Cell Physiology

Dr. M.Shahid Javed MBBS; PhD

Levels of Organization

Organ systems of the body

System	Major Organs or Tissues	Primary Functions
Circulatory	Heart, blood vessels, blood (Some classifications also include lymphatic vessels and lymph in this system.)	Transport of blood throughout the body's tissues
Respiratory	Nose, pharynx, larynx, trachea, bronchi, lungs	Exchange of carbon dioxide and oxygen; regulation of hydrogen-ion concentration
Digestive	Mouth, pharynx, esophagus, stomach, intestines, salivary glands, pancreas, liver, gallbladder	Digestion and absorption of organic nutrients, salts, and water
Urinary	Kidneys, ureters, bladder, urethra	Regulation of plasma composition through controlled excretion of salts, water, and organic wastes
Musculoskeletal	Cartilage, bone, ligaments, tendons, joints, skeletal muscle	Support, protection, and movement of the body; production of blood cells
Immune	White blood cells, lymph vessels and nodes, spleen, thymus, and other lymphoid tissues	Defense against foreign invaders; return of extracellular fluid to blood; formation of white blood cells
Nervous	Brain, spinal cord, peripheral nerves and ganglia, special sense organs	Regulation and coordination of many activities in the body; detection of changes in the internal and external environments; states of consciousness; learning; cognition
Endocrine	All glands secreting hormones: Pancreas, testes, ovaries, hypothalamus, kidneys, pituitary, thyroid, parathyroid, adrenal, intestinal, thymus, heart, and pineal, and endocrine cells in other locations	Regulation and coordination of many activities in the body
Reproductive	Male: Testes, penis, and associated ducts and glands Female: Ovaries, uterine tubes, uterus, vagina, mammary glands	Production of sperm; transfer of sperm to female Production of eggs; provision of a nutritive environment for the developing embryo and fetus; nutrition of the infant
Integumentary	Skin	Protection against injury and dehydration; defense against foreign invaders; regulation of temperature

Concept of Homeostasis

Homeostatic control systems

- Homeostatic control systems may operate locally or bodywide
- Negative feedback opposes initial change and is widely used to maintain homeostasis
- Positive feedback amplifies an initial change
- Feedforward mechanisms initiate responses in anticipation of a change
- Disturbance in homeostasis can lead to illness and death

Negative Feedback

An overview of Cell structure

- Plasma membrane bounds the cell
- The nucleus contains the DNA
- The cytoplasm consists of various organelles, the cytoskeleton and cytosol

Cell

Cell Membrane

4 Membrane lipids

- The lipid bilayer forms the basic structural barrier that encloses the cells
- The membrane proteins perform various specific membrane functions
- The membrane carbohydrates serve as selfidentity markers

Cell-to-Cell adhesions

Cellular transport mechanisms

Mechanism	Definition	Example in the Body
Diffusion	Movement of molecules from an area of greater concentration to an area of lesser concentration.	Exchange of gases in the lungs or body tissues.
Osmosis	The diffusion of water.	Absorption of water by the small intestine or kidneys.
Facilitated diffusion	Carrier and transporter enzymes move mole- cules across cell membranes.	Intake of glucose by most cells.
Active transport	Movement of molecules from an area of lesser concentration to an area of greater concentration (requires ATP).	Absorption of amino acids and glucose from food by the cells of the small intestine. Sodium and potassium pumps in muscle and nerve cells.
Filtration	Movement of water and dissolved substances from an area of higher pressure to an area of lower pressure (blood pressure).	Formation of tissue fluid; the first step in the for- mation of urine.
Phagocytosis	A moving cell engulfs something.	White blood cells engulf bacteria.
Pinocytosis	A stationary cell engulfs something.	Cells of the kidney tubules reabsorb small proteins.

Membrane Transport

– C. Diffusion through lipid membranes -

Diffusion

Osmosis

Active transport-Na⁺-K⁺-ATPase

Secondary and tertiary active transport

1 Electrochemical Na⁺ gradient drives secondary active glucose transport

Receptor-mediated endocytosis

Endoplasmic reticulum and segregated synthesis

Golgi complex and Exocytosis

Lysosomes and Endocytosis

Mitochondria and ATP production

ATP

Catabolism

CO2 + H2O + NH3

Heat energy 60%

Fuel

molecules

Metabolic pathways

Glycolysis

Entering substrates	Glucose and other monosaccharides
Enzyme location	Cytosol
Net ATP production	2 ATP formed directly per molecule of glucose entering pathway Can be produced in the absence of oxygen (anaerobically)
Coenzyme production	2 NADH + 2 H^+ formed under aerobic conditions
Final products	Pyruvate—under aerobic conditions Lactate—under anaerobic conditions
Net reaction	
Aerobic:	$\begin{array}{r} Glucose + 2 \hspace{.1cm}ADP + 2 \hspace{.1cm}P_1 + 2 \hspace{.1cm}NAD^+ \longrightarrow \\ 2 \hspace{.1cm}pyruvate + 2 \hspace{.1cm}ATP + 2 \hspace{.1cm}NADH + 2 \hspace{.1cm}H^+ + 2 \hspace{.1cm}H_2O \end{array}$
Anaerobic:	$Glucose + 2 \text{ ADP} + 2 P_1 \longrightarrow 2 \text{ lactate} + 2 \text{ ATP} + 2 H_2O$

Krebs cycle

Entering substrate	Acetyl coenzyme A—acetyl groups derived from pyruvate, fatty acids, and amino acids Some intermediates derived from amino acids
Enzyme location	Inner compartment of mitochondria (the mitochondrial matrix)
ATP production	1 GTP formed directly, which can be converted into ATP Operates only under aerobic conditions even though molecular oxygen is not used directly in this pathway
Coenzyme production	3 NADH + 3 H ⁺ and 2 FADH ₂
Final products	2 CO ₂ for each molecule of acetyl coenzyme A entering pathway Some intermediates used to synthesize amino acids and other organic molecules required for special cell functions
Net reaction	Acetyl CoA + 3 NAD ⁺ + FAD + GDP + P ₁ + 2 H ₂ O $$ 2 CO ₂ + CoA + 3 NADH + 3 H ⁺ + FADH ₂ + GTP

Oxidative phosphorylation

Cytochromes in electron transport chain

Entering substrates	Hydrogen atoms obtained from NADH + H ⁺ and FADH ₂ formed (1) during glycolysis, (2) by the Krebs cycle during the breakdown of pyruvate and amino acids, and (3) during the breakdown of fatty acids Molecular oxygen
Enzyme location	Inner mitochondrial membrane
ATP production	3 ATP formed from each NADH + H ⁺ 2 ATP formed from each FADH ₂
Final products	H ₂ O—one molecule for each pair of hydrogens entering pathway.
Net reaction	$\frac{1}{2}O_2 + NADH + H^+ + 3 \text{ ADP} + 3 P_1 \longrightarrow H_2O + NAD^+ + 3 \text{ ATP}$

Ribosomes and protein synthesis

Cytoskeleton

Cytoskeletal filaments	Diameter (nm)	Protein subunit
Microfilament	7	Actin
Intermediate filament	10	Several proteins
Microtubule	25	Tubulin

Nucleus and DNA

	DNA	RNA
Nucleotide sugar	Deoxyribose	Ribose
Nucleotide bases Purines Pyrimidines	Adenine Guanine Cytosine Thymine	Adenine Guanine Cytosine Uracil
Number of chains	Two	One

DNA replication

Transcription

Translation

mRNA-Ribosome subunits -3° end Stop tRNA amino acids Growing peptide chain Ribosome Finished Start peptide chain 5' end

2 Translation in ribosomes

Cell division

Stage	Events
Prophase	 The chromosomes coil up and become visible as short rods. Each chromosome is really two chromatids (original DNA plus its copy) still attached at a region called the centromere. The nuclear membrane disappears. The centrioles move toward opposite poles of the cell and organize the spindle fibers, which extend across the equator of the cell.
Metaphase	 The pairs of chromatids line up along the equator of the cell. The centromere of each pair is attached to a spindle fiber. The centromeres now divide.
Anaphase	 Each chromatid is now considered a separate chromosome; there are two complete and separate sets. The spindle fibers contract and pull the chromosomes, one set toward each pole of the cell.
Telophase	 The sets of chromosomes reach the poles of the cell and become indistinct as their DNA uncoils to form chromatin. A nuclear membrane re-forms around each set of chromosomes.
Cytokinesis	1. The cytoplasm divides; new cell membrane is formed.

Mutations & Cancer

