surface saturation of the
sorbent during the sorption process. This equation can be writtten as

dq
7~ k€= q) (M= q)~k_iq (2.28)
where g is the quantity of ions sorbed, (C, — ¢) is the concentration of ions
remaining in solution where Cj, is the initial concentration of ions, and
(M — g) is the surface unsaturation.

At equilibrium (eq), dg/dt will equal zero. Then,

kl(CU - Q)cq(M - Q)cq = k*l‘?cq (229)
By arranging Eq. (2.29), and expressing g and M in mol kg " of sorbent
rather than in mol ion 17", the Langmuir equation is obtained,
1 Gy C

= . = (2.30)
K. M q M

where K. is the equilibrium constant and C., is the equilibrium concentra-
tion of ions. By integrating Eq. (2.28), one obtains

] Q_:__A_,__g_mk;.a.l B+A 5 31
"Ng+B-4 AV 231)
where
I k—] 2 1/2
and
1/ . k_,
B = E Co+ M+ -Z (233)

The parameters A and B are constants and contain a concentration unit.
By plotting In(g — A — B/q + A — B) as a function of ¢, a straight line
1s obtained with a slope equal to 24k,. Kuo and Lotse (1972) found that
the second-order rate constant decreased with increasing phosphorus
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concentration in the CaCO;-PO, system, which they explained using the
Bronsted—Bjerrum activity-rate theory of ionic reactions in dilute solutions.
The Brgnsted equation states that “‘the logarithm of the rate coefficient is
inversely proportional to the square root of the ionic strength, when the
reaction between the two molecules involves charges of different sign™
(Kuo and Lotse, 1972). Kuo and Lotse (1972) determined that k; for PO,
sorption on Ca-kaolinite increased with increasing PO, concentration.
Novak and Adriano (1975) found that a second-order equation like that
given by Kuo and Lotse (1972) described phosphorus kinetics better than
other models.

Reactions of Higher or Fractional Order. For reactions of order a in
reactant A and of zero-order in other species,

—d[A]
dt

= k[A]® (2.34)

Letting [A], represent the initial concentration of A and [A] its concentra-
tion at any time, one may integrate {except when a = 1) to obtain, (Bun-

nett, 1986).
1 1 1
= 1([A1“—1 - [A]é’") K 23

Eq. (2.26) is the special case of Eq. (2.35) for n = 2.
When the order is 4, 3, and 3, Eq. (2.35) assumes the form of Egs. (2.36),
(2.37) and (2.38), respectively.

JIAo - V4] :? (half-order) (2.36)
\/[IA] = \/[;] =% (three-halves order) (2.37)
0
# - [Al—]z = 2 kt (third-order) (2.38)
]

Equations (2.35), (2.37), and (2.38) are also obtained if the reaction is of
order ¢ — 1 in reactant A and of order one in B, and if the initial
concentrations of A and B (and maybe other reactants) are in the ratio of
their stoichiometric coefficients.

Often fractional orders best describe soil chemical processes. For exam-
ple, the reaction order for dissolution of oxides, calcite, feldspars, and
ferromagnesian minerals is often <1 (Stumm er al., 1985; Bloom and
Erich, 1987).
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Two-Constant Rate Equation

Kuo and Lotse (1973) used a two-constant rate equation, derived below,
which is adapted from the Freundlich equation to study the Kinetics of PO,
sorption and desorption on hematite and gibbsite.

A Kkinetic equation was developed by inserting a time-dependent ex-
pression into the Freundlich equation. The Freundlich equation can be
written as,

q = kgCf'? (2.39)

where kg is the Freundlich constant, C; is the final sorbate concentration,
and ¢ and d are both integers with d > c.

Kuo and Lotse (1973) presumed that the slope of a Freundlich plot was
time independent. The physical meaning of the concentration term expo-
nent in the Freundlich equation is unclear, but has generally been <1 and
related to the characteristics of the sorbent. However, the exponent is
time-independent, whereas the intercept is time-dependent.

The expression (1 — e”**) can be inserted into Eq. (2.39) such that

g% = k(1 — e™)C; (2.40)
where k, and k, are constants, k,[1 — e **] = k¢

Fort =0, g =0, and t — =, Eq. (2.40) is reduced to Eq. (2.39). From
Eq. (2.40) one sees that changes in t can only affect the intercept in the
Freundlich plot. Rearrangement and successive transformations give,

E/d - k%/d(l _ e—k:r)l/d (241)

f

and

i

In kY9 + 1/d In(1 — e™*),

q
'"(c;"’)

in which 7 is an error term and equals,

(2.42)
= 1/d In k; + %m[(i — (1 = kyt) + ]

1 1
n =y (kat)? = 3 (et + -

Equation (2.42) contains a total of five unknown constants. To solve the
equation, a trial value of the constant k, is needed. However, if the
constant k, (units of h™!) is relatively small, the net effect of nin Eq. (2.42)
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can be neglected. Accordingly, Eq. (2.42) can be simplified,

m(%) = 1/dn kik, + 1/d In t (2.43)

q — A l/dcc/drl/d (2.44)

where A = kk,. Since the values of the (¢/d) term are <1, the change of
C}i/ 4 as a function of time is small. Then C}/ 4 can be considered a constant,
and Eq. (2.44) is rewritten as

g = KC,1'/* (2.45)

where K is a constant

Kuo and Lotse (1973) plotted PO, sorbed versus t on a log—log scale and
calculated (1/d) and K from the slope and intercept, respectively, of the
straight line.

The two-constant rate equation was also used to describe PO, desorp-
tion from soil (Dalal, 1974), K-Ca exchange on soils (Sparks et al., 1980a),
and recently, by Jopony and Young (1987) to study the kinetics of copper
desorption from soil and clay minerals.

Elovich Equation

The Elovich equation is one of the most widely used equations to de-
scribe the kinetics of heterogeneous chemisorption of gases on solid sur-
faces (Low, 1960). This equation assumes a heterogeneous distribution
of adsorption energies where the E increases linearly with surface cover-
age (Low, 1960). Parravano and Boudart (1955) criticized using the Elo-
vich equation for describing one unique mechanism since they found that it
described a number of different processes, such as bulk or surface diffusion
and activation and deactivation of catalytic surfaces. Recent theoretical
studies on adsorption—desorption phenomena in oxide—aqueous solution
systems illustrated that the applicability and method of fitting kinetic data
to the Elovich equation requires accurate data at short reaction times
(Aharoni and Ungarish, 1976, 1977). Ungarish and Aharoni (1981) have
also pointed out the inappropriateness of the Elovich equation at very low
and very high surface coverages (Atkinson et al., 1970; Sharpley, 1983).
These types of situations could well exist in soils or on soil constituent
systems. _

The Elovich equation has been used to describe the kinetics of PO,
sorption and desorption on soils and soil minerals (Atkinson ez al., 1970;
Chien and Clayton, 1980; Chien er al., 1980; Sharpley, 1983), potassium
reactions in soils (Sparks et al., 1980b; Martin and Sparks, 1983; Sparks
and Jardine, 1984; Havlin and Westfall, 1985), borate dissolution from
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soils (Peryea et al., 1985), sulfur sorption and desorption kinetics in soils
(Hodges and Johnson, 1987), and arsenite sorption on soils (Elkhatib)
et al., 1984a). In several of these studies, the Elovich equation was claimed
to be superior to other kinetic equations based on high r and low SE
(standard error) values (Chien and Clayton, 1980; Hodges and Johnson,
1987).

A form of the Elovich equation as applied to the adsorption of gases
onto solid surfaces is

dq/dt = Xe ¥ (2.46)

where ¢ is the amount sorbed at time ¢ and X and Y are constants in a
given experiment. The integrated form of Eq. (2.46) is

g = (1Y) In(XY) + (1/Y) In(t + 1) (2.47)

where f, is the integration constant. One can make either of two assump-
tions when studying ¢, (Polyzopoulous et al., 1986) The first assumption is
that 7, = 0, which indicates that no other processes besides Elovichian
ones are occurring; that is, the boundary condition ¢ = 0 at t = 0 applies.
Thus, with the assumption that ¢, = 0, then

g = (1/Y) In(XY) + (1/Y) In(z) (2.48)

Equation (2.48) is a simplified Elovich equation that several investigators
have used to study the rates of soil chemical processes. An application of
this equation to PO, sorption on soils is shown in Fig. 2.4, and one sees a

160 [
140 [~

120 +

100 -
OKAIHAU SOIL
80

60 [~

40 PORIRUA 2SOIL

r2 = 0.990
<l _‘__‘,.&————*""’r.&

0 | H | 1 | 1 |

Co- C (umol dm3)

214 0 1 2 3 4 5 &
iIn t (h)

Figure 2.4. Plot of Elovich equation for phosphate (PO,) sorption on two soils where C,, is
the initial phosphorus concentration added at time zero and C is the phosphorus concentra-
tion in the soil solution at time f. [From Chien and Clayton (1980), with permission.]
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linear relationship. Chien and Clayton (1980) obtained the simplified equa-
tion given in Eq. (2.41) by using the relationship

g = (1/Y) In(1 + XY1) (2.49)

from Eq. (2.47) and by assuming that the boundary condition ¢ = 0 at

= 0 applies, and then by making the assumption that XYr > 1. The
latter assumption follows directly from the original assumption ¢ = 0 at
t = 0, which when used with Eq. (2.47) leads to ¢, = 1/XY, that is,
XY — o when r, = 0 (Polyzopoulous et al., 1986). The second assumption
is that ty # 0. Therefore, two possibilities exist.

First, the boundary condition g = g, at ¢t = 0 is applicable. One can
then test 7, by determining its value graphically, numerically, or by regres-
sion so that it creates a linear relationship when ¢ versus In(r + ) is
plotted. Thus, one is assuming an instantaneous pre-Elovichian process
(Aharoni and Ungarish, 1976). However, studies have shown that a plot of
g versus In(r + ;) is usually concave toward the g axis. Moreover, to
linearize such a plot indicates that experimental data are Elovichian when
in fact they may not be.

Aharoni and Ungarish (1976) suggested that another possibility was to
introduce the boundary condition that ¢ = g.at¢ = . (¢. and ¢, > 0) and
thus the pre-Elovichian rate was finite (Fig. 2.5). They also give a proce-
dure for estimating f, from experimental data without assuming anything
a priori about a pre-Elovichian process (Polyzopoulous et al., 1986).
One can differentiate and rearrange Eq. (2.47) to yield a relationship

Z=(dg/dt) "
m__,_’

Figure 2.5. Schematic representation of ¢ versus Z plots, where Z = (dg/dr)"' (adapted
from Aharoni and Ungarish, 1976). The OCD general shape of the plots is obtained ex-
perimentally: 0C is the pre-Elovichian section; CD is the Elovichian section between 1 = ¢,
and 1 = 14, whose 1 intercept gives t,; beyond D is the post-Elovichian section; and 0B is the
plot when ¢, = 0. [From Polyzopoulous et al. (1986), with permission.]
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Figure 2.6. Plot of ¢ versus Z for phosphate (POy) sorption on three Greek soils. [From
Polyzopoulous er al. (1986), with permission.]

between adsorption and time ¢ that is given in Eq. (2.50),

where Z is (dg/dt)~" or the reciprocal of the rate. If Eq. (2.50) is valid, ¢ is
proportional to Z in any range and extrapolating to Z = 0 gives /, as an
imaginary negative time (Polyzopoulous er al., 1986). At this time the rate
is infinity, and as it decreases with increasing g using Eq. (2.46), it co-
incides with the actual Elovichian rate (Fig. 2.5). Here, t values are given
on the ordinate and the y intercept yields #, directly.

Equation (2.50) was used by Polyzopoulous et al. (1986) to study the rate
of PO, sorption and release from Greek soils (Fig. 2.6). One sees a linear
stage that appears Elovichian, but there is initially a section concave to the
t axis. Polyzopoulous er al. (1987) ascribe this to a faster rate of PO, sorp-
tion that is non-Elovichian. One also sees a slow approach to equilibrium
with time (Fig. 2.6).

Polyzopoulous et al. (1986) calculated #, values for the soils by extrapo-
lating to the y-axes regression lines fitted to the linear Elovichian portion of
the curves. The #, values calculated for the Dystrochrept and Palexeralf
soils were greater than zero, which suggests that the assumption that ¢, is
close to zero and can be neglected may not be valid.

Some investigators have used Elovich parameters to estimate reaction
rates. Chien and Clayton (1980) suggested that a decrease in Y and/ or an
increase of X would increase reaction rate. However, this may be question-
able. The slope of plots using an equation like Eq. (2.48) changes with the
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Figure 2.7. Plot of ¢ versus Z for phosphate (PO,) sorption on Porirua and Okaihau soils.
[From Polyzopoulous et al. (1986)., with permission.]

level of added ion and with the solution to soil ratio (Sharpley, 1983).
Consequently, these slopes are not always characteristic of the soil but
depend on various experimental conditions. Sharpley (1983) used the
Elovich equation to study soil phosphorus desorption and found that the X
and Y values were related to the extractable Al content and CaCOj; equiv-
alent of acidic and basic soils, respectively.

Another criticism of using Eq. (2.48) is that the pre- and post-Elovichian
sections are often not observed and one can erroneously conclude that the
entire rate process is explainable using one kinetic law (Polyzopoulous
et al., 1986). When kinetic data are plotted according to Eq. (2.50) rather
than Eq. (2.31) one sees pre- and post-Elovichian sections (Fig. 2.4 versus
Fig. 2.7).

Some investigators have also suggested that ““breaks’ or multiple linear
segments in a g versus In ¢ Elovich plot [Eq. (2.48)] could indicate a
changeover from one type of binding site to another (Atkinson et al., 1970;
Chien and Clayton, 1980). However, one should be cautious about making
such mechanistic conclusions from a plot of an empirical equation.

Parabolic Diffusion Equation

The parabolic diffusion law or equation can be used to determine
whether diffusion-controlled phenomena are rate-limiting. This equation
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was originally derived based on radial diffusion in a cylinder where the ion
concentration on the cylindrical surface is constant, and initially the ion
concentration throughout the cylinder is uniform. It is also assumed that
ion diffusiocn through the upper and lower faces of the cylinder (corres-
ponding to external cleavage faces) is negligible. Following Crank (1975),
if r is the radius of the cylinder, Q, is the quantity of diffusing substance
that has left the cylinder at time ¢, and Q.. is the corresponding quantity
after infinite time, then

0, 4 [(D\'?* Dt 1 D
0. 772\7] TF A 2t

For the relatively short times in most experiments, the third and subse-
quent terms may be ignored, and thus

[ (Dr)”z Dt

Q - 7]_1/2

-5
72 2

r
140, 4 (D\* 1 D
and thus a plot of %tgw)versus 1/t"? should give a straight line with a

slope

4 (D\'?
()

and intercept (—D/r?). Thus, if 7 is known, D may be calculated from both
the slope and intercept.

A number of researchers have used the parabolic diffusion equation to
study the kinetics of reactions on soil constituents (Chute and Quirk, 1967;
Sivasubramaniam and Talibudeen, 1972; Evans and Jurinak, 1976; Vig
et al., 1979; Feigenbaum et al., 1981; Sparks and Jardine, 1981; Jardine
and Sparks, 1984; Havlin and Westfall, 1985; Hodges and Johnson, 1987);
feldspar weathering (Wollast, 1967), and pesticide reactions (Weber and
Gould, 1966). Sivasubramaniam and Talibudeen (1972) obtained parabolic
plots for Al-K exchange on British soils that gave two distinct slopes,
which the authors theorized could be indicative of two simultaneous
diffusion-controlled reactions. They speculated that the rate-controlling

step in A" and K" adsorption was diffusion of the ions into the sub-
surface layers of the solid.
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Power-Function Equation

Havlin and Westfall (1985) and Havlin et al. (1985) used a power-
function equation to describe potassium release from soils. The integrated

form of the power-function equation can be expressed (Havlin and West-

fall, 1985) as P
y = at (2.53)

The linear transformation is
Iny=Ina+ k(In?) (2.54)

where y 1s the quantity of K released at time ¢, and a and k are constants.
The k value is a rate-coefficient value.

Havlin and Westfall (1985) found that the power-function equation
described potassium release from soils well. The a and k values were highly
correlated with nonexchangeable potassium release. They found that k
from Eq. (2.53) was highly correlated with potassium uptake and the
relative yield of alfalfa (Medicago sativa L.) as shown in Fig. 2.8.

Comparison of Kinetic Equations

Comparisons of different kinetic equations for describing the kinetics of
potassium reactions (Martin and Sparks, 1983; Sparks and Jardine, 1984;
Havlin and Westfall, 1985), phosphorus sorption and release (Enfield
et al., 1976; Chien and Clayton, 1980; Onken and Matheson, 1982), sul-
fur sorption and desorption (Hodges and Johnson, 1987), and chromium,
cadmium, and mercury retention/release (Amacher et al., 1986) have
appeared in the soil and environmental sciences literature. Some of these
studies are summarized below.

Chien and Clayton (1980) compared several equations for describing
PO, release from soils and found that the Elovich equation [Eq. (2.49)]
was best based on the highest values of the simple correlation coefficient
(r?) and the lowest SE. The two-constant rate equation also described the
data satisfactorily. The parabolic diffusion equation was judged unsatisfac-
tory due to low 72 and high SE values.

Onken and Matheson (1982) studied kinetics of phosphorus dissolution
in EDTA (ethylenediamine tetraacetic acid) solution for several soils.
They examined eight kinetic models (Table 2.2) and found that phospho-
rus dissolution in EDTA solution was best described using the two-constant
rate, Elovich, and differential rate equations as indicated by high r* and
low SE values. None of the models best described the dissolution for all
soils.
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Figure 2.8, Relationship between relative potassium (K) uptake and yield in greenhouse
experiment and potassium release constant k, as determined by Ca- resin extraction. [From
Havlin and Westfall (1985), with permission. ]

Sparks and Jardine (1984) found that the first-order equation best de-
scribed potassium adsorption kinetics on clay minerals and soils. However,
Havlin and Westfall (1985) reported that the power-function equation de-
scribed nonexchangeable potassium release kinetics better than first-order
or a number of other models.

Recently, Hodges and Johnson (1987) used five different kinetic equa-
tions to describe sulfur sorption and desorption on soils. Coefficients of
determination showed that shell progressive particle diffusion, Elovich,



TABLE 2.2 Summary of r? and SE of Eight Kinetic Models for Phosphorus Dissolution in EDTA Solution from Six Test Locations
Varying in Plant Response to Applied Phosphorus®

Test number

14 15 16 20

Kinetic model r SE rt SE r’ SE re SE re SE re SE
Zero-order (.96 0.04 (.68 0.26 0.87 (.45 .66 0.30 (.70 0.83 0.86 0.74
First-order 0.92 0.05 0.58 .34 0.76 0.20 (1.55 (.34 0.56 0.39 0.72 0.99
Second-order (.87 0.07 0.44 0.49 0.63 0.29 0.42 0.44 0.41 0.50 0.56 1.74
Third-order 0.82 0.12 0.41 0.84 0.51 1.23 0.30 2.70 0.30 1.35 0.44 3.06
Parabolic

diffusion 0.95 0.05 0.86 0.17 0.97 0.07 0.81 0.22 0.85 0.24 0.96 0.36
Two-constant

rate 0.87 0.05 0.93 0.15 0.98 0.05 0.88 0.19 0.91 0.18 0.99 0.26
Elovich-type 0.88 0.07 0.95 0.11 0.95 0.09 (190 0.16 0.97 0.11 0.97 0.33
Differential

rate 0.99 0.0001 0.91 0.0005 0.96 0.0003 0.93 0.001 0.97 0.0002 (.95 0.001

“From Onken and Matheson (1982), with permission.
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and first-order equations described reactions well on the Cecil soil. But
the statistical parameters were calculated for only the linear portion of the
kinetic plots. When all data points were included, Hodges and Johnson
(1987) report that the r* and SE values are altered significantly. The
desorption data for sulfur reactions on the soils were best described by the
shell progressive particle diffusion, Elovich, and parabolic diffusion equa-
tions (Hodges and Johnson, 1987).

The above studies clearly show that a number of different equations
often describe rate data for soil constituents satisfactorily based on linear
regression analyses. However, no single equation best describes every
study, and conformity of data to a particular equation does not necessarily
indicate that it is the best one to use. Moreover, one must be very careful
not to attach mechanistic significance to linear plots based on the use of a
given model.

TEMPERATURE EFFECTS ON RATES OF REACTION

Arrhenius and van’t Hoff Equations

Increasing temperature usually causes a marked increase in reaction
rate. Arrhenius observed the following relationship between k and
temperature:

k= A BRE (2.55)

where k is the rate constant, A is a frequency factor, E is the energy of
activation, R is the universal gas constant, and T is absolute temperature.
Integrating Eq. (2.55) results in

In k = (In A)—E/RT (2.56)

Thus, a plot of In k versus 1/T would result in a linear relationship with the
slope equal to —E/R and the intercept In A.

Energies of Activation. Low E values (<42 kJ mol ') usually indicate
diffusion-controlled processes whereas higher E values indicate chemical
reaction processes (Sparks, 1985, 1986). For example, E values of 6.7-
26.4 kJ mol™" were found for pesticide sorption on soils and soil compo-
nents (Haque et al., 1968; Leenheer and Ahlrichs, 1971; Khan, 1973) while
gibbsite dissolution in acid solutions was characterized by E values ranging
from 59 = 4.3 to 67 = 0.6 kJ mol ' (Bloom and Erich, 1987).

Data taken from Huang et al. (1968) show the effect of temperature on
the rate of potassium release from potassium-bearing minerals (Table 2.3).
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TABLE 2.3 Apparent Rate Constants for the
Release of Lattice Potassium from Potassium

Minerals®
Rate constant (h™ ")
Temperature
Mineral 301 K 311 K

Biotite 1.46 x 1072 309 x 1074
Phlogopite 9.01 x 107* 2.44 x 107
Muscovite 1.39 x 107 415 x 107*
Microcline 7.67 x 1075 2.63 x 1077

“From Huang et al. (1968), with permission.

A 10 K rise in temperature during the reaction period resulted in a two- to
threefold increase in the rate constant. :

One can also derive a relationship between temperature and the equi-
librium constant K., and the standard free enthalpy AH®. If the following
reversible reaction is operational

A=Y (2.57)
and by knowing
d(In K.,)/dT = AH°/RT? (2.58)

where K., = (Y)/(A) = k,/kq and parentheses denote activity, the van’t
Hoff relationship can be written:

d(nk,) d(nky) AH®

dT dT RT? 255
where
d(lnk,) E, d(ln k,) E
S and de = R?‘iz (2.60)

where k, and k4 are adsorption and desorption rate coefficients, respec-
tively and E, and E, are the energies of activation for adsorption and
desorption, respectively.

Specific Studies

A number of researchers have studied the effect of temperature on
reaction rates of soil chemical phenomena (Burns and Barber, 1961;
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ABLE 2.4 Rate Constants for Indigenous Phosphorus Release from a Thiokol Silt Loam Soil”

Surface soil: 0-0.30 m Subsoil: 0.30-0.40 m

284 K 298 K 313K 284 K 298 K 383 K

(s7H 019 x 107 051 x 10 030x 107 024 x10* 041 x10* 041 x10*
s 011 %107 027 x10°% 016 X 1070 015 x 10 % 011 x 10 5 026 x 10°°
s 087 x 107 0.3 x 10 012x 107" 005x107° 093 x107 0.19x10°

“The subscripts on k, . k,. and k; represent the first. sccond. and third phosphorus reactions. respectively. From
vans and Jurinak (1976), with permission.

Huang er al., 1968; Griffin and Jurinak, 1974; Kuo and Lotse, 1974;
Barrow and Shaw, 1975; Evans and Jurinak, 1976; Barrow, 1979; Sparks
and Jardine, 1981; Ogwada and Sparks, 1986a, Hodges and Johnson,
1987). Evans and Jurinak (1976) studied the rate of phosphorus release
from a Thiokol silt loam soil as a function of temperature, using strong
anion exchange resins (Table 2.4). Phosphorus released from the surface
and subsoil layers of the soil at 284, 298, and 313 K showed that during the
initial 4 h of the reaction, the effect of temperature was small, with the rate
of release increasing slightly as temperature increased. At times greater
than 4 h, the effect of temperature was insignificant.

TRANSITION-STATE THEORY

Theory

Transition-state theory or reaction-rate theory was extensively de-
veloped by H. Eyring and collaborators (Glasstone et al., 1941; Frost and
Pearson, 1961).

For a given reaction in accordance with the absolute rate theory
ki K
A+Be= (AB) — Y (2.61)
Ty

where A and B are reactant molecules, (AB)* is an activated complex, ki is
the rate of formation of the activated complex, k* | is the rate of decomposi-
tion of the activated complex, and K is the rate of product (Y) formation,
with

K = KK (2.62)

where K, is the transmittance coefficient and K* is the pseudothermodyna-
mic equilibrium constant of the activated complex, and

K, = kg T/h (2.63)
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where kg is Boltzmann’s constant and / is Planck’s constant. Considering
the laws of thermodynamics, the following expression may be developed:

K= g AGURY (2.64)

where AG¥ is the Gibbs energy of activation. Thus, the parameter, &}, can
be found using,

k :
ki = (TT)E'“AG'/RT (2.65)
From the reaction rate theory (Frost and Pearson, 1961), it is found that
AG} = AH} — T AS} (2.66)

where AH{ is the enthalpy of activation for the forward reaction and AS?
is the entropy of activation for the forward process.
Manipulation of Eq. (2.66) and substitution into Eq. (2.65) give
kT T
kdfr - 1:1 (6:3.51/R AHH/RF) (2.67)
Equation (2.67) would enable the calculation of AS} because the following
relationship for a unimolecular reaction is true:

AHf = E, — RT (2.68)

where E| refers to an energy of activation for the forward reaction. The
AG{ may be calculated using Eq. (2.66). Analogous expressions can be
obtained for the reverse reaction through the use of E_, and k%, calculated
for the reverse process.

The pseudothermodynamic equilibrium constant of the activated com-
plex (KZ,) is related to the thermodynamic state functions by

AG** = —=RT In Ki, = AH* — T AS™ (2.69)

where AG**, AH®, and AS®* refer to the standard Gibbs energy of ac-
tivation, the standard enthalpy of activation, and the standard entropy of
activation, respectively.

In each case these parameters represent differences between the state
function of the activated complex in a particular standard state and the
state function of the reactants referred to in the same standard state. One is
giving K¢, all the characteristics of a thermodynamic equilibrium con-
stant, although it should be multiplied by a transitional partition function.
For ideal systems the magnitude of AH°* does not depend on the choice of
standard state, and for most of the nonideal systems that are encountered
the dependence is slight. For all systems, the magnitudes of AG°" and
AS°* depend strongly on the choice of standard state, so it is not useful to
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say that a particular reaction is characterized by specified numerical values
of AG°* and AS°* unless the standard states associated with these values
are clearly identified.

The reaction-rate theory assumes that colliding molecules (e.g., reac-
tions between solution ions and ions held by an exchange complex) must be
in a high energy state before a reaction can occur. This energy of activation
is the result of van der Waals repulsive forces that occur as two ions
approach each other. Without the repulsive forces, all exothermic reac-
tions would have zero or very low activation energies and would be fast
(Frost and Pearson, 1961). When these highly energized reactant mole-
cules collide, they form an activated complex. It is a distinct chemical
species in equilibrium with the reactants, which has gained one degree of
vibrational freedom. This abnormal vibrational freedom causes the com-
plex to lack a “restoring force,”” a force mandatory for all stable molecules:
thus it flies apart in the period of one vibration (Denbigh, 1966). The
activated complex is highly unstable and rapidly dissociates to form the
eventual product or to reform the original reactants. Once the exchange
reaction is complete, pseudothermodynamic parameters for the adsorption
and the desorption process may be formulated.

A AG* value may be considered as the free energy change between the
activated complex and the reactants from which it was formed, all
substances in reference to their standard states (Laidler, 1965). It is the
AG* value that determines the rate of the reaction (Glasstone ef al.,
1941). The AG* values should become larger with temperature, since the
tendency of any reaction to proceed 1s hastened by temperature increases.

The enthalpy of activation AH* is a measure of the energy barrier that
must be overcome by reacting molecules (Frost and Pearson, 1961). The
energy needed to raise the molecules from their ground state to one of
an excited state is the sum of the electronic, vibrational, rotational, and
translational energy terms. Thus, the energy needed to change the ori-
entation, structure, and position of an ion from one phase to that of an-
other is the total heat energy required in the process. Variations in AH*
with temperature are not the result of energy changes involved in making
or breaking bonds, but rather are due to alterations in the heat-capacity
behavior of the ions involved in the exchange reaction (Frost and Pearson,
1961).

The entropy of activation AS* may be regarded as the “saddle point of
energy’’ over which reactant molecules must pass as activated complexes
(Frost and Pearson, 1961; Laidler, 1965). The AS* conveys whether a
particular reaction proceeds more quickly or slowly than another indi-
vidual reaction. Negative AS* values would depict a system that could
ascertain a more ordered molecular arrangement in a shorter period of
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time relative to a positive or less negative AS* parameter. The molecular
arrangement would be related to both the aqueous and solid phases where
ion hydration and configurational entropy constituents are considered.

Application to Soil Constituent Systems

Griffin and Jurinak (1974) calculated pseudothermodynamic parameters
for phosphate interactions with calcite using reaction-rate theory. Gon-
zalez et al. (1982) applied reaction-rate theory to a treatment of adsorp-
tion—desorption processes on an Fe-selica gel system. In 1981, Sparks and
Jardine applied reaction-rate theory to kinetics of potassium adsorption
and desorption in soil systems for the first time (Table 2.5).

In their systems, the AG* values were higher for desorption than for
adsorption, suggesting a greater free-energy requirement for potassium
desorption. The AG* values for both adsorption and desorption were also
slightly higher in the B21t than in the Ap soil horizon, suggesting slower

TABLE 2.5 Kinetic Parameters for Potassium Adsorption
and Desorption Processes at Three Temperatures in
Matapeake Ap and B21t Horizons Using Reaction-Rate
Theory”

Temperature (K) AG* (k] mol™ 1) AH (k] mol ™)

Ap horizon

Adsorption
276 67.29 13.74
208 71.44 13.58
313 74.50 13.45

Desorption
276 72.74 20.83
298 76.85 20.62
313 79.63 20.53

B21t horizon
Adsorption

276 68.21 16.30

298 72.28 14.88

313 75.46 14.75
Desorption

276 73.20 20.66

298 77.10 20.49

313 80.32 20.36

“From Sparks and Jardine (1981), with permission.
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Activated”
Complex

AG

Reaction Coordinates

Figure 2.9, Schematic diagram of AG versus reaction coordinate for potassium exchange on
a Matapeake soil where AG is the Gibbs free energy. [From Sparks and Jardine (1981), with
permission. |

reactions due to more restrictive binding sites for K in the B21t horizon
(Glasstone et al., 1941). Figure 2.9 illustrates a schematic correlation
between the pseudothermodynamic parameters and those established
using thermodynamics of ion exchange theory. The AG} is the change in
free energy required for potassium to cross the barrier of adsorption at an
apparent rate of k. The AGj represents the change in free energy needed
by the reverse reaction of desorption at the apparent rate of k4. The
difference between these two parameters yeilds AG°, the Standard Gibbs
free energy.

The AH* values in both horizons were higher for desorption than for
adsorption (Table 2.5), suggesting that the heat energy required to over-
come the potassium desorption barrier was greater than that for potassium
adsorption. This was also seen in the magnitude of the E, and Ej values
calculated (not shown). A schematic correlation between AH® and AH*
can be observed like that shown in Fig. 2.9 for AG®° and AG*. The AH}
represents the change in heat energy needed for K™ to go from the solution
phase to the solid phase (adsorption), whereas AHj is the heat-energy
requirement for the desorption reaction. The difference in these two
parameters represents AH° (Frost and Pearson, 1961).
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