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1.1   Introduction
It may be emphasized in the beginning itself that experimental design is first about 

agriculture, animal science, biology, chemistry, industry, education, etc. and then about Statistics 
and Mathematics.  In fact, experimental design forms the backbone of agricultural sciences; it 
is an integral component of every research endeavour in agricultural sciences. To design a good 
experiment the researcher first needs to outline questions to be answered or needs one or more 
well defined hypotheses. Some examples of typical questions or hypotheses are 

(i)	 How does the feed formulation affect the body weight of animals?
(ii)	 Which variety of crop species would be good for particular region?
(iii)	 Does the date of sowing affect the crop yield? 
(iv)	 How does the water availability and its quality influence the crop yield?
(v)	 How does greenhouse gases emission influence the global warming?
(vi)	 Does the use of pesticide in crops affect the health of farmers as well as the people 

consuming the produce? 
(vii)	 Do the micronutrients and minerals influence the productivity of crops? 
(viii)	 Are the resource conservation technologies counterproductive? 
(ix)	 How do altering manure management strategies at livestock operations or animal feeding 

practices control the methane emission?
It is hard to define a design of experiment, because it is a form of art along with the science. 

It may be borne in mind that no experiment could be the ultimate one. A good experiment 
would be one that allows testing what the researcher wants to test and exercises control over 
everything else. In that sense, a good experiment is one that estimates the effects that the 
researcher is interested in and simultaneously minimizes controls or eliminates confounding 
factor(s). A confounding factor is also at times called the nuisance factor. It potentially distorts 
the data. This factor is sitting hidden in a model and affects the variable being studied, but is not 
known or acknowledged. 

An example would be a study of nutrients like nitrogen, phosphorous, potash and sulphur 
on the yield of wheat. If the minerals like zinc and manganese in the soil are likely to be present 
along with the nutrients, and the study measures only nutrients but not the minerals, the study 
may find that the nutrients do affect the yield of wheat which may or may not be true. The 
presence of minerals in the soil might also be affecting the yield. If this confounding factor is 
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identified early enough, adjustments can be made so that the confounding does not destroy the 
results or introduces bias in results.  

Another example could be a study of feed formulation on body weight of animals. If the 
initial body weights of the animals are likely to be markedly different and the study measures 
only the periodic body weights of the animals after giving them feeds, the study may find that 
the feeds do affect the body weight of animals. But this may or may not be true. The initial body 
weights of animals might also be affecting the final bodyweight of the animals. If the experiment 
does not take care of this confounding factor, it may influence the results.

In planning any experiment, the experimenter needs to decide 

(a) 	 What conditions to study or what are the treatments, e.g., feed formulation, nutrients, 
irrigations, pesticides, varieties of a crop, resource conservation technologies, dates of 
sowing, etc.? 

(b) 	 What is the experimental material on which the experiment is to be conducted, e.g., 
animals, human beings, plots in a field, pots in a glasshouse, birds in a pen, tissues in 
a laboratory, trees, branches of a tree, leaf position on a tree, etc.? To be more specific, 
experimental material is actually a collection of subjects or units, or plots, etc. and is 
termed as experimental units or simply units. 

(c) 	 What measurements to make or what are the responses and how to measure these 
accurately and correctly, e.g., yield of crop, body weight of animal, milk yield, number 
of eggs layed, percentage of plants infected by disease, etc.? Response also denotes the 
measurable outcome as a result of application of treatments on the experimental units. 

 

In any planned experiment, there are four major sources of variability. These are 

(a)	 Variability due to the conditions under study or the treatments. This variability is desirable 
and is in fact a deliberate attempt of the researcher to create this variability.

(b)	 Variability in the experimental units. This variability is unwanted and undesirable but 
needs to be accounted for. Generally this variability is overlooked by the researchers.

(c)	 Variability in the measurement process or measuring the response. This part of the 
variability is unwanted and undesirable. We shall assume throughout that this variability 
is not present.

(d)	 Variability absolutely unaccounted for, unwanted and undesirable. The reason for this 
part of the variability is unknown to the experimenter. 

Since it will be assumed that the variability in the measurement process or measuring the 
response is absent and the response obtained is the true, accurate and correct response of the 
treatment applied, there will be in fact three major sources of variability to reckon with, viz., 
(a), (b) and (d). 
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Looking at the requirements of planning an experiment and the various sources of variability 
in the planned experiment, the thinking with respect to subject matter (agricultural, biological, 
industrial etc.) and statistical thinking is needed to reach for a good experimental design. In 
order to give a concrete form to this thinking, a strong interaction between the researcher and 
the statistician is absolutely essential for planning and executing an experiment. We begin with 
three important principles of a designed experiment. 

1.2   Principles of design of experiments
There are three basic principles of designing an experiment namely randomization, 

replication and local control (blocking). These techniques are discussed briefly in the sequel.

1.2.1	 Randomization
Randomization means random assignment of conditions to study or treatments to the 

subjects or experimental material (in fact experimental units), without an obvious plan, prior 
to start of the experiment. Randomization converts unplanned, systematic variability into 
planned, chance-like variability. An analytical reason in support of randomization is that 
essentially it ensures observations generated to be independent and hence the statistical tools 
used for analysis of observations gathered become applicable. This is more important for the use 
of test statistic like Snedecor’s F and Student’s t in hypothesis testing, wherein a pre-condition is 
that the observations are independent and are identically distributed as normal variate. This is 
the major concern of randomization. 

Randomization also serves the following purposes:
A random assignment of conditions to study or treatments to experimental units ensures that 

no experimental unit or no treatment received any favour in the beginning of the experiment.  
Randomization prevents systematic and subjective biases from being introduced into the 
experiment by the experimenter. In other words, randomization controls the experimenter 
bias. Lack of a random assignment of experimental units or subjects leaves the experimental 
procedure open to experimenter bias. It ensures that subjects or experimental units that are 
favoured or are adversely affected by unknown sources of variation are those “selected using 
chance device or random permutation” and not systematically selected. For example, in an 
initial varietal trial of a crop improvement programme, a breeder may assign his or her new 
strain of experimental crop to the parts of the field that look the most fertile to promote his or 
her strain; or a nutritionist may assign newly developed feed formulation to healthy and well 
growing animals to promote a favourite feed. The preferred variety or formulation may then 
appear to give better results no matter how good or bad it actually is.

Lack of random assignment can also leave the procedure open to systematic biases. Presence 
of systematic errors in an experiment makes the comparisons among treatments biased, no 
matter how precise measurements are or how many experimental units are used. 

Consider an experiment involving response of four feed formulations to influence the 
growth in terms of body weight of animals. Suppose that the four feeds, viz., A, B, C, D are given 
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to 12 animals. Each feed is observed on 3 animals. Without randomization experimenter would 
take 3 observations on feed one administered to three animals; then on feed two; then on feed 
three; and then on feed four, i.e., the order of the feeds given to 12 animals are A, A, A, B, B, B, 
C, C, C, D, D, D.  This order might be perfectly satisfactory but could equally well prove to be 
disastrous. It may be possible that the first three observations on feed A arise from animals that 
have no disease, the next three observations from feed B arise from animals that acquired foot 
and mouth disease recently, while the next three observations from feed C arise from animals 
that are suffering from bloat and the last three observations on feed D arise from animals that 
are suffering from mastitis. Obviously, the response to feed A would be more pronounced than 
that to feeds B, C or D, whereas in fact feed A may actually not be better than any of these feeds. 
Similarly the response to feed C may be more pronounced than that of feeds B or D. It is quite 
likely that the experimental conditions might favour a particular feed.  Order A, B, C, D, A, B, C, 
D, A, B, C, D, A, B, C, D might help to solve the problem, but it does not eliminate it completely.

Consider this experiment to study the influence of four feed compositions on growth of 
animals. The total number of ways in which 12 animals can be assigned to 4 feeds so that 3 
animals are assigned to each feed is

.600,369
!3!3!3!3

!12 =

A random assignment can lead to order A, A, A, B, B, B, C, C, C, D, D, D or A, B, C, D, A, B, 
C, D, A, B, C, D, A, B, C, D with probability 1/369,600. The probability is indeed infinitesimal, 
almost zero. Even though such arrangements can happen in a proper randomization, but to 
avoid such a thing happening purposefully, one must resort to a proper randomization.

Having said this, randomization has at times its limitations also because randomized 
experiments violate ethical standards and so cannot be adopted in practice in some situations. 
To make the exposition clear, an example is considered from clinical trials on human beings.

Suppose that a researcher wants to investigate the abortion–breast cancer hypothesis, 
which postulates a causal link between induced abortion and the incidence of breast cancer. A 
hypothetical controlled experiment starts with subjects (pregnant women) and divides them 
randomly into treatment group (receiving induced abortions) and control group (bearing 
children). Regular cancer screenings are conducted for women from both groups. Such an 
experiment would always run counter to common ethical principles. It would also suffer from 
various confounds and sources of bias, e.g., it would be impossible to conduct it as a blind 
experiment.

The published studies investigating the abortion–breast cancer hypothesis generally start 
with a group of women who already have received abortions. Membership in this “treated” 
group is not controlled by the investigator: the group is formed after the “treatment” has been 
assigned.

Consider another study in which a researcher wants to compare some phenotypic traits 
among animals of three different breeds. In this case the experimenter starts with a number 
of animals, some animals belong to breed one, some belong to breed two and rest of them 
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belong to breed three. The researcher collects observations on the phenotypic traits of interest. 
In this experiment, it is not possible to assign breed to an animal at random because the animals 
already are of a particular breed.  In other words, the assignment of breeds to animals is not 
under the control of the experimenter.

In view of this, design of experiments or experimental design is the design of all information-
gathering exercises where variation is present, whether under the full control of the experimenter 
or not. The latter situation is usually called an observational study, and would be beyond the 
scope of this book.  We shall, henceforth, focus on randomized experiments.  

1.2.2    Replication
Replication is the repetition of the conditions of study or treatments under investigation 

to different experimental units, be it animals or pots or plots in a field, or position of leaf on a 
plant. Replication intends to increase the size of the experiment.

Replication enables the experimenter to obtain a valid estimate of the experimental error. 
Estimate of experimental error permits statistical inference; for example, performing tests of 
significance or obtaining confidence interval, etc.  If there is no replication, then the researcher 
would not be able to estimate the experimental error. And as will be seen in the later Chapters, 
it is against this estimated experimental error the null hypotheses are tested. 

Consider an example where two levels of Nitrogen as A = 30 kg/ha and B = 60 kg/ha are 
applied to wheat crop. The interest of study is to see how nitrogen influences the yield of wheat.  
In experiment 1, there are four plots available and each level of nitrogen is applied to two plots 
randomly. The plots receiving the same level of nitrogen are expected to give the same response. 
The difference gives the experimental error. In experiment 2, there are six plots and each level of 
nitrogen is applied to three plots randomly. The yield in kg per plot is given in bracket.  

Experiment 1 A (31.5) B (30.6) B (28.2) A (32.8)

Experiment 2 B (26.8) A (31.7) A (33.4) B (28.6) A (32.9) B (27.9)

In experiment 1, the experimental error can be estimated as 

This can also be estimated as 

Here the average yield from A is 
 
and the average yield from B is 
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In this experiment, the experimental error is 3.725. 

In experiment 2, the experimental error can be estimated as 

This can also be estimated as 

Here the average yield from A is 
  

and the average yield from B is 

In this experiment, the experimental error is 3.173. 

Increasing the size of the experiment or increasing the replication also helps to increase 
the precision of estimating the pairwise differences among the treatment effects. This is so 
because with the increase in the size of the experiment, the experimental error reduces. As can 
be seen from the example above, the experimental error in experiment 2 reduces from that in 
experiment 1. 

It may be emphasized here that replication is different from repeated measurements. 
Suppose that the four animals are each assigned to a feed and a measurement is taken on each 
animal. The result is four independent observations on the feed. This is replication. On the 
other hand, if one animal is assigned to a feed and then measurements are taken four times 
on that animal, the measurements are not independent. We call them repeated measurements. 
The variation recorded in repeated measurements taken at the same time reflects the variation 
in the measurement process, while variation recorded in repeated measurements taken over a 
time interval reflects the variation in the single animal’s responses to the feed over time. Neither 
reflects the variation in independent animal’s responses to feed. We need to know about the 
latter variation in order to generalize any conclusion about the feed so that it is relevant to all 
similar animals. 

Generally speaking, all the treatments should be replicated same number of times. In that 
case the total number of experimental units is a scalar multiple of the number of treatments. In 
case the total number of experimental units is not a scalar multiple of the number of treatments, 
then the replication of treatments should be as equal as possible. In other words, the replications 
of treatments should not differ by more than one. For instance, if the number of treatments 
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is 7 and the number of experimental units is 24, then 4 treatments may be replicated three 
times and three treatments may be replicated 4 times. But there might occur some experimental 
situations where some treatments may need to be replicated more number of times than the 
other treatments and the difference in replications is more than one. In fact, there do occur 
experimental situations where some treatments are not replicated because not enough material 
is available for replication. There are other experimental situations where even a single complete 
replication is not experimented because of the resource constraint and economy. There will be 
occasions to refer to all such situations later in the book (both parts I and II).

1.2.3  Local control or blocking 
Experimental conditions under which an experiment is run should be representative of 

those to which the conclusions of the experiment are to be applied. For inferences to be broad in 
scope, experimental conditions should be rather varied. Unfortunate consequence of increasing 
scope of experiment is an increase in variability of response. Blocking is a technique that is often 
used to help deal with this problem

As mentioned earlier, one source of variability is the experimental material or experimental 
units. Local control or blocking is a technique to account for the variability in response because 
of the variability in the experimental units. To block an experiment is to divide the experimental 
units into groups or blocks of similar units in such a way that the observations in each block 
are collected under relatively similar experimental conditions. If blocking is done well, the 
comparisons of two or more treatments are made with more precision than similar comparisons 
from an unblocked design. 

It may be mentioned that the blocking is advantageous if the variability within the groups or 
blocks is as small as possible and between groups or blocks is as large as possible. 

In feeding trials litters of the same animal can form natural blocks. Similarly, animals with 
similar body weights can also form blocks; animals with genetic similarity can also form blocks; 
animals with same age can also be a criterion for forming the blocks; animals with same lactation 
number or stage can be another consideration for forming blocks. Fertility gradient in field 
experiments can be a way of forming blocks. In this case, the blocks are formed perpendicular 
to the fertility gradient. Salinity levels in the field could also be a criterion for forming blocks in 
field experiments. Age of the trees in horticultural experiments could be a source of variability 
and trees of same age can form natural blocks. The soil depth may be another criterion of 
blocking. In hilly areas, terraces may be taken as natural blocks.

From practical considerations, the contiguous experimental units should form blocks. But 
sometimes it may so happen that the homogeneous experimental units may not be contiguous. 
In that case blocks formed are irregular in shape. It is indeed possible that the blocks may not 
have same number of experimental units. If we force the blocks to be of same size, then again 
variability may creep in and the purpose of blocking is defeated. 
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There can be more than one source of variability in the experimental material. If there are 
two sources of variability in the experimental units, then recourse is made to forming blocks 
in two directions, called rows and columns. The conditions under study or the treatments are 
applied to the cells at the intersection of rows and columns. Row-column designs are also useful 
for the situations, wherein, the fertility gradient is along the diagonal in the field. Sometimes, 
the two blocking systems may be nested one within another. There may be larger blocks and 
within each larger block there are smaller blocks, called sub-blocks. The treatments are applied 
to the sub-blocks within larger blocks. There may be another type of experimental situation 
where within the larger blocks, rows and columns are formed. The treatments are applied to the 
cells within each larger block.

When there is blocking, then the randomization of conditions to study or treatments 
to experimental units changes. The exact randomization will be described in the respective 
chapters.

1.3  Brief history of design of experiments
The statistical principles underlying design of experiments were pioneered by R. A. 

Fisher in the 1920s and 1930s at Rothamsted Experimental Station, an agricultural research 
station around forty kilometres north of London. Fisher had shown the way on how to draw 
valid conclusions from field experiments where nuisance variables such as temperature, soil 
conditions, and rainfall are present. He had shown that the known nuisance variables usually 
cause systematic biases in results of experiments and the unknown nuisance variables usually 
cause random variability in the results and are called inherent variability or noise. He introduced 
the concept of analysis of variance (ANOVA) for partitioning the variation present in data 
(a) due to attributable factors, and (b) due to chance factors. The methodologies he and his 
colleague Frank Yates developed are now widely used. Their methodologies have a profound 
impact on agricultural sciences research. 

Though the experimental design was initially introduced in an agricultural context, the 
method has been applied successfully in the industry since the 1940s. George Box and his 
co-workers developed experimental design procedures for optimizing chemical processes, 
particularly response surface designs for chemical and process industries. W. Edwards Deming 
taught experimental designs to Japanese scientists and engineers in the early 1950s at a time 
when Japanese products were considered to be of poor quality. Genichi Taguchi, a Japanese 
engineer, suggested a number of techniques using orthogonal arrays. Taguchi coined the 
concept of robust parameter design and process robustness. Around 1990, Six Sigma, a new 
way of representing continuous quality improvement came into existence. Six sigma employs 
a technique that uses statistics to make decisions based on quality and feedback loops and is 
widely used by many large manufacturing companies. Design of experiments is considered an 
advanced method in the Six Sigma programs. 

Recently, experimental designs are also being used in clinical trials. This evolved in the 
1960s when medical advances were previously based on unreliable data. For example, doctors 
used to examine a few patients and publish papers based on such data. The biases resulting 
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from these kinds of studies became known. This led to a move toward making the randomized 
double-blind clinical trial the standard for approval of any new product, medical device, or 
procedure. The scientific application of the valid designing and analysis following proper 
statistical methods became very important in clinical trials.

More recently the experimental design techniques have started gaining popularity in the 
area of computer-aided design and engineering using computer/simulation models including 
applications in manufacturing industries. 

1.4   Some preliminaries
In the context of design of experiments, some widely used terminologies including those 

discussed earlier are now defined in the sequence. 

The term conditions to study or treatments is used to denote the different objects, methods 
or processes among which comparison is made. Some examples of treatments are different 
kinds of fertilizer in agronomic experiments, different irrigation methods or levels of irrigation, 
different fungicides in pest management experiments and doses of different drugs or chemicals 
in laboratory experiments, different varieties of crops, different pesticides, grazing systems for 
animals, different tree species in agro-forestry experiments, different concentrations of a solute 
in chemical experiments, etc. 

A control treatment is a standard treatment that is used as a baseline or basis of comparison 
for the other treatments. This control treatment might be the treatment which is currently in 
use, or it might be a no treatment at all. For example, a study of new pesticides could use a 
standard pesticide as a control treatment, or an experiment involving fertilizers may have one 
treatment as no fertilizers at all. In clinical trials, a control treatment is generally a placebo.

Experimental units are the subjects or objects on which the treatments are applied. For 
example, plots of land receiving fertilizer, groups of animals receiving different feeds, or batches 
of chemicals receiving different temperatures, pots in glasshouse experiments, Petri dishes or 
tissues to culture bacteria or micro-organisms in laboratory experiments, etc.

Responses are measurable outcomes, which are observed after applying a treatment to an 
experimental unit.  Alternatively, the response is what we measure to find out what happened 
in the experiment.  In an experiment, there may be more than one response. Some examples of 
responses are grain yield or straw yield, nitrogen content in plants or biomass of plants, quality 
parameters of the produce, percentage of plants infested by disease, weight gain by animals, etc.

Factors are the variables whose influence on a response variable is being studied in the 
experiment. If only one factor is being studied in an experiment then such an experiment is 
called a single factor experiment. If more than one factor is being studied simultaneously in an 
experiment, then such an experiment is called multi-factor or factorial experiment. The term 
factor is commonly used in the case of factorial experiments. For example, temperature and 
concentration of chemicals in a chemical experiment are two factors, Nitrogen, Phosphorus and 
Potassium fertilizers are three factors in an agronomic experiment, dose and time of application 
of a chemical formulation are two factors in a laboratory experiment.
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The term factor levels or a simply levels is used to denote the values or settings that a factor 
takes in a factorial experiment. For example, doses of a nitrogenous fertilizer as 0 kg/ha, 30 kg/
ha, 80 kg/ha are three levels of the fertilizer, 10oC, 20oC, 30oC are three levels of temperatures in a 
chemical experiment, 10%, 20%, 30%, 40% concentration of a solute in a solution are four levels 
in a laboratory experiment, presence of polythene sheet on the surface of soil or its absence 
could be two levels of a practice in water management study.

Treatment combination or level combination: In factorial experiments, the set of values for 
all factors in a trial is called treatment combination or level combination. For example, if in a 
chemical experiment, there are two factors viz., temperature and concentration and both these 
factors have three levels each as 10oC, 20oC, 30oC and 10%, 20%, 30%, respectively,  then total 
number of treatment combinations is 3 × 3 = 9 and these 9 combinations are (10oC, 10%); (10oC, 
20%); (10oC, 30%); (20oC, 10%); (20oC, 20%); (20oC, 30%); (30oC, 10%); (30oC, 20%); (30oC, 
30%). These combinations are in fact 9 treatments. We can label the 9 treatments as 1, 2, 3, 4, 5, 
6, 7, 8, 9. The association is the following: 1 ~ (10oC 10%); 2 ~ (10oC, 20%); 3 ~ (10oC, 30%); 4 
~ (20oC, 10%); 5 ~ (20oC, 20%); 6 ~ (20oC, 30%); 7 ~ (30oC, 10%); 8 ~ (30oC, 20%); 9 ~ (30oC, 
30%).

Conversely, if there are 9 treatments and these 9 treatments can be thought of as combination 
of levels of two factors, both having 3 levels each, then the same association can be used to 
convert the treatments into treatment combinations.

Application of a treatment combination to an experimental unit is called a run or a design 
point in factorial experiments.

An observational unit is a unit on which the response variables are measured. Observational 
units are often the same as experimental units, but this may not be true always. The mistake of 
confusing observational unit with experimental unit leads to pseudo-replication as discussed 
in a paper by Hurlbert (1984). For example, consider an experiment to investigate the effects of 
ultraviolet (UV) levels on the growth of smolt. The experiment is conducted in two tanks where 
one tank receives high levels of UV light and the other tank receives no UV light. Fish are placed 
in each tank and at the end of the experiment growths of the individual fish are measured. In 
this experiment, the tanks are the experimental units but the observational units are the smolts. 
The treatments, presence and absence of UV light, are applied to the tanks and not to individual 
fish but a whole group of fish are simultaneously exposed to the UV radiation. Here any tank 
effect is completely confounded with the treatment effect and cannot be separated.  Another 
example is that inorganic fertilizers are applied to plots in a field containing some plants. At the 
time of harvest, all the plants in the plot are not harvested. Only a sample of plants is harvested. 
In this case once again the plot is the experimental unit to which fertilizers are applied but the 
observational units are the plants sampled.  

A treatment contrast or simply a contrast is a linear function of treatment effects such that 
the sum of the coefficients is zero. For instance, if  denote the v treatment effects, then 

 is a contrast if and only if . A big advantage of contrast is 
that one can make all the possible pairwise treatment comparisons. It also enables to make any 
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other comparison among treatment effects. For details the reader may see Chapter 3. A contrast 
is said to be elementary contrast if and only if only two of the coefficients are non-zero while all 
other coefficients are zero. , etc. are elementary contrasts. Other contrasts could 
be  or .

1.5   Factorial experiment
There has been a description of treatments in Section 1.4. There has also been a description 

of factors and treatment combinations. It may be emphasised that the treatments in any 
experiment may either be unstructured or structured. Unstructured treatments are actually 
levels of a single factor in a single factor experiment. In these experiments, the interest is in 
making all the possible pairwise treatment comparisons. At times comparisons between subsets 
of treatments or among treatments within subgroups also form a part of the hypotheses to be 
tested. These experiments are generally conducted as unblocked design, block design or a row-
column design or a nested design depending upon the problem to be solved and the nature of 
the experimental material.

On the other hand, the treatments may be structured in the sense that there are several 
factors and each factor has several levels. The treatments in this case are the level combinations 
of all the factors. The interest of the researcher is in estimating the factorial effects comprising 
of main effects and the interaction effects rather than making all the possible pairwise treatment 
comparisons or subgroups testing. The treatment sum of squares in this case is partitioned into 
main effects and interaction effects sum of squares. Otherwise, the experiment once again is 
conducted using an unblocked design, a block design or a row column design or a nested design 
as one would have used in case of unstructured treatments. There are no special designs for 
running factorial experiments. However, treatment structure or their fraction may be obtained 
based on availability of resources and objectives of the experiment. An incomplete block design 
in factorial experiment may be obtained in such a way that the desired factorial effects are 
estimated with more precision by sacrificing information on factorial effects of less interest, 
particularly the higher order interactions.

If there are several factors it is always advantageous to study them simultaneously rather 
than studying them separately. Suppose that there are two factors A and B, A having three levels 
and B having four levels. Let the levels of the two factors be denoted by 0, 1, 2 and 0, 1, 2, 3, 
respectively. The association between the 12 treatment combinations and the treatments is the 
following:

1 ~ (0, 0); 2 ~ (0, 1); 3 ~ (0, 2); 4 ~ (0, 3); 5 ~ (1, 0); 6 ~ (1, 1); 7 ~ (1, 2); 8 ~ (1, 3); 9 ~ (2, 
0); 10 ~ (2, 1); 11 ~ (2, 2); 12 ~ (2, 3). The analysis of 12 treatments run in two replications as a 
completely randomized design (CRD) or an unblocked design is 

Source DF

Treatments 11

Error 12

Total 23 
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On the other hand if it is known that the treatments are structured as two factors with three 
and four levels, respectively, the same design can be analysed as factorial experiment run in a 
CRD with two replications. In that case the treatments can be partitioned into main effects and 
interaction effects as explained below.

Source DF

Treatments 11

Main Effect A 2

Main Effect B 3

Interaction A*B 6

Error 12

Total 23

Another advantage of using a factorial experiment is the following: If one looks carefully 
at the design in the example, each treatment combination appears twice in the completely 
randomized design (CRD) because the replication is two. However, if one looks at the 
replications of levels, then the levels 0, 1, 2 of factor A are replicated eight times each. Similarly 
the levels 0, 1, 2, 3 of factor B are replicated six times each. This replication of levels within the 
replication of treatment combinations is known as hidden replication. It is because of this hidden 
replication that some comparisons are made with higher precision in factorial experiments. 
These experiments have another advantage that these allow to study the interaction effects. If an 
experiment is conducted separately for each factor, the interaction effects cannot be estimated. 
Moreover, to achieve the same precision as in factorial experiment, the replications would have 
to be large. For example, if factor A with three levels is conducted as CRD, to have 12 degrees of 
freedom for error, one needs to have 5 replications making a total of 15 observations. Similarly, 
if the factor B is run as a CRD, then to have 12 degrees of freedom for error, the replication 
should be four making a total of 16 observations. So the total number of observations becomes 
31, but the interaction effect cannot be estimated.  On the other hand a factorial experiment 
requires only 24 observations to have 12 degrees of freedom for error and allows estimation of 
interaction effect also.  This means that running an experiment separately for each factor would 
result into an increase in the cost of the experimentation and interaction effects would have to 
be sacrificed. But factorial experiments have an advantage that not only the cost is reduced, the 
interaction effects are estimable and can be studied. Further the hidden replication in factorial 
experiments leads to an improved precision of the factorial effects. 

1.6   Variability in the experimental data
The data generated through designed experiments exhibit a lot of variability. In Section 

1.1 there was a mention of various type of variability in the data generated. The variability 
may be wanted, desirable, unwanted, undesirable but is controllable in the sense that it can be 
accounted for. There is also some more variability, unwanted, undesirable and uncontrollable. 
The reason for its presence is unknown. In an example in Section 1.2.2, it has been seen that 
even the experimental units (plots) subjected to the same treatment also give rise to different 
observations, thus creating variability. These plots are expected to give same response, but 
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actually the responses are different; reasons unknown. The statistical methodologies, in 
particular the theory of linear estimation and analysis of variance, enable us to partition the 
total variability in the data into two major components. The first major component comprises 
of that part of the total variability to which we can assign causes or reasons. The second 
component comprises of that part of the total variability to which we cannot assign any cause 
or reason. This variability arises because some factors are unidentified as a source of variation. 
Even after careful planning of the experiment, this component is always present and is known 
as experimental error. The observations obtained from experimental units identically treated are 
useful for the estimation of this experimental error. Ideally one should select a design that will 
give experimental error as small as possible. There is, though, no rule of thumb to describe what 
amount of experimental error is small and what amount of it can be termed as large. A popular 
measure of the experimental error is the percent Coefficient of Variation (CV). Generally the 
researcher desires the CV to be small, though there is no degree of smallness defined.

The explainable part of the total variability again has two major components. One major 
component is the conditions to study or the treatments. This part of the variability is wanted or 
desirable. There is always a deliberate attempt on the part of the experimenter to create variability 
by the application of several treatments. So in every designed experiment treatments are one 
component that cause variability. The other component of the explainable part of variability 
is the experimental units. This variability is unwanted and undesirable. The factors that cause 
this variability are called nuisance factors. This part of the variability is accounted for by using 
the principle of local control. Before planning the experiment, the experimenter must have a 
complete knowledge about the experimental units on which the experiment would be conducted 
and the sources of variability in the experimental units. If this variability is substantial and is 
not accounted for by proper designing of experiment, then this component would sit in the 
experimental error and make it unduly large. The end result would be a bad experiment. As 
mentioned earlier in Section 1.2.3, there could be many ways of accounting for the variability 
due to experimental units. The remedy will depend upon the sources and nature of the factors 
causing variability in the experimental units. As a matter of fact, the way to account for the 
variability in the experimental units will dictate what type of design is to be used. Many a time, 
depending upon practical constraints, a naive design may be the best design.   

As-a-matter-of-factly many designs have been evolved in the literature depending upon 
how the variability present in the experimental units is taken care of and how the treatments are 
allocated to the experimental units or how the randomization is done. If the experimental units 
are homogeneous and do not exhibit considerable variability, then the treatments are applied 
randomly to all the experimental units assuming that all the experimental units are uniform. 
Such designs are known as zero-way elimination of heterogeneity designs or completely 
randomized designs (CRD) and will be dealt with in detail in Chapter 2. On the contrary, if 
the variability present in the experimental units is sizeable, then forming groups called blocks 
containing homogeneous experimental units can account for this variability if the variability 
in the experimental units is due to one nuisance factor only. As opposed to the allotment of 
treatments randomly to all the experimental units in a CRD, the treatments in this case are 
allotted randomly to the experimental units within each block. Such designs are termed as one-
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way elimination of heterogeneity setting designs or the block designs. The most common block 
design is the randomized complete block (RCB) design which is also considered in Chapter 2. 
If there are two sources of variability in the experimental units, then the experimental units are 
grouped into arrays, called rows and columns, and the intersection of rows and columns, called 
cells are the experimental units. The treatments are allocated to the cells. For the randomization 
purpose, first the rows are randomized and then the columns are randomized.  There is no 
randomization of treatments possible within rows and/or within columns. Such designs are 
called row-column designs or two-way elimination of heterogeneity designs. A special class of 
these designs is the Latin square designs and will be studied in Chapter 2.

Generally in experimentation, the number of treatments is large. For large number of 
treatments, the blocks become large if one has to apply all the treatments in a block, as desired 
by the RCB design. It may then not be possible to maintain homogeneity among plots within 
a block and the basic purpose of forming blocks is defeated. The intra block variance or the 
variance per plot becomes large resulting in a large experimental error and thus a high value of 
coefficient of variation (CV). To overcome this problem, recourse may be made to an incomplete 
block design. A block design is said to be an incomplete block design if the design has at least 
one block that does not contain all the treatments. Some common incomplete block designs 
are balanced incomplete block (BIB) design, partially balanced incomplete block (PBIB) design 
including Lattice designs – square and rectangular, cyclic design, alpha design, etc. The concept 
of incomplete block design can also be extended to incomplete row and / or incomplete column 
designs. An example of incomplete row-column design is a Youden design or a Generalized 
Youden design or a Pseudo Youden design.

The unexplainable part of the variability, called the experimental error, is always present. 
But through controlled experimentation, it is always possible to control this component of 
variability. It is desirable that this component is as small as possible. This part, therefore, can 
be controlled by proper designing of an experiment. This means that the design should be such 
that it accounts for all the sources of variability in the experimental units. If the experimenter 
fails to control the variability in the experimental units through proper designing, then the 
experimental error can be controlled by a very useful and important statistical technique called 
analysis of covariance. This would be dealt with in Chapter 4.

1.7   Shape and size of experimental units
In agricultural field experiments, often plots in fields are used as experimental units. One 

important issue in this context is the shape and size of the plots and their arrangement. Some 
general considerations for plot arrangements are given in the sequence. 

i)	 The experimental area should be as uniform as possible. Uneven sites may lead to high 
error.

ii)	 Plots should be either rectangular or square and equal in area.
iii)	 The orientation of the plots should be same, for example, the longer side of the rectangular 

plots should be parallel to each other.
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iv)	 Uniformity trials may be conducted to get optimum shape and size of the plots. Uniformity 
trial involves growing a particular crop on a field or piece of land with uniform conditions. 
All sources of variation except that due to native soil differences, are kept constant. At the 
time of harvest the entire field is divided into smaller units of same size and shape and the 
produce from each such unit is recorded separately. The smallest the basic units, the more 
detailed are the measurements of soil heterogeneity.

v)	 It may not be economically feasible to conduct a uniformity trial. Even time constraint 
may be prohibitive in the conduct of a uniformity trial. If soil parameters are known, then 
these can be used for formation of plots and blocks. At times, the residuals obtained from 
a previous designed experiment conducted at that place may be used as covariate in the 
analysis of data generated.

1.7.1   Determining optimum size of plots
In the sequel are described some methods for understanding soil fertility variation/plot 

size. 

i)	 Fertility contour map: An approach to describe the heterogeneity of land is to construct 
the fertility contour map. This is constructed by taking the moving averages of yields of 
unit plots and demarcating the regions of same fertility by considering those areas, which 
have yield of same magnitude. This approach of describing the variation in fertility has 
been adopted by large number of workers in India and abroad. Fertility contour map can 
also be developed using the soil parameters in the observed samples obtained from the 
experimental area. 

ii)	 Maximum Curvature Method: In this method basic units of uniformity trials are 
combined to form new units. The new units are formed by combining columns, rows or 
both. Combination of columns and rows is done in such a way that no columns or rows 
are left out. For each set of units, the coefficient of variation (CV) is computed. A curve 
is plotted by taking the plot size (in terms of basic units) on X-axis and the CV values 
on the Y-axis of graph sheet. The point at which the curve takes a turn, i.e., the point of 
maximum curvature is located by inspection. The value corresponding to the point of 
maximum curvature will be optimum plot size. 

iii)	 Fairfield Smith’s Variance Law: Smith (1938) suggested an empirical relation between 
variance and plot size. Smith developed an empirical model representing the relationship 
between plot size and variance of mean per plot. This model is given by the equation 

where x is the number of basic units in a plot,  is the variance of mean per plot of x units, 
is the variance of mean per plot of one unit and b is the characteristic of soil and measure 
of correlation among contiguous units. If b = 1,   and the units making up the plots 
of x units are not correlated at all. If b = 0,   and the units making up the plots 
of x units are perfectly correlated and hence there is no gain due to larger size of plots. 



16

Statistical Analysis of Agricultural Experiments

Generally b lies between 0 and 1. The values of v1  and b are determined by least squares 
method.

This law can further be used for arriving at an optimum plot size. Smith recommended 
the cost function C = C1 + xC2, where C1 is overhead cost which is independent of plot 
size and C2 is the consideration of cost by a unit increase in the plot size. Optimum value 
of plot size is the one which minimizes the cost per unit of information viz. (C1 + xC2). 
Once b is estimated from uniformity trial data, the optimum size of plot can be obtained 
using the following formula

 .

Here it must be mentioned that the value of  xopt is some multiple of the basic plot size. For 
example, if   then it means that the optimum plot size is twice the basic plot size 
used in the uniformity trial for estimating b.

1.7.2   Shape of the plots
Shape of plots in agricultural field experiments should be decided after taking care of 

following points:

i)	 Crop to be grown
ii)	 Convenience of planting and harvesting crop
iii)	 Ability to use machineries (if machineries are going to be used)
iv)	 Presence or absence of fertility gradient
v)	 Variation in soil depth

1.8   Determination of number of replications
A very important question that needs to be answered by the experimenter is about the 

number of replications to be used in a design. Although the answer largely depends upon the 
resources available, there are some scientific reasons also that help in determining the optimum 
replication number. The following points should be kept in mind while determining number of 
replications of the treatments. 

i)	 The foremost important consideration in the determination of replication number is that 
there should be adequate error degrees of freedom. As far as possible, there should be 
about 12 degrees of freedom for error. The reason is not far to seek. The error mean square 
sits in the denominator of the test statistic to be used for testing the null hypothesis. If 
one looks at the tables of Snedecor’s F, the value below 12 degrees of freedom is very high 
and very variable. So small variations in treatment effects will not be detected significant 
for smaller degrees of freedom for error. On the other hand, the table values of Snedecor’s 
F stabilize after 12 degrees of freedom. So in order to be able to capture small variations, 
the error degrees of freedom should be at least 12.  On the other hand, the error degrees 
of freedom should not be unduly large. It would be wastage of resources to spend large 
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degrees of freedom for estimating experimental error.  It may be seen that if there are 
more number of treatments then lesser number of replications are required to ensure 
same number of error degrees of freedom. 

ii)	 Availability of resources and precision required: Number of replications should be 
determined in such a way that the experiment can be conducted with the available 
resources namely labour, cost, time, experimental material, etc. and it should be able to 
achieve desired precision of comparisons among treatments. The smaller the differences 
that are desired to be detected between treatment means or effects, the more is the number 
of replications needed. Sometimes it may not be possible to obtain desired precision with 
available resources and there may be a need of a trade-off between available resources and 
desired precision level either by sacrificing precision or by increasing available resources.

iii)	 Type of experimental material: Generally homogenous experimental units require less 
number of replications and heterogeneous experimental units require more number of 
replications of the treatments.

iv)	 Manageability of the experiment: It should also be kept in mind that the experimenter 
should be able to manage to conduct the experiment well. This entails that number of 
treatments, their replications and number of experimental units should not be very large, 
otherwise it may lead to a poorly managed experiment.

We describe below a method due to Cochran and Cox (1964) to obtain number of 
replications of treatments. In conducting an experiment, the experimenter may be interested to 
detect difference of at least, say d, between two treatment effects. Let the two treatment means be 

  and  . The significance of difference between two treatment effects is tested using Student’s 
t statistic given by

where  is the measure of error variation and r  is the number of replications for both the 
treatments. If the experimenter wants to detect a difference of at least d between the two 
treatment effects, then the t-statistic should come significant at desired level of significance   
and the corresponding t-statistic would be given by

where  t  denotes the critical value of t  distribution at level of significance . From the above 
equation one can get the number of replications as 

 .
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