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ABSTRACT

Nearly all analyses of environmental problems are confronted with uncertainty. The
implications of these uncertainties are particularly critical in the assessment and selection of
regulatory options. Current practices within the regulatory community do not adequately deal
with uncertainty. These practices, as embodied in EPA guideline documents, often place more
emphasis on post-hoc qualitative approaches to caveating uncertainties. In contrast, a
guantitative approach to uncertainty analysis is proposed as the most appropriate way to deal
with uncertainties. The benefits of such an approach include more proper and explicit
characterization of the state-of-knowledge about science and technology without the burden of
simplifying, policy-motivated assumptions, concise communication of such information to
decision-makers, and a capability to quantitatively identify modeling directions, data
requirements, and research needs. General methodological issues of uncertainty analysis are
discussed. These issues are illustrated based on a review of uncertainty analysis activities in
exposure assessment. In exposure assessment and other environmental analyses, a distinction
must be made between quantities which are uncertain, due to alack of knowledge of some type,
and those which are variable from one individual to another. A two-dimensional approach to
Monte Carlo simulation is developed and illustrated to properly model these conceptual
differences. The implications of this approach for data requirements, modeling, and
communication of results to decision makers are discussed. With respect to uncertainty analysis
in general, recommendations are made regarding the needs for appropriate training, data,
exemplary case studies, peer review, and handbooks. Quantitative approaches to uncertainty
analysis generate insights that help both analysts and decision-makers ask the right questions
about environmental problems.
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1.0 INTRODUCTION

Nearly all environmental problems faced today entail some element of uncertainty.
Estimates of emissions rates, fate and transport of pollutants, human exposure to pollutants,
health effects, costs and benefits of regulatory options, and other attributes of environmental
analyses are often fraught with uncertainty. Typically, only limited data are available to support
an analysis, if in fact any data are available at all. Y et regulatory decisions must be made by the
U.S. Environmental Protection Agency (EPA) and other agencies based on such information.
These decisions should be founded on as compl ete an assessment of scientific and technical
uncertainty as possible, to permit the identification of strategies which are robust even in the face
of uncertainty, and to identify priorities for further research.

In developing estimates of the values of key quantities in environmental problems, a
common approach isto assume a "best guess" point-value based on some combination of data
and technical judgment. These judgments may be intended to represent neither undue optimism
or pessimism, or they may be intended to incorporate a degree of conservatism. However, the
basis for many assumptions, and the scope of thought that went into them, are often not explicitly
documented in policy studies. Thus, the degree of confidence that a decision-maker should place
in the estimates when evaluating regulatory aternatives is often not rigorously considered.

The most common approach to handling uncertainties is either to ignore them or to use
simple "sengitivity" analysis. In sensitivity analysis, the value of one or afew model input
parameters are varied, usually from "low" to "high" values, and the effect on a model output
parameter is observed. Meanwhile, all other model parameters are held at their "nominal "
values. In practical problems with many input variables which may be uncertain, the
combinatorial explosion of possible sensitivity scenarios (e.g., one variable "high", another
"low," and so on) becomes unmanageable. Furthermore, sensitivity analysis provides no insight
into the likelihood of obtaining any particular result. Thus, while they indicate that a range of
possible values may be obtained, sensitivity results do not provide any explicit indication of how
a decision-maker should weigh each possible outcome.

A guantitative approach to uncertainty analysisis proposed as the most appropriate way
to deal with uncertainty. Deterministic estimates, based on "best guess' point estimates, are
often wrong or misleading in several ways. (1) they are often biased away from the mean values
of the uncertainties they represent; (2) they provide no indication to decision makers regarding
the magnitude of underlying uncertainties; and (3) they permit no indication of the key sources
of uncertainty. Deterministic estimates are not based on complete and quantitative consideration
of interactions among multiple, simultaneously uncertain variables, which are especially
dangerous to overlook in the cases of skewed uncertainties and/or complex nonlinear models.
Ignoring or surpressing uncertainty in environmental risk assessment often resultsin a
misleading sense of confidence about numbers.

In contrast, quantitative estimates of uncertainty more properly characterize the state of
knowledge affecting a regulatory decision, and more properly convey to decision makers the
magnitude of the uncertaintiesin key quantities of interest (e.g., exposure levels, emission rates,
risks, etc.). Furthermore, through simple extensions of traditional Monte Carlo techniques, it is
possible to identify both the key sources of uncertainty which merit further research, aswell asto
identify uncertain factors which are unimportant to a given decision. The importance of the
latter may be unappreciated unless one considers the number of often useless arguments that
fixate on minutia, especially in emotionally-charged policy debates. In the process of identifying
factorsthat really matter, quantitative uncertainty analysis can lead to more informed and
focused policy debates.
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11 Environmental Problem Domains With Uncertainties

Within the U.S. EPA, some of the key types of assessment activities subject to
uncertainty include risk assessment, technology assessment, and economic analysis. Some of the
features of these types of assessments are briefly summarized.

Risk assessment can be divided into anumber of distinct activities. These include hazard
identification, emissions characterization, exposure assessment, dose-response assessment, and
risk characterization (Stine, 1992). Hazard identification is the stage at which a determination is
made as to whether or not a biological or human health hazard exists for a range of biological
process from a given chemical. Emissions characterization involves estimation of the sources
and rates of emissions, based on process modeling, emission factor cal culations, measurement of
emissions at stacks and vents, or monitoring of ambient pollutant levels. Exposure assessment is
generally concerned with estimating the transport of contaminants from emissions sources to
bodily contact with an exposed population, including the intensity, frequency, and duration of
contact and spatial and temporal patterns of the contaminant. The dose-response assessment
involves estimating the relationship between exposure (or actual absorbed dose) and biol ogical
effects within individuals of an exposed population. Risk characterizationisthefinal stepina
risk assessment, and it involves devel oping numerical and qualitative descriptions of the types
and magnitudes of adverse effects, the probabilities that the effects will occur, and a discussion
of uncertainties and analytical assumptions.

Technology assessment refers here to the estimation of the performance, emissions, and
cost of technologies which emit, control, or remediate discharges to the environment.
Benefit/cost analysis refers to any analyses which attempt to estimate the cost and economic
effects of regulatory strategies, and which attempt to quantify direct or indirect benefits and costs
on some common basis.

Together, these three types of assessments often play a complimentary rolein the analysis
of regulatory options and in the decisions made by policy makers within EPA. Alternative
technologies may be available to reduce the emissions of potentialy hazardous pollutants. Thus,
technology assessment, risk assessment, and benefit/cost analysis may all be factorsin a
regulatory analysis, each subject to various sources of uncertainty. This report deals with
methodological aspects of how to deal with these uncertainties.

1.2  Scopeof thisReport

In the next section, motivations for doing uncertainty analysis with specific focus on the
U.S. EPA arediscussed. A snapshot of some current activities at EPA related to uncertainty
analysisisgiven. General methodological aspects of uncertainty analysis are reviewed in
Chapter 3. Aspects of uncertainty analysis specific to one problem domain, exposure
assessment, are discussed in Chapter 4. In Chapter 5, an illustrative case study of atwo-
dimensional Monte Carlo approach to simulating both variability and uncertainty is presented. A
hypothetical exposure model is used for this purpose. The implications of a quantitative
approach to the analysis of variability and uncertainty are presented in Section 6.
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20 MOTIVATIONSFOR UNCERTAINTY ANALYSIS

Analyses of many environmental problems involve uncertainties, which are often ignored
or treated in alimited way using sensitivity analysis. However, sensitivity analysis suffersfrom
shortcomings resulting from the difficulty in evaluating the effect of simultaneous variationsin
several parameters and the lack of insight into the likelihood of any particular result. These
shortcomings are especially important for nonlinear models, in which the results may be
sensitive to a given input variable only when other input variables take on certain values. These
types of potentially complex interactions require a more integrated approach to the assessment of
uncertainty.

A more robust approach is to represent uncertainti esin model parameters using
probability distributions. Using probabilistic simulation techniques, simultaneous uncertainties
in any number of model input parameters can be propagated through a model to determine their
combined effect on model outputs. The result of a probabilistic simulation includes both the
possible range of values for model output parameters, and information about the likelihood of
obtaining various results. This providesinsights into the downside risks or potential pay-offs of
aternative regulatory strategies. Statistical analysis on the input and output data can be used to
identify trends (e.g., key input uncertainties affecting output uncertainties) without need to re-run
the analysis. Thus, probabilistic analysis can be used as a research planning tool to identify the
uncertainties in a problem that matter the most, thereby focusing research efforts where they are
most needed. Probabilistic analysis may be referred to elsewhere as "range estimating” or "risk
anaysis'.

The development of ranges and probability distributions for model input variables can be
based on information available in published studies, statistical data analysis, and/or the
judgments of technical experts with relevant problem domain experience. The approachesto
devel oping judgments about probability distributions are similar in many ways to the approach
one might take to pick asingle "best guess' number for deterministic (point-estimate) analysis or
to select arange of valuesto use in sensitivity analysis. However, the development of estimates
of uncertainty usually requires more detailed thinking about possible outcomes and their relative
likelihoods. Thisisan advantage for the analyst, because by thinking systematically about
alternative outcomes, the analyst is more likely to uncover "surprises’ that might otherwise have
been overlooked.

21 Moaotivationsfor Uncertainty Analysiswithin EPA

The use of quantitative approaches to uncertainty analysis within EPA is currently very
limited, due partly to the lack of widespread training in methodological aspects of uncertainty
analysis. However, the development of in-house capabilities to perform uncertainty analysisis
being pressured by the increasing use of uncertainty analysis by EPA contractors and other
analysts outside the agency. EPA analysts need to be able to critically evaluate externally
conducted studies which often become a basis for exposure, risk, and other types of estimatesin
policy making.

Furthermore, within EPA today, there are a number of institutional motivations for the
increased used of quantitative uncertainty analysis. These motivations, which cut across
disciplines and programs, are converging to require analysts at EPA to more fully and
guantitatively characterize uncertainties in their assessments, and to communicate information
about uncertainty to risk managers and other policy makers. A few of these motivations are
studies by the National Academy of Sciences (NAS), practices outside EPA, requests for
uncertainty analyses by the Office of Management and Budget (OMB), recommendations by the
EPA Science Advisory Board (SAB), and a recent memorandum on risk characterization by EPA
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Deputy Administrator F. Henry Habicht, |1 (the "Habicht memo’). In addition, there has been
recent discussion about a possible presidential Executive Order which would require quantitative
uncertainty analysisin the evaluation of regulatory options.

2.1.1 The 1983 NAS Report on Risk Assessment

A National Academy of Sciences (1983) study identified "pervasive uncertainty” as"the
dominant analytic difficulty” in linking exposure to chemicals to chronic health risks. Sources of
uncertainty include incomplete data, the types, probabilities, and health effects associated with
exposure to a chemical agent, economic effects of regulatory action, and the extent of possible
current and future exposures. The two key recommendations of the study were that: (1)
regulatory agencies should establish a clear conceptual distinction between scientific assessment
of risks and policy judgments in the choice of regulatory options; and (2) uniform guidelines
should be developed for the risk assessment process.

It is often the case that, in a scientific assessment, there is no consensus on the
appropriate "inference options" or plausible theories to employ. To cope with this type of
uncertainty, various programs and offices within EPA have developed "guidelines’ for how to
perform scientific assessments, as well as "handbooks" of acceptable numerical values to use for
key variablesin risk assessment equations. A specific example of this approach is the "Risk
Assessment Guidelines of 1986" (EPA, 1987) and the "Exposure Factors Handbook™ (EPA,
1989). While such guidelines have the intended effect of streamlining the assumptions and
approaches used by different analysts, they aso have the effect of building policy assumptions
into the risk assessment process. For example, the recommended approach to exposure and risk
assessment, as well as the recommended values to use for specific parameters, are often based on
conservative assumptions. A key concern isthat appreciation for these conservative
assumptions, aswell as for other sources of uncertainty, islost in the process of communicating
assessments to regulators and then to the public.

Ironically, the 1983 NAS study tangentially addressed the notion of uncertainty analysis,
but then dismissed it. The study suggests that it would be possible to develop risk assessments
based on explicit consideration of alternative "plausible inference options.” The study claims
that such an assessment "could result in such awide range of risk estimates that the analysis
would not be useful to aregulator or to the public.” If in fact such an estimate were obtained, it
would reflect the scientific uncertaintiesin the risk assessment, and would leave for regulators
the perhaps uncomfortable role of how to interpret the uncertain scientific information in the
context of political, economic, and social considerations. In reality, the proper characterization
and communication of uncertainty would disentangle many policy judgments from the
assessment process. While the resulting estimates may look messy to a regulator, they are in fact
more scientifically defensible than point-estimates based on policy-motivated assumptions.

A critique offered by the NAS study is that regulators might have the option of "ad hoc
exercise of risk assessment policy decisions' if faced with a broad range of policy values from a
risk assessment. However, what this argument ignores is that the risk manager will be required
to justify the selection of any single value from the distribution of plausible outcomes and
explain it to the public through the regulatory process. Furthermore, the regulator istypically
also faced with uncertainties about key economic or other factors that must be included in the
decision-making process. The regulator should be expected to explicitly consider all sources of
uncertainty in choosing among regulatory options. The current processis more arbitrary, in that
risk managers are often presented with only a point estimate (representing a single draw from the
distribution of possible values) and a qualitative laundry list of caveats. In many typical case
studies, these types of judgments, which are properly in the policy domain, are imbedded in the
"scientific" assessment process through assessment guidelines or standard accepted approaches.
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According to the NAS study, guidelines must, by their very nature, include a mixture of
policy and science. Asa practical matter, thisis probably true — it may be impossible to
completely separate policy judgments from "scientific assessment.” Even purely scientific
assessments entail some elements of subjectivity. However, it should be the goal of guidelinesto
minimize the policy content within assessments. The NAS report indicates that guidelines
cannot effectively address case-specific factors such as quality of data or strength of evidence.
However, it is the case that guidelines can (and should) promote consistent and defensible
methodological approaches to theseissues. For such ideal guidelines to be effective, assessors
and analysts must be properly trained in the methodological techniques.

An observation of the NAS study panel was that "preparation of fully documented written
risk assessments that explicitly define the judgments made and attendant uncertainties clarifies
the agency decision-making process and aids the review process considerably” (p.148). The
report goes on to state:

Conclusions based on a large number of sequential, discretionary choices
necessarily entail a large, cumulative uncertainty. The degree of uncertainty may
be masked to some extent, when, in the final form of an assessment, riskis
presented with an associated measure of statistical significance. If they areto be
most instructive to decision makers, assessments should provide some insight into
gualitative characteristics of the data and inter pretations that may impute more
or less certainty to the final results. (p.165).

The above statement is contradictory. First, any conclusion based on a series of discretionary
choices regarding point estimates for model input assumptions completely sidesteps any
guantitative treatment of uncertainty. Thus, it is more accurate to say that the degree of
uncertainty is nearly completely masked. Second, it has rarely been the case that risk
assessments are presented with any type of measure of statistical significance, although thisis
beginning to change. Third, while qualitative laundry lists of caveats may provide some vague
indication of the degree of uncertainty of the estimate, they do not provide any quantitative
indication of uncertainty. Asaresult, it is often difficult to identify whether the risks of
exposure to one chemical arereally higher or lower than the risks from another chemical, or to
identify which uncertain factors in the assessment contribute most to uncertainty in the risk
estimate. Thisisnot meant to minimize the role of qualitative description of uncertainty. In
some cases, one can do no better than that because of the scarcity of datato support any
guantitative assessments or judgments. Thisis especialy true in the case of dose-response
modelsin risk assessment. However, it too often appears to be the case that a qualitative
approach is used instead of a quantitative approach for convenience.

The use of guidelines and handbooks to justify the selection of point-estimates for input
assumptions results in atighter entanglement of policy within the assessment process, whereas a
full display of uncertainties through probability distributions, where possible, provides a more
scientifically defensible approach. Uniform guidelines should focus less on the specifics of what
equations and parameter assumptions to use, and more on the methodology of how to properly
conduct an assessment.

The NAS s currently conducting a new study intended to provide guidance to EPA on
methodological approaches to risk assessment for air toxics. It isexpected, however, that the
recommendations of this study will be applied to exposure and risk assessment activitiesin
general. The committeeis reported to be considering the role of uncertainty anaysis as part of
exposure and risk assessment (Stine, 1992).
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2.1.2 Practice Outside EPA

An increasing number of investigators outside EPA are employing quantitative
approaches to uncertainty analysisin the context of exposure and risk assessment. Some
examples of these are: Alberts and Weyman, 1991 (the same paper is authored by Alberts and
Rouge, 1992); Bogen and Spear, 1987; Constantinou et al, 1992; Copeland et al, 1992,
Eschenroeder and Faeder, 1988; Hattis et al., 1988; Johnson et al., 1992; Li et a., 1992; McKone
and Bogen, 1991, 1992; McKone and Ryan, 1989; Morgan et a, 1985; Roseberry and
Burmaster, 1992; Shlyakhter et al, 1992; Thompson and Burmaster, 1991; Thompson et al, 1992;
Wilson et al. (1985), and Zankel et al, 1991. Thislisting is not intended to be all inclusive, but
serves the purpose of indicating the trends related to exposure and risk assessment. A report by
Rish and Marnicio (1988) identifies a number of earlier studies related to uncertainty in risk
analysis.

Quantitative uncertainty analysisis also applied in other domainsrelated to EPA's
missions. These include technology assessment and economic analysis. Some examples of these
types of applications are given by Apostolakis (1990), Frey (1991), Frey and Rubin (1991,1992),
and Heslin and Hobbs (1991).

2.1.3 Requestsby OMB

In several instances, OMB has requested EPA to explicitly consider uncertaintiesin
developing estimates of the costs of environmental regulations. OMB has the authority to review
proposed regulations with respect to economic impacts. In one example, an expert elicitation
approach was used by EPA to estimate uncertainties in the costs and economic impacts of land
disposal restrictions for newly listed wastes and contaminated debris (EPA, 1992). Presumably
the intent of the request by OMB in this case was to assure that the rulemaking did not fall under
the category of a"major rule." One of the criteriafor amajor ruleisthat the incremental annual
effect to the economy is $100 million or more. The results of the analysisindicated a high
probability that the economic effect of the rulemaking would be less than $100 million per year.
Thus, the analysisin this case both characterized the degree of uncertainty in the economic
analysis, and provided robust indication that, regardless of the uncertainty, the costs would be
well below $100 million.

2.1.4 EPA Science Advisory Board

The SAB has been involved in peer review of recent EPA guidelines, including the 1992
Exposure Assessment Guidelines (EPA, 1992). The SAB (1992) was asked to comment
specifically on the types of exposure estimators recommended by the guidelines, as well asthe
general discussion of uncertainty analysisin the guidelines. The SAB recommended a graphical
representation of exposure estimators corresponding to various percentiles of a probability
distribution of exposures. The SAB also commented that the presentation of uncertainty analysis
in Chapter 6 of the guidelines was "comprehensive and scientifically correct,” and further noted
the "strong statement of the importance of uncertainty assessment in exposure assessment.” The
SAB commented favorably that the guidelines recognized the elements of "scientific judgment”
required to perform uncertainty analysis. On the issue of presenting results, the SAB considered
a standard format, but abandoned the approach due to concerns about stifling creativity.

In an earlier resolution on the use of mathematical models at EPA, the SAB (1989)
recommended that:

Sensitivity and uncertainty analyses of environmental models and their
predictions should be performed to provide decision-makers with an

under standing of the level of confidence in model results, and to identify key areas
for future study.
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The resolution also recommended that uncertainties in both model structure and model
parameters should be evaluated to "determine possible effects on the ultimate regulatory
decision.” Furthermore, although not directly addressing the issue of uncertainty analysis, the
SAB stated that "peer review at various levelsis required to ensure proper model devel opment
and application.”

From these two examples, it appears that the SAB is generally sympathetic to the notion
of quantitative uncertainty analysis and its use within EPA.

2.15 Guidance Documents

Over the years, increasing attention has been given to uncertainty analysisin the
formulation of guidance documents. In response to the 1983 NAS study, EPA program offices,
and the Office of Research and Development (ORD), have developed a number of guidance
documents dealing with accepted methods for performing exposure and risk assessments.
Examples of these include the The Risk Assessment Guidelines of 1986 (EPA, 1987), the
Superfund Exposure Assessment Manual (EPA, 1988), the Human Health Evaluation Manual for
Superfund (EPA, 1989), and the ORD Guidelines for Exposure Assessment (EPA, 1992).

The 1986 Risk Assessment Guidelines were developed in direct response to the 1983
NAS study. This document includes guidance for carcinogen risk assessment, mutagenicity risk
assessment, health assessment of suspect developmental toxicants, health risk assessment of
chemical mixtures, and estimating exposures. Generally, the approaches to dealing with
uncertainty can be divided into categories of qualitative "laundry lists" of caveats appended to
the results, sensitivity analysis, and quantitative uncertainty analysis.

The 1988 Superfund Exposure Assessment Manual discusses sources of uncertainty in
models and model parameters and approaches to deal with uncertainty. In some instances,
statements in the manual are incomplete, while in others they are inaccurate. For example, itis
stated without support that Monte Carlo analyses requires an assumption of statistical
independence among input parameters. While thisisthe casein traditiona Monte Carlo
simulation, techniques exist to induce correlations among input variables (e.g., Iman and
Conover, 1982). Moreover, other approaches are available to deal with correlations. These are
discussed in Section 3.3 While many opponents of quantitative uncertainty analysis use excuses
based on misconceptions about methodological approaches and capabilities, they overlook other
more appropriate approaches to dealing with correlations.

An example of another misconception is found in the 1988 manual, which contains a
statement that "assuming an input parameter distribution does not help to reduce uncertainty."
There seemsto be anotion in some of the EPA literature that the purpose of a quantitative
uncertainty analysisis somehow to "reduce" uncertainty. This could not be farther from the
truth. Inreality, uncertainty analysisis an attempt to quantify the degree of confidence that an
anayst hasin the existing data and models, based on whatever information is currently available.
In the face of sparce or non-existing data, one may elicit the judgments of problem domain
expertsin the form of subjective probability distribution functions (SPDF) using standard
elicitation protocols (e.g., Morgan and Henrion, 1990). This hardly constitutes "assuming” an
arbitrary distribution. Whileit istrue, and often stated by critics of quantitative uncertainty
analysis, that model results are only as good as model assumptions (or "garbage in, garbage
out"), it is also the case that completely ignoring uncertainty when it is known that uncertainty
exists yields misleading point-estimates. It is certainly better to make a good faith effort to
guantify uncertainties, and caveat the judgments that went into the process, than to completely
side-step uncertainty analysis justified on the basis of incoherent criticisms.



H.C. Frey Quantitative Analysis of Uncertainty and Variability in Environmental Policy Making

The 1988 manual states with some basis that "a quantitative appraisal of the uncertainty
isthe most preferably way to express the uncertainty,” but that a qualitative approach is often
"the most viable way to express the level of uncertainty.” The difficulty of the latter approachis
that it provides no clear indication of how good the estimates are, nor does it provide a strong
basis for prioritizing future data collection or research.

The 1989 Superfund Human Health Evaluation Manual states that "estimating a
probability distribution for exposures and risks can lead to a false sense of certainty about the
analysis." The manual stressesthat it isimportant to identify all sources of uncertainty which
were not included in the quantitative analysis. While thisis good advice, it also appearsto be the
case that both Superfund manual s tend to place more emphasis on qualitative approaches to
dealing with uncertainty. This may be a program-specific recommendation, due to the large
number of Superfund sites and the impracticability of developing detailed information for every
site. Nonetheless, it is precisely for problems where data are limited that quantitative uncertainty
analysis can provide an illuminating role, to help identify how robust conclusions about
exposures and risks are, and to help target data gathering efforts.

The 1992 Exposure Assessment Guidelines represent current EPA thinking about
approaches to characterizing variability and uncertainty. The guidelines detail the role of
uncertainty analysis, types of uncertainty, and variability. Approachesto dealing with
uncertainty are briefly summarized. In general, the guidelines provide a comprehensive
overview of key concepts related to uncertainty analysis. However, there are few shortcomings
in some of the technical discussion.

For example, the notion of "reducing” uncertainty by characterizing it appears in the 1992
guidelines. The guidelines state: "when the results are significantly affected by a particular
parameter, the exposure assessor should try to reduce uncertainty by devel oping a description of
the likely occurrence of particular values within the range." The guidelines then offer several
suggestions for estimating a probability distribution for the parameter in questions.
Fundamentally, the process of estimating uncertainty in a parameter isto fully describe the range
and likelihood of values for the parameter, not to arbitrarily narrow the range or to somehow
"reduce” uncertainty. Reductionsin uncertainty can only come from gathering additional
information. In reality, gathering additional information may or may not actually reduce the
estimates of uncertainty, depending on how complete the prior understanding of uncertainty was.

Another shortcoming of the guidelines are statements regarding the use of Monte Carlo
simulation. The guidelines indicate that it is cumbersome to determine the sensitivity of model
output uncertainties to assumptions regarding uncertainties in model inputs. Furthermore, itis
stated that Monte Carlo results provide no indication of which variables are the most important
contributors to uncertainty. While these statements are true, they are misleading due to
omission. Statistical techniques can be applied relatively easily to answer these questions. For
example, various regression techniques can be used to identify the linear correlations between
uncertainties in model outputs and model inputs. Such correlations can provide an indication of
the relative importance of each input uncertainty in determining output uncertainty. Variations
of regression analysis can be employed when nonlinearities exist in the model. Such techniques
are discussed in Section 3.6.4. EPA guidelines often fall short of fully discussing the variety of
techniques that are available to assist an analyst in dealing with perceived shortcomings of
Monte Carlo ssmulation, such as correlated inputs, identification of key uncertainties, and so on.
However, in many other respects, and especialy in the case of the 1992 Exposure Assessment
Guidelines, these documents often do present a concise summary of the philosophy and use of
guantitative uncertainty analysis techniques.
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2.1.6 1992 EPA Memorandum on Risk Char acterization

The February 1992 "Habicht memo" (Habicht, 1992) provides guidance on the
development and use of risk characterizations, and distinguishes the role of risk assessors from
risk managers. The memo emphasizes the need to be "completely candid" about uncertaintiesin
characterizing risks and justifying regulatory decisions.

The memo reinforces the idea that risk assessment and risk management should be
distinct and separate activities. A key statement in thisregard is that:

Matters such as risk assessment priorities, degree of conservatism, and
acceptability of particular risk levels are reserved for decision-makers who are
charged with making decisions regarding protection of public health.

In contrast, risk assessors have the tasks of generating credible, scientifically defensible analyses,
with clear indications of the uncertainties and limitations of the assessments.

An often heard, but ill-founded, criticism of uncertainty analysis on the part of some EPA
anaystsisthat any rigorous treatment of uncertainty destroys the confidence one might
otherwise have in anumerical point estimate. On this point, the memo isquite clear: "a
balanced discussion of reliable conclusions and related uncertainties enhances, rather than
detracts, from the overall credibility of each assessment.” The goal here isto identify scientific
conclusions in risk assessments and regulatory options in risk management which are robust in
the face of uncertainties, and to identify areasin which additional information would be required
to fill data gaps or to resolve uncertainties.

The memo also states that, "effective immediately,"” EPA policy requires that information
on the range of exposures and multiple risk descriptors be presented in all exposure and risk
characterizations. Theintent isto provide an indication of the central ranges of exposure and/or
risk, high end exposures and risks, and sensitive subgroups especially at risk. Individual
exposure and risk is to be characterized using measures such as central tendency (mean or
median) and high end (e.g., above the 90th percentile). Examples of different types of
population risk descriptors to use include total number of cases of a health effect for a population
over acertain time, the portion of the population within some range of risks, and the number of
individualsin a population at or above somerisk level. Highly susceptible subgroups, such as
infants, pregnant women, the elderly, or other highly exposed or highly at risk groups, are to be
identified. Furthermore, information of thistypeisto be retained at all stages of risk
management, to "present a more complete picture of risk that corresponds to the range of
different exposure conditions encountered by various populations exposed to most environmental
chemicals."

While the memo does not directly address other types of analyses which decision-makers
must integrate in selecting regulatory options, it does indicate that the same type of rigor in
characterizing uncertainties in societal considerations and economic analyses is expected.

Risk management decisions involve numerous assumptions and uncertainties
regarding technology, economics, and social factors, which need to be explicitly
identified for decision makers and the public.

Thus, the Habicht memo requires more attention to characterization of the variability in
exposures and risks faced by different members of populations subject to exposure, as well as
more attention to the uncertainties associated with such estimates. The memo indicates that
techniques such as Monte Carlo analysis can be used for this purpose, but provides no rigid
"cookbook" guidance on how to implement the new policy. Thisis, of course, the proper course,
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because the selection of appropriate techniques is often a problem-specific concern that should
be left to the judgment of the analyst.

Of al of the motivations for quantitative approaches to analyses of variability and
uncertainty which currently face EPA, the Habicht memo is perhaps the most salient. It provides
the clearest directives, in terms of actual agency policy, in this regard.

2.2  Uncertainty Analysis Within EPA

A number of activities within EPA reflect both along term interest in uncertainty analysis
on the part of relatively few EPA analysts, as well as the current growing interest in uncertainty
analysis in response to various motivations, such as the ones detailed above. A few examples are
briefly discussed here. These include the development of uncertainty analysis software tools
within EPA, the formation of an uncertainty discussion group at EPA headquartersin
Washington, EPA-sponsored workshops on uncertainty analysis and related topics, and alimited
number of in-house projects and sponsored studies involving some type of quantitative analysis
of uncertainty.

2.2.1 SoftwareTools

Several software tools have been developed by EPA which have Monte Carlo simulation
capabilities. Furthermore, a number of commercial or public domain programs are available. Of
the EPA-supported tools, the most prominent s MOUSE, which is an acronym for Modular
Oriented Uncertainty SystEm (Klee, 1992). MOUSE can be used to simulate uncertaintiesin
models consisting of one or more equations. MOUSE has a number of built in capabilities,
including probability distributions, graphics, sensitivity analysis, and so on, which facilitate the
development and interpretation of Monte Carlo ssmulations. The author reports that MOUSE has
been applied to avariety of environmental problems, including study of the migration of
pollution plumesin streams, establishment of regulations for hazardous wastes in landfills, and
estimation of pollution control costs. The manual for MOUSE also has a good introduction
which motivates the need for uncertainty analysis and illustrates some of the key insights
obtained.

Another software tool is the Statistical Simulation System developed by Smith (1992) in
the Statistical Policy Branch of the Office of Policy Planning and Evaluation at EPA
headquartersin Washington, DC. This software supports Monte Carlo simulations of relatively
simple models, and offers ways to evaluate various statistics of probability distributions. A third
tool isaMonte Carlo simulation shell which can be used in conjunction with a Fortran program.
All three programs discussed here run on an IBM PC.

Other software is commercially available to support uncertainty analysis. Two of the
most popular are @risk and Crystal Ball. The former is an add-on to the Lotus 1-2-3 spreadsheet
software available for the IBM PC, while the latter is an add-on to the Microsoft Excel
spreadsheet software available for the Macintosh family of computers. Demosis a Macintosh-
based graphical environment for creating, analyzing, and communication probabilistic models
for risk and policy analysis (Morgan and Henrion, 1990). Demos has been applied in awide
variety of environmental policy problems, including evaluation of the effects and costs of acid
rain and mitigation strategies, assessment of advanced power generation and environmental
control technologies, and exploration of the effects of global climate change.

Iman et al. (1984) have devel oped Fortran-based programs for generating samples using
Monte Carlo or Latin Hypercube sampling and for analyzing modeling results using various
linear regression techniques (Iman et al., 1985). These programs can be adopted to any
modeling platform for which Fortran is available.

10
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2.2.2 TheUncertainty Circle

During the summer of 1992, a group of analysts from various disciplines and EPA
programs formed an "Uncertainty Circle." The Circle meets periodically (every month or so) to
discussissues related to the analysis of uncertainty and variability. Recent activities of the Circle
have included development of an inventory of uncertainty analysis activities at EPA, seminars on
methodological issues of uncertainty analysis, and discussion of practical aspects of performing
and communicating probabilistic analyses.

2.2.3 Workshops

EPA has sponsored a small handful of workshops on various topics related to the analysis
of uncertainty in environmental problems. For example, as part of the Research to Improve
Health Risk Assessments (RIHRA) program (EPA, 1990), EPA invited a number of expertsto
participate in aworkshop in 1988. In June of 1992, the Exposure Assessment Group co-
sponsored a workshop on methodological aspects of uncertainty analysis as applied to exposure
assessment. Additional workshops are expected in the near future, dealing with such issues as
the characterization of uncertainties that are inputs to amodel.

224 Projects

There have been relatively few examples of in-house EPA projects with a quantitative
approach to uncertainty analysis using Monte Carlo techniques. One early example was a
simplified case study by Walentowicz (1984), the purpose of which was to demonstrate
methodological aspects of an uncertainty analysis in an exposure assessment problem. A recent
study by the Office of Solid Waste (EPA, 1992b) featured a Monte Carlo simulation based on
expert judgments regarding uncertainties. Thiswork was actually performed by a contractor. A
contractor also performed a probabilistic assessment of contaminant transport as part of an
exposure assessment (Dean et al., 1987). Others within EPA are reportedly considering the use
of uncertainty analysis techniques in-house. An example of a possible application would be for a
benefit/cost analysis of a set of regulatory options. The Uncertainty Circle uncovered a small
number of other projects involving uncertainty analysis using Monte Carlo techniques. Overall,
however, within EPA headguarters in Washington, DC there is relatively little activity in this
regard.

11
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30 APPROACHESTO UNCERTAINTY ANALYSIS

This chapter describes generalizable aspects of uncertainty analysis with respect to
philosophy and approaches.

3.1  Philosophy of Uncertainty Analysis

The"classical" approach in probability theory requires that estimates for probability
distributions must be based on empirical data. Certainly, in aregulatory environment, thisisthe
approach preferred wherever possible. However, in many practical cases, the available data may
not be relevant to the problem at hand, or there may be few data points to support a statistical
analysis. Thus, statistical manipulation of data may be an insufficient basis for estimating
uncertainty in area system of interest. Asaresult, some degree of judgment about the available
data may be required. Furthermore, even the application of statistical techniques, such as
goodness-of -fit (GOF) tests requires considerable judgment. For example, the analyst makes
judgments about what types of parametric distributions are appropriate for to represent
uncertainty in agiven empirical quantity, even though the analyst may rely on the data and the
GOF test to determine the values of the distribution parameters (e.g., mean, variance).

An aternative approach differsin how probability distributions are interpreted. In the so-
called "Bayesian" view, the assessment of the probability of an outcome is based on a "degree of
belief" that the outcome will occur, based on all of the relevant information an analyst currently
has about the system. Thus, the probability distribution may be based on empirical data and/or
other considerations, such as technically informed judgments or predictions. People with
different information or theoretical beliefs may estimate different distributions for the same
variable (Morgan and Henrion, 1990). The assessment of uncertainties requires one to think
about all possible outcomes and their likelihoods, not just the "most likely" outcome.

3.2 A Taxonomy of Uncertainty and Variability

There are anumber of distinct sources of uncertainty in analyses of environmental
problems. These come under the general headings of model or structural uncertainty and
parameter uncertainty. Several authors, including Morgan and Henrion (1990), Finkel (1990),
and others, provide more detail regarding sources of uncertainty. Sources of uncertainty are also
discussed in some EPA documents (e.g., EPA, 1992). A few key concepts are summarized here.

3.21 Modd Uncertainty

The structure of mathematical models employed to represent scenarios and phenomenon
of interest is often a key source of uncertainty, due to the fact that models are often only a
simplified representation of areal-world system, and that the problem boundary encompassed by
amodel may be incomplete or incorrect. Significant approximations are often an inherent part of
the assumptions upon which amodel is built. Competing models may be available based on
different scientific or technical assumptions. Model uncertainty may be small for a well-tested
physical model, or may be more significant than uncertainties in the values of model input
parameters. Furthermore, the limited spatial or temporal resolution (e.g., grid size) of many
modelsis also atype of approximation that introduces uncertainty into model results. Different
sources of model uncertainties, and how they may be evaluated, are be summarized as follows:

* Mode Sructure: Alternative sets of scientific or technical assumptions may be
available for developing amodel. The implications of these alternative foundations
may be evaluated by constructing alternative models and comparing results from each
aternative model. In some cases, it may be possible to parameterize alternative model
structures into a higher order model, and to evaluate alternative models using

13
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traditional sensitivity analysis. An exampleisageneral formulation of a dose-
response model to include or exclude athreshold and to have either linear or nonlinear
behavior. When there are alternative underlying assumptions between competing
models, it may not always be possible to determine a priori which is more "correct.”

A typical approach isto report the key assumptions underlying each model, and the
corresponding results. If the results from competing models lead to similar decisions,
then one can be confident that the decision is robust even in the face of alternative
theories. If, however, alternative model formulations lead to different conclusions, the
judgment of an analyst or a decision maker may be required to choose the most
plausible inference options for a given problem.

Model Detail: Often, models are smplified for purposes of tractability. For example,
simplifying assumptions may be made to convert a complex nonlinear model to a
simpler linear model in a parameter space of interest. Uncertainty in the predictions of
simplified models can sometimes be gleaned by comparison of their predictionsto
those of more detailed, inclusive models. In other cases, simple models are developed
due to alack of confidence or knowledge about what the actual model structure should
be. In these cases, the simplified model isasignal that little is actually known or
guantifiable about the phenomenon being modeled. Uncertainty about these models
may be only qualitatively understood.

Validation: Models for which extensive data are available, and which have been
validated for a parameter space of interest can be evaluated quantitatively in terms of
the accuracy and precision of their predictions. Uncertainties regarding models for
which few data are available to test model predictions may require evaluation using
expert judgments or may not be amenable to any quantitative characterization.

Extrapolation: A key source of uncertainty is extrapolation. Models which are
validated for one portion of a parameter space may be completely inappropriate for
making predictionsin other regions of the parameter space. For example, a dose-
response model based on high-dose, short duration animal tests may be completely
inaccurate for low-dose, long duration human exposures.

Model Resolution: In numerical models, a spatial and/or temporal grid size must be
assumed. The selection of the grid size involves a trade-off between computation time
(hence, cost) and prediction accuracy. Standard techniques are often available to help
select the appropriate grid size for a particular target accuracy. This type of model
uncertainty is thus dealt with through the appropriate selection of model domain
parameter values, or by comparing results based on different grid sizes.

Model Boundaries. Any model may have limited boundaries in terms of time, space,
number of chemical species, temperature range, types of pathways, and so on. The
selection of amodel boundary may be atype of simplification. Within the boundary
of the model and parameter space of the problem, the model may be an accurate
representation of the real-world phenomenon of interest. However, other overlooked
phenomenon not included in the model may play arole in the scenario being model ed.
The way to avoid this type of uncertainty isto think creatively about all of the factors
that may come to bear within the context of a particular scenario.

Scenario Reasonableness: Prior to using amodel, an analyst must develop (explicitly
or implicitly) a scenario for the problem of interest. A scenario isaset of assumptions
about the nature of the problem to be analyzed. For example, in many environmental
problems, assumptions are made about the source of pollutant emissions, the pathways
of pollutant transport and deposition, the populations exposed to the pollutant, and the
types of effects resulting from the exposure. Scenarios may be constructed to
represent an actual environmental problem, or they may be constructed hypothetically
based on policy motivations. In the latter case, for example, a scenario may focus on a
hypothetical "porch potato” — an individual who spends their entire lifetime at the
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point of maximum concentration of some pollutant. To the extent that the scenario
failsto consider al factors affecting the key output variable (e.g., lifetime average
daily dose), uncertainty will be introduced. Like the uncertainty associated with model
boundaries, the uncertainty associated with the scenario can be addressed by
imaginative thinking about all possible factors that come to bear in either the real-life
or hypothetical problem.

3.2.2 Parameter Uncertainty

Morgan and Henrion (1990) have identified a number of different types of quantities used
in models. Theseinclude:

Empirical: measurable, at least in principle (e.g., pollutant concentration).

Defined Constants:  Some quantities whose values are accepted by convention, such as
Planck’s constant or the speed of light, are actually empirical quantities subject to
measurement error, albeit small. Other quantities are defined by convention and are
not uncertain. These include, for example, the mathematical constant t (pi).

Decision variables: These are parameters over which a decision-maker exercises
control, such as the maximum acceptable emission rate for agiven emission source. A
decision maker selectsthisvalue. Thus, it isnot appropriate to treat this quantity
probabilistically. Rather, the sensitivity of the result to different values of the decision
variable(s) should be explored using sensitivity analysis.

Value parameters. Represents the preferences or value judgments of a decision
maker. Examplesinclude the discount rate and parameters of utility functions used in
decision analysis.

Model domain parameters: these are parameters that are associated with a model, but
not directly with the phenomenon the model represents. For example, the spatial or
temporal grid sizeisamodel domain parameter introduced in numerical models.

Of the types of quantitiesidentified above, only empirical quantities are unambiguously subject
to uncertainty. The other types of parameters represent quantities which are ailmost always more
properly treated as point-estimates reflecting convention, the explicit preferences of a decision
maker (broadly defined), or a descrete quantity by its nature (e.g., grid size). Thus, we focus
here on identifying sources of uncertainty in empirical quantities. These include:

* Random Error and Satistical Variation: Thistype of uncertainty is associated with

imperfections in measurement techniques. Statistical analysis of test datais thus one
method for developing a representation of uncertainty in avariable.

Systematic Error: The mean value of a measured quantity may not converge to the
"true” mean value because of biases in measurements and procedures. Such biases
may arise from imprecise calibration, faulty reading of meters, and inaccuraciesin the
assumptions used to infer the actual quantity of interest from the observed readings of
other quantities ("surrogate” or "proxy" variables). Estimation of the possible
magnitude of systematic error may be based on measurements of "spiked" or known
samples, or on the judgment of an expert. For example, thereis often systematic error
involved in using small scale tests to estimate the values of quantities for large scale
systems.

Variability: Some quantities are variable over time, space, or some population of
individuals (broadly defined) rather than for any individual event or component.
Variability is modeled using afrequency, rather than a probability, distribution.
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* Inherent Randomness or Unpredictability: Some quantities may be irreducibly
random even in principle, the most obvious example being Heisenberg's Uncertainty
Principle. However, this concept is often applied to quantities that are in principle
measurabl e precisely but as a practical matter (due to cost, for example) are not.

» Lack of Empirical Basis: Lack of experience about or knowledge of a process or
system isa source of uncertainty. Thistype of uncertainty cannot be treated
statistically, because it requires predictions about something that has yet to be built,
tested, or measured. Thistype of uncertainty can be represented using technical-based
judgments about the range and likelihood of possible outcomes. These judgments may
be based on a theoretical foundation or experience with analogous systems.

» Dependence and Correlation: When there is more than one uncertain quantity, it may
be possible that the uncertainties may be statistically or functionally dependent. In
such cases, failure to properly model the dependence between the quantities can lead
to uncertainty in the result, in terms of improper prediction of the variance of output
variables. Dependence among model input variables often arises because of model
simplifications which fail to explicitly model the source of dependence between them.
There are several ways to deal with dependence, which are discussed in more detail
later. However, in general, it is recommended that the source of dependence be
modeled explicitly wherever possible.

» Disagreement: Wherethere are limited data or alternative theoretical bases for
modeling a system, experts may disagree on the interpretation of data or on their
estimates regarding the range and likelihood of outcomes for empirical quantities.
Disagreement is especialy likely when thereisalack of empirical basis for estimating
uncertainties or variabilities, and/or when characterizations of uncertainty are based on
subjective probability distributions elicited from expert judgments. In cases of expert
disagreement, it is usually best to explore separately the implications of the judgments
of different experts to determine whether substantially different conclusions about the
problem result. If not, then the results of the analysis are robust to the disagreements
among the experts. If so, then one has to more carefully evaluated the sources of
disagreement between the experts. In this situation, an analyst or decision maker may
have to make a judgment regarding which experts are more plausible for the problem
at hand.

3.2.3 Variability and Uncertainty

In many environmental problems, the distinction between uncertainty and variability is
critically important. Asnoted above, variability is a heterogeneity between individual members
of apopulation of some type, and is characterized using a frequency distribution. In principle,
the characteristics of a specific individual in a population are knowable with certainty in most
cases. Thus, the frequency distribution for the population reflects true differences between
individuals. Knowing the frequency distribution for variability in the population can aid in
determining whether the population should be disaggregated into smaller groups that are more
nearly homogeneous. Thistype of information isimportant, for example, in identifying
subgroups especially susceptible to specific health risks from exposures to a given chemical.

However, there may be uncertainty in the characteristics of specific individualsin the
population, due to measurement error or other sources of uncertainty as described above. In
these cases, there is a resulting uncertainty about the variability frequency distribution. For
example, while individuals may be known to have different exposure levels levelsto a certain
pollutant, their health effects may be uncertain due to the limited applicability of dose-response
models extrapolated from animal bioassay test results. Thus, the population distribution for
health effects (e.g., excess cancers) may be both variable and uncertain.
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To complicate matters further, however, it is possible for variability to be interpreted as
uncertainty under certain conditions. For example, suppose we are interested in the exposure
level faced by an individual selected at random from a population. If we select an individual at
random, the probability of selecting an individual with a given exposure is the same as the
relative frequency of all individuals in the population subject to the given exposure. Hence, in
this case variability represents an a priori probability distribution for the exposure faced by a
randomly selected individual. However, except for this specia case, there is always a distinction
between variability and uncertainty.

The implications of distributions for variable and uncertain quantities in terms of
improving estimates are different. Asindicated previously, knowing the frequency distribution
for variability can guide the identification of significant subpopulations which merit more
focused study. In contrast, knowing the uncertainty in the measurement of characteristics of
interest for the population can aid in determining whether additional research or alternative
measurement techniques are needed to reduce uncertainty. Thus, in order to sort out the
differences between uncertainty and variability, it is desirable to separately characterize them.

3.3 Dependenceand Correlation

One of the questions that often arisesin the early stages of developing a simulation of
uncertainty and variability is whether there is dependence between input variablesto amodel. In
many cases, there are, due to the use of simplified models. 1n a complete model, the sources of
dependence between variables would be explicitly modeled. 1n asimplified model, some
guantities that may be more properly modeled as state variables are treated as if they are input
(exogenous) variables. Thus, the analyst is faced with the task of approximating the dependence
between input variables. For example, in asimplified process model, temperature and chemical
reaction conversion rate may both be treated as input variables, whereas in reality the chemical
reaction conversion rate is afunction of temperature. The simplified model may be a
convenience, or a necessity if insufficient information is available to support the development of
amore detailed model. However, it isknown that qualitatively the reaction conversion rate will
tend to increase with temperature.

There are several approaches to dealing with dependence. These are:
* Model dependence explicitly

» Parameterization
o Stratification
» Bootstrap simulation
» Simulate correlations
Each of these approaches is discussed.

Modeling dependence explicitly involves the development of a more detailed modeled
which captures the source of dependence between two quantities. Thus, in the previous example,
achemical kinetic reaction model in which reaction rate is a function of temperature would
capture the dependence between temperature and conversion rate. Such amodel formulation
would also change conversion rate from an input variable to amodel state variable.

Parameterization refers to grouping the input variables and treating the grouping as a new
input variable. Thistreatment of dependence is useful when thereislinear dependence between
the variables. For example, air inhalation rate and body weight may both be variablesin an
exposure model. Theinhalation rateis at least partly dependent on body weight. Thus, a new
parameter, inhalation rate divided by body weight, may be used to capture this dependence.
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Rather than try to model dependence, another approach attempts to reduce the effects of
dependence. This approach, stratification, involves subdividing the problem by creating several
subgroups or strata. For example, if the problem features a population of individuals with widely
varying body weights and inhalation rates, the problem could be subdivided by body weight.
Thus, there would be less variance in inhalation rate within the body weight subgroups. Asa
result, the effect of correlation or dependence within the strata would be smaller than for the
population as awhole.

In the rare instances in which paired data are available for a set of model input variables,
some or al of which are dependent, the paired data can be used directly employing atechnique
known as bootstrap simulation. In the bootstrap approach, the model is run for each pairing of
data points. Suppose we have two input variables, body weight and inhalation rate, and 86
paired samples (representing different individuals) for these two variables. The model would be
run 86 times with each set of data. Thus, any correlation between the data will be ssmulated
using this approach. This approach can be extended to more than two variablesif data are
available.

An alternative to bootstrapping, which restricts the simulation sample size to the data
sample size, isto use available paired data to estimate the correlations or covariance matrix
among dependent quantities, and then to use specialized techniques to synthetically generated
correlated variables as part of aMonte Carlo ssmulation. For example, there are easily applied
techniques for inducing correlations between normal distributions in Monte Carlo simulations
(Morgan and Henrion, 1990). There are more generalized techniques for inducing rank
correlations among multiple variables (Iman et a, 1985).

In some cases, correlations may be known to exist between model input variables, but
there may not be paired data sets available to support a bootstrap simulation or to use to estimate
the correlations. There are two alternative approaches. Oneisto try to estimate the actual
correlations through some type of expert elicitation process. However, it is generally more
difficult to estimate correlation coefficients or covariance matrices than it is to make judgments
about probability or frequency distributions (Morgan and Henrion, 1990). The other approachis
to employ a generalized rank ordering pairing technique to explore the sensitivity of modeling
results to alternative assumptions about correlations. In such an approach, high or low
correlations may be compared to see what effect, if any, thereis on model results.

An example of a study in which the sensitivity of resultsto correlations was evaluated is
given by Frey (1991). A restricted pairing technique by Iman and Conover (1982) isincluded in
a Fortran package developed by Iman and Shortencarier (1984) for simulating uncertainties using
avariant of Monte Carlo simulation called Latin Hypercube sampling (described in alater
section of thisreport). This technique was employed to evaluate alternative hypotheses
regarding correlation structures in uncertainties for a study of coal gasification power plants. A
simulation of correlationsisillustrated in Figure 1. The figure shows uncorrelated and correlated
simulations for two triangular distributions. For most cases evaluated, correlations had little
effect on the resulting uncertainties in plant efficiency, emissions, and cost.

Correlations among input variables to amodel may have little effect on modeling results
in several cases. If all of the correlated random variables do not contribute significantly to
uncertainty in key model outputs of interest, then correlations among them will tend to have little
effect on model results. When only one of two or more dependent input variables contributes
significantly to uncertainty in amodel result, correlations will also have little effect on the resullt.
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Figure 1. Simulation of Correlations between model input parameters for correlation
coefficient p = 0 and -0.5 for two triangularly distributed quantities.

34  Encoding Uncertainties as Probability Distributions

There are two fundamental approaches for encoding uncertainty in terms of probability
distributions. These include statistical estimation techniques and expert judgments. A
combination of both methods may be appropriate in many practical situations. For example, a
statistical analysis of measured test data may be a starting point for thinking about uncertainties
in a hypothetical commercial scale system for a new process technology. One must then
consider the effect that systematic errors, variability, or uncertainties about scaling-up the
process might have on interpreting test results for commercial scale design applications (Frey
and Rubin, 1992).

34.1 Statistical Techniques

Statistical estimation techniques involve estimating probability distributions from
available data. Thefit of datato a particular probability distribution function can be evaluated
using various statistical tests. For example, the cumulative probability distribution of a set of
data may be plotted on "probability” paper. If the data plot as astraight line, then the distribution
isnormal. Proceduresfor fitting probability distribution functions are discussed in many
standard texts on probability and are not reviewed here. Rather, the focus of this discussionison
the situations where statistical analysis alone may be insufficient, because technical insights may
be required to interpret whatever limited data are available.

3.4.2 Judgmentsabout Uncertainties

In making judgments about a probability distribution for a quantity, there are a number of
approaches (heuristics) that people use which psychologists have observed. Some of these can
lead to biases in the probability estimate. Three of the most common are briefly summarized.

1 Thediscussion hereis based on Morgan and Henrion, Uncertainty: A Guide to Dealing with Uncertainty in
Quantitative Risk and Policy Analysis, Cambridge University Press, 1990.
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1) Availability. The probability that experts assign to a particular possible outcome may
be linked to the ease (availability) with which they can recall past instances of the
outcome. For example, if tests have yielded high sorbent durability, it may be easier
to imagine obtaining a high sorbent durability in the future than obtaining lower
durabilities. Thus, one tends to expect experts to be biased toward outcomes they
have recently observed or can easily imagine, as opposed to other possible outcomes
that have not been observed in tests.

2) Representativeness has also been termed the "law of small numbers.” People may
tend to assume that the behavior they observe in asmall set of data must be
representative of the behavior of the system, which may not be completely
characterized until substantially more data are collected. Thus, one should be
cautious in inferring patterns from data with a small number of samples.

3 Anchoring and adjustment involves using a natural starting point as the basis for
making adjustments. For example, an expert might choose to start with a "best guess®
value, which represents perhaps a median or most likely (modal) value, and then
make adjustments to the best guess to achieve "worst" and "best" outcomes as
bounds. The"worst" and "best" outcomes may be intended to represent a 90 percent
probability range for the variable. However, the adjustment from the central "best
guess' value to the extreme values is often insufficient, with the result that the
probability distribution istoo tight and biased toward the central value. This
phenomena is over confidence, because the expert's judgment reflects less uncertainty
in the variable than it should. The "anchor" can be any value, not just a central value.
For example, if an expert begins with a"worst" case value, the entire distribution may
be biased toward that value.

Judgments also may be biased for other reasons. One common concern is motivational
bias. This bias may occur for reasons such as. a) a person may want to influence a decision to
go acertain way; b) the person may perceive that they will be evaluated based on the outcome
and might tend to be conservative in their estimates; c) the person may want to suppress
uncertainty that they actually believe is present in order to appear knowledgeable or
authoritative; and d) the expert has taken a strong stand in the past and does not want to appear to
contradict themself by producing a distribution that lends credence to alternative views.

3.4.3 Designing an Elicitation Protocol

From studies of how well calibrated judgments about uncertainty are, it appears that the
most frequent problem encountered is overconfidence (Morgan and Henrion, 1990). Knowledge
about how most people make judgments about probability distributions can be used to design a
procedure for eliciting these judgments. The appropriate procedure depends on the background
of the expert and the quantity for which the judgment is being €elicited. For example, if an expert
has some prior knowledge about the shape of the distribution for the quantity, then it may be
appropriate to ask him/her to think about extreme values of the distribution and then to draw the
distribution. On the other hand, if atechnical expert haslittle statistical background, it may be
more appropriate to ask him/her a series of questions. For example, the expert might be asked
the probability of obtaining a value less than or equal to some value x, and then the question
would repeated for afew other values of x. The judgment can then be graphed by an dlicitor,
who would review the results of the elicitation with the expert to seeif he/she is comfortable
with the answers.

To overcome the typical problem of overconfidence, it is usual to begin by thinking about

extreme high or low values before asking about central values of the distribution. In general,
experts judgments about uncertainties tend to improve when: (1) the expert isforced to consider
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how things could turn out differently than expected (e.g., high and low extremes); and (2) the
expert is asked to list reasons for obtaining various outcomes. Keeney and von Winterfeldt
(1991) provide a discussion of approaches they have employed in expert dicitations. Otway and
von Winterfeldt (1992) review some case studies involving expert elicitations and discuss some
advantages and shortcomings to formal approaches to expert elicitation.

While the devel opment of expert judgments may be flawed in some respects, it does
permit a more robust analysis of uncertainties in a process when limited data are available (Wolff
et a, 1990). Furthermore, in many ways, the assessment of probability distributionsis
gualitatively no different than selecting single "best guess' values for use in a deterministic
estimate. For example, a"best guess' value often represents a judgment about the single most
likely value that one expectsto obtain. The "best guess’ value may be selected after considering
several possible values. The types of heuristics and biases discussed above may play asimilar
rolein selecting the value. Thus, even when only a single "best guess’ number isused in an
analysis, a seasoned engineer usually has at least a"sense" for "how good that number really is."
This may be why engineers are often able to make judgments about uncertainties easily, because
they implicitly make these types of judgments routinely.

3.5  SomeTypesof Probability Distributions

Examples of several types of probability distributions are shown in Figure 2 as both
probability density functions (pdf's) and cumulative distribution functions (cdf's). The pdf isa
graphical means of representing the relative likelihood or frequency with which values of a
variable may be obtained. The pdf aso clearly illustrates whether a probability distribution is
symmetric or skewed. In asymmetric unimodal distribution, the mean (average), median (50th
percentile), and mode (peak) coincide. In apositively skewed distribution (e.g., lognormal), the
mean is greater than the median, and both are greater than the mode.

An alternative way to represent a probability distribution isthe cdf. The cdf shows
probability fractiles on the y-axis and the value of the distribution associated with each fractile
on the x-axis. The cdf isaway to represent any probability distribution when thereis
information about various fractiles of the distribution (e.g., the values of the 5th, 50th and 95th
percentiles).

A brief description of several types of probability distributions and their applicationsis
given here:

» Uniform: Uniform probability of obtaining a value between upper and lower limits.
Useful when an expert is willing to specify a finite range of possible values, but is
unable to decide which values in the range are more likely to occur than others. The
use of the uniform distribution is also a signal that the details about uncertainty in the
variable are not known. Useful for screening studies.

» Triangle: Similar to uniform except a mode is also specified. Use when an expert is
willing to specify both a finite range of possible values and a "most likely" (mode)
value. The triangle distribution may be symmetric or skewed (asin Figure 2). Likethe
uniform, this distribution indicates that additional details about uncertainty are not yet
known. The triangle distribution is excellent for screening studies and easy to obtain
judgmentsfor.
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* Normal: A symmetric distribution with mean, mode, and median at the same point.
Often assumed in statistical analysis as the basis for unbiased measurement errors. The
normal distribution has infinite tails; however, over 99 percent of all values of the
normal distribution lie within plus or minus three standard deviations of the mean.
Thus, when used to represent uncertainty in physical quantities which much be greater
than zero, the standard deviation should not be more than about 20 or 30 percent of the
mean, or el se the distribution must be truncated.

» Lognormal: A positively skewed distribution (it has a long tail to the right). This
distribution is usually used to represent uncertainty in physical quantities which must
be non-negative and are positively skewed, such as the size of an oil spill or the
concentration of a pollutant. This distribution may be used when uncertainties are
expressed on a multiplicative order-of-magnitude basis (e.g., factor of 2) or when there
isaprobability of obtaining extreme large values.

» Loguniform: A uniform distribution in log space (each decade has equal probability,
not shown in Figure 2).

* Fractile: The finite range of possible valuesis divided into subintervals. Within each
subinterval, the values are sampled uniformly according to a specified frequency for
each subinterval. This distribution looks like a histogram and can be used to represent
any arbitrary data or judgment about uncertainties in a parameter, when the parameter
is continuous. Explicitly shows detail of the judgments about uncertainties.

» Chance: This s like the fractile distribution, except that it applies to discrete, rather
than continuous, variables. An example of a discrete variable is the number of trains of
equipment, which must be an integer (e.g., 30% chance of one train, 70% chance of
two).

3.6  Probabilistic Modeling

In order to analyze uncertainties in environmental, a probabilistic modeling environment
isrequired. A typical approach isthe use of Monte Carlo ssimulation, as described by Ang and
Tang (1984) and others. In Monte Carlo simulation, amodel is run repeatedly, using different
values for each of the uncertain input parameters each time. The values of each of the uncertain
input parameters are generated based on the probability distribution for the parameter. If there
are two or more uncertain input parameters, one value from each is sampled simultaneoudly in
each repetition in the simulation. Over the course of a simulation, perhaps 20, 50, 100, or even
more repetitions may be made. Theresult, then, isaset of sample values for each of the model
output variables, which can be treated statistically asif they were an experimentally or empirical
observed set of data.

Although the generation of sample values for model input parametersis probabilistic, the
execution of the model for a given set of samplesin arepetition is deterministic. The advantage
of Monte Carlo methods, however, is that these deterministic simulations are repeated in a
manner that yields important insights into the sensitivity of the model to variationsin the input
parameters, as well asinto the likelihood of obtaining any particular outcome.

Monte Carlo methods also allow the modeler to use any type of probability distribution for
which values can be generated on a computer, rather than to be restricted to forms which are
analytically tractable.

3.6.1 Monte Carlo simulation

In random Monte Carlo simulation, arandom number generator is used to generate
uniformly distributed numbers between 0 and 1 for each uncertain variable. Note from Figure 2
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that all cdf's have an ordinate axis ranging from zero to one. Thus, uniformly distributed random
numbers are used to represent the fractile of the random variable for which a sampleisto be
generated. The sample values for the random variables are calculated using the inverse cdf
functions based on the randomly generated fractiles. This approach is shown schematically in

Figure 3.

Using Monte Carlo techniques, it is therefore possible to represent uncertainty in a model
of aprocess technology by generating sample values for uncertain variables, and running the
model repetitively. Instead of obtaining a single number for model outputs as in deterministic
simulation, a set of samplesis obtained. These can be represented as cdf's and summarized using
typical statistics such as mean and variance.

3.6.2 Latin Hypercube Sampling

An aternative to random Monte Carlo ssmulation is Latin Hypercube Sampling (LHS). In
LHS methods, the fractiles that are used as inputs to the inverse cdf are not randomly generated.
Instead, the probability distribution for the random variable of interest isfirst divided into ranges
of equal probability, and one sample is taken from each equal probability range. However, the
ranking (order) of the samplesisrandom over the course of the simulation, and the pairing of
samples between two or more random input variables is usually treated as independent. In
median LHS, one sampleis taken from the median of each equal-probability interval, whilein
random LHS one sample is taken from random within each interval (Morgan and Henrion,
1990).
LHS methods guarantee that values from the entire range of the distribution will be sampled
proportional to the probability density of the distribution. Because the distributions are sampled
over the entire range of probable valuesin LHS, the number of samples required to adequately
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represent adistribution islessfor LHS than for random Monte Carlo sampling. LHSis
generaly preferred over random Monte Carlo simulation (McKay, Conover, and Beckman,

1979; Iman and Helton, 1988; Morgan and Henrion, 1990). LHS isthe technique employed later
inthis study. Asnoted earlier, restricted pairing techniques are available for the purpose of
inducing correlations between variablesin LHS (Iman et al, 1984).

3.6.3 Selecting Sample Size

The sample size corresponds to the number of repetitions used in the probabilistic
simulation. The selection of sample sizeis usually constrained at the upper end by the
limitations of computer software, hardware, and time, and at the lower end by the acceptable
confidence interval for model results. In cases where the analyst is most interested in the central
tendency of distributions for output variables, the sample size can often be relatively small.
However, in cases were the analyst isinterested in low probability outcomes at the tails of output
variable distributions, large sample sizes may be needed. As sample sizeisincreased, computer
runtime, memory use, and disk use may become excessive. Therefore, it may be important to
use no more samples than are actually needed for a particular application.

One approach to selecting sample size is to decide on an acceptable confidence interval
for whatever fractile level is of most concern in the investigation (Morgan and Henrion, 1990).

For example, we may wish to obtain a given confidence that the value of the pt fractile will be

bounded by theith and kth fractiles. In a Monte Carlo simulation, we can use the following
relations to estimate the required sample size:

i =mp-cVmp(1-p) (N
k=mp+cVmp(l-p) @

Therelationsin Equations (1) and (2) yield aconfidence interval for the pth fractile if the sample
sizeis known, where c is the standard deviation of the standard normal distribution associated
with the confidence level of interest. To calculate the number of samples required, the
expressions above can be rearranged to calculate the confidence interval (Y p-ap,Y prap) as
follows:

m=p(1- p)(ACp)2 3

For example, if we wish to be 90 percent confident that the value of the 90th percentile will be
enclosed by the values of the 85th and 95th fractiles, then ¢ would be 1.65 and m would be 98.
However, another factor to consider in selecting sample size is whether a high degree of
simulation accuracy isrealy needed. In screening studies based on afirst-pass set of expert
judgments, it may be unnecessary to obtain a high degree of confidence in specific fractiles of
the output distribution, because initial estimates of uncertainty may be subject to considerable
empirical uncertainty themselves.

The approach to selecting sample size described above is appropriate for use with the
Monte Carlo simulation technique. In thiswork, LHS is employed as discussed previously. The
approach to estimating the precision of modeling results based on confidence intervals will
typically overestimate the required sample size needed with LHS.

3.6.4 Analyzing Results

Sample correlation coefficients are a simple but useful tool for identifying the linear
correlations between uncertain variables. Other techniques are available in software packages
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such as one developed by Iman, Shortencarier, and Johnson (1985). These output analysis
techniques are described here briefly.

A partial correlation coefficient (PCC) analysisis used to identify the degree to which
correlations between output and input random variables may be linear, and it is estimated in
conjunction with multi-variate linear regression analysis. In PCC analysis, the input variable
most highly correlated the output variable of interest is assumed as the starting pointing for
construction of alinear regression model. In the regression model, the output variable is treated
as the dependent variable and the most highly correlated input variable is treated as a predictive
variable. The partial correlation technique then searches for another input variable which is most
highly correlated with the residuals of the regression model already containing the first input
variable. Theresidual isthe difference between the actual sample value of the dependent
variable and the estimated sample values, using the linear regression model containing the first
input variable. The processis repeated to add more variablesin the analysis. The partial
correlation coefficient is ameasure of the unique linear relationship between the input and
dependent variables that cannot be explained by variables already included in the regression
modd.

Standardized regression coefficients (SRC) can be used to measure the relative
contribution of the uncertainty in the input variables on the uncertainty of the output variables.
This analysis involves standardization of all the sample values for the model input variables and
amulti-variate regression of an output variate based on the inputs. The regression coefficients
for each input variate then indicate the relative importance of that variate as a factor determining
the output. SRCs measure the shared contribution of the input to the output, because all of the
simulation input uncertainties are included in the regression analysis simultaneously. The SRCs
are the partial derivatives of the output variable with respect to each input variable. Because
PCCs are a measure of the unique contribution of each parameter, and SRCs measure the shared
contribution, they do not always lead to the same conclusions.

PCC and SRC analysisislimited to cases where the relationship between input and
output variablesis linear; however, by basing the regression analysis on the ranks of the samples
for each variable, rather than on the values of the samples, the PCC and SRC techniques can be
extended to non-linear cases. These techniques are known as partial rank correlation coefficients
(PRCC) and standardized rank regression coefficients (SRRC) (Iman, Shortencarier, and
Johnson, 1985).

While regression analysis of input and output sample vectors is an important tool for
prioritizing input uncertainties that are most "sensitive,” it isimportant to understand the
limitations of partial correlation coefficients when using a given sample size. Edwards (1984)
provides a clear discussion of tests of significance for correlation coefficients. When using
partial correlation coefficients for output analysis, we are interested in testing the null hypothesis
that the coefficient is equal to zero. For independent random variables, the t-test can be used and
the value of t is calculated as follows:

— T _
e ™" @

The degrees of freedom m-n is given by the number of samples m and the number of
input variables n used in the regression analysis. Thet statistic calculated in Equation (4) can
then be compared to valuesin atable of the t-distribution for a given significance level and
degrees of freedom. If the statistic calculated above is greater than the value from the table, the
null hypothesisis regarded as sufficiently improbable that it can be rejected. Asan example, for
100 samples, 50 independent variables used in aregression analysis, and a significance level of
0.01 for aone-sided test, an obtained value for r of greater than 0.322 or less than -0.322 would
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be grounds for rejection of the null hypothesis. Treatment of partial rank correlation coefficients
issimilar.
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40 MONTE CARLO SIMULATION IN EXPOSURE ASSESSMENT

A specific problem domain in which there is increasing interest in and use of Monte
Carlo techniques is exposure assessment. Exposure assessment is one step in the development of
arisk assessment, as previously described. In this section, exposure assessment is defined in
more detail. Methodological aspects of the use of Monte Carlo simulation in exposure
assessment are described, followed by a brief discussion of some example applications.

4.1 Exposur e Assessment

Per the EPA 1992 Exposure Assessment Guidelines (EPA, 1992), exposure is defined as
contact of achemical to the outer boundary of the body, which is the skin and openings into the
body such as the mouth, nostrils, punctures, lesions. An exposure assessment istypically a
guantitative evaluation of the intensity, frequency, and duration of the contact. As part of an
exposure assessment, the rate at which the chemical crosses the boundary, the route or pathways
(e.g., oral, dermal, respiratory), and the actual amount of chemical contacting and crossing the
boundary are evaluated. In principle, exposure isafunction of time. However, depending on
whether the health effect to be evaluated is chronic or acute, attention may be focused on
estimating average exposures or peak exposures, respectively. For exposure assessment of
carcinogenic chemicals, an average exposure is often used. For developmental toxins, the effect
of exposure may differ depending on the stage of development of the exposed individual. In
some cases, exposure to very high contaminant levels may produce significant health effects
even if the time-averaged exposureislow. In such cases, an exposure profile as afunction of
timeisrequired.

While there are many different possible formulations for exposure models, based for
example on the exposure route and the type of health effect resulting from the contact, one
typical model will be considered here. For effects such as cancer, the biological responseis
usually described in terms of lifetime probabilities of developing cancer. Thus, although the
exposure may occur only for a portion of alifetime, the exposure (or potential dose) is often
calculated based on alifetime average. This approach is used in conjunction with risk
assessments based on linear nonthreshold dose-response models. This type of exposure model is
thus (for a description of nomenclature, please see Section 8):

_CeIR<ED

Here, the lifetime average daily dose is afunction of average concentration, average ingestion
rate (for an oral exposure route) or intake rate (for arespiratory route), exposure duration, body
weight, and lifetime. Other exposure models are discussed in more detail in the Exposure
Assessment Guidelines.

Information about exposure is often used with exposure-response relationships to
estimate the probability of an adverse health effect occurring. 1n most cases, exposure is used as
abasisfor estimating the actual dose delivered to biological receptorsin the body. In these
cases, a dose-response model is employed to estimate health risks. In general, two types of risks
are of interest to policy makers: individual risk and population risk. Individual risks are often
calculated for one or more individuals in a population of exposed persons. Some key policy
questionsinclude: What are the characteristics of persons facing the highest exposure and/or risk
levels? Can the people most highly susceptible to adverse health effects be identified? What is
the average exposure and/or risk? Thus, assessors are often interested in characterizing
exposures and/or risks for persons at the high end of the population distribution, defined by EPA
as the 90th percentile or higher, or persons at the central part of the population distribution (e.g.,
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the mean or median). Groups with different degrees of susceptibility can be treated as separate
subpopulations, and it may be appropriate to employ different data and/or models for each group.

Popul ation exposure levels and risks are used to answer questions regarding how many
cases of aparticular health effect may occur in a given population over a specified time period,
how many persons are above a certain risk or exposure level, and how various subgroups
compare to the overall population.

Ideally, there should be interaction between an exposure assessor and a decision-maker
regarding the type of questions an assessment should address. Initially, a decision-maker may be
interested in one type of "risk descriptor,” such asrisk to an average individual. However, in the
course of performing an analysis an assessor may uncover important information regarding
highly exposed individuals, or regarding the number of individuals subject to exposures at or
above some reference level. Furthermore, based on the guidance in the Habicht memo, assessors
at EPA arerequired to present more than one description of exposure and risk, to provide explicit
indication of both central tendency and high end exposures.

There are alarge number of factorsto consider in developing an exposure assessment,
such as purpose, scope, scenarios, level of detail, descriptorsto use, data needs, data quality
objectives, sampling plans, quality assurance, modellng strategy, model validation, approach to
dealing with uncertainty, and presentation of results, to mention some of the key ones. The
details regarding all of these factors are well beyond the scope of this report, but are described in
the Exposure Assessment Guidelines. The remainder of this section will focus on
methodological and practical aspects of the quantitative analysis of uncertainty and variability in
exposure assessment.

4.2  Uncertainty Analysisin Exposure Assessment

Whitmore (1985) reviews a number of approaches for characterizing uncertainty in
exposure assessments. These approaches focus primarily on procedures for estimation of
distributions for uncertainty depending on the type of information available. The types of data
available to support an exposure assessment may include: (1) measured exposure levelsfor a
sample of population members; (2) measurements for a sample of population members of
parameters that are inputs to an exposure assessment model; (3) estimated joint distributions for
model input variables; (4) "limited" datafor model input variables; and (5) data on concentration
levels of a substance at fixed sites and regarding the geographic distribution of population
members. Depending on the data avail able, the approaches to characterizing uncertainty include
four basic categories: (1) confidence interval estimates for percentiles of the population
exposure distribution; (2) estimation of measurement accuracy and precision; (3) use of
goodness-of -fit techniques to model uncertainties with parametric distributions; and (4)
evaluation of alternative parametric probability distribution models. The type of data available
often depends on the resources devoted to the assessment, with more detailed measurements or
surveys used to support more detailed assessments.

Whitmore discusses the role of expert judgments in formulating estimates for the joint
distributions of all model input variables. With regard to correlations between variables,
Whitmore points out that if the input variables are not highly correlated, or if the model is not
sensitive to assumptions regarding correlation or independence, then it may be appropriate to
treat the variables as independent. Thus, separate experts can be approached to estimate
probability distributions for each variable. The type of information required of the expert might
include the shape of the distribution, some indication of the lowest and highest values, the mean,
median, and/or mode. Often, only afew of these factors are necessary to uniquely define agiven
distribution (assuming, for example, some type of parametric distribution). In other cases, the
expert may be able to provide a histogram representing his’her judgment. More than one expert
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should be approached, and any differences among them should be evaluated through separate
model runs, or should be reconciled through some type of feedback technique (e.g., the Delphi
technique).

Whitmore addresses a critical issue of dealing with both variability and uncertainty in an
exposure model. A suggested approach is the use of estimation techniques to estimate
confidence intervals for the parameters of parametric probability distribution models. This
approach isonly possible, of course, when there are data (real or synthetic) to use in the
estimation methods. For example, the confidence interval on the estimates of mean and standard
deviation for anormal distribution would be used as a basis for estimating confidence intervals
for any percentile of the normal distribution. Similarly, for amodel consisting of multiple input
guantities, some or all of which are treated probabilistically, the confidence intervals for the
model result would be based on the joint confidence interval for all of the input distributions.

In cases where exposures are measured directly, confidence intervals can be devel oped
based on actual sample data. A key aspect of such an effort is the quantification of measurement
errors. Inall cases, Whitmore also emphasizes the need for qualitative characterizations of
sources of uncertainty that are not treated quantitatively, and for clear statements regarding
modeling assumptions.

Rish and Marnicio (1988) reviewed severa dozen studies with respect to uncertainty
concepts, modeling frameworks for treatment of uncertainty, methodologies for dealing with
uncertainty, software tools employed, and case study applications. In arelated study, Rish
(1988) develops a "comprehensive approach” to dealing with uncertainties in estimating and
evaluating human health risks. Much of the discussion is of ageneral nature. Rish dealswith
issues such as comparison of alternative models, sensitivity of assumptions about correlation
among model inputs, response surface methods, probability and decision trees, Monte Carlo
simulation, and communication of results. This study isthus a useful overview of general
aspects of uncertainty analysis, although it does not deal directly with issues in exposure
assessment as does the work of Whitmore (1985).

White and Schaum (1989) discuss the use of Monte Carlo simulation in exposure
assessments at EPA. This paper focuses on when to use Monte Carlo techniques and how to use
and interpret them. Some of the issues discussed include alternative interpretations depending on
the type of data used (e.g., empirically-derived or based on expert judgment), the type of
problem (long-term vs. short term, large site vs. small site), and compl eteness of uncertainty
characterizations.

A guide to uncertainty analysisin risk assessment by Finkel (1990) contains many
concepts and approaches which are also appropriate for exposure assessment. These include a
discussion of sources of uncertainty and variability in parameters, models, and decision-making,
methods for communicating uncertainties, mechanics of uncertainty analysis, and implications of
uncertainty analysis for risk management decision-making.

As discussed previoudly, the 1992 Exposure Assessment Guidelines (EPA, 1992) also
contain adiscussion of uncertainty analysis with respect to exposure assessment.

4.3  Example Applications

As previoudly indicated, there are a significant number of published exposure assessment
studies which feature quantitative approaches to the analysis of variability and uncertainty. A
few of these are discussed here to provide an indication of how Monte Carlo techniques are
employed in thisfield, and to identify needs for methodologica development.
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Constantinou et a (1992) have employed Monte Carlo simulation to estimate the
uncertainties in health risks from air toxics emissions from power plants. Their approach wasto
develop simplified response surface models based on sensitivity analysis of complex fate and
transport, deposition, exposure and dose, and health risk models. For example, an atmospheric
transport model can be simplified to afunction of the chemical emission rate and a multiplicative
constant. This constant is estimated based on meteorological data, topographical information,
and source characteristics. The ssimplified model facilitates the analysis of uncertainty in
chemical concentration in the air due to uncertainty in emission rates, assuming that all other
parameters are fixed. More complex response surfaces can be constructed as appropriate.

Constantinou et al (1992) discuss several considerations in the selection of probability
distributions to represent uncertainty in model input quantities. In the case where sufficient data
are available, aclassical statistical analysis may be performed. A probability distribution
estimated this way may represent measurement error. When insufficient data are available for a
statistical analysis, expert judgment is required to characterize the distribution. Even in the case
where data are avail able, expert judgment plays arolein the selection of the parametric
probability distribution model, even though goodness-of-fit techniques may be employed to
estimate the parameters of the distribution based on limited sample size. In their case study,
Constantinou employed statistical analysis, literature value ranges, and personal judgmentsto
estimate probability distributions for twelve model parameters treated as statistically
independent. Although not acknowledged in the papers, these twelve parameters represent a
combination of uncertainty and variable quantities. For example, parameters such as inhal ation
rate, body weight, and exposure duration tend to be variable from one individual to another. The
authors point out that a major source of uncertainty is the dose extrapolation method used to
develop cancer potency factors, but the authors argue that this source of uncertainty cannot be
evaluated quantitatively due to the lack of information to support the appropriateness of one
method versus another.

The results reported by Constantinou et al (1992) indicate that deterministic ("point
estimate") approaches to estimating risks for the particular case yielded a conservative estimate
corresponding to the 93.5 percentile of the probabilistic risk assessment. Note, however, that the
estimated distribution is a hybrid frequency/probability distribution based on a simulation of both
variability and uncertainty on the same basis. Thus, the simulation does not properly distinguish
between these two different types of quantities.

In arisk assessment of adverse health effects from exposure, via several pathways, of
tetrachloroethylene (PCE) in groundwater, McK one and Bogen (1992) employ Monte Carlo
simulation to estimate population risks. The authors address uncertainty in the exposure models,
uncertainty in the dose-response models derived from animal data, and identify key contributors
to overall uncertainty in population risk. Uncertainties and variabilitiesin model parameters
were characterized based on empirical data, statistical analyses, other studies, and professional
judgment. To account for correlations between parameters, such as intake rate and body weight,
some model input quantities were grouped into new parameters, such as intake rate per unit body
weight, and the variability in the new parameter was estimated. The authors used Crystal Ball to
perform the Monte Carlo simulation. In analyzing the contribution to variance of the results, the
key sources of variance in the population risk, in decreasing order, were variance in carcinogenic
potency, PCE concentration, and the parameters of the exposure model. The authors comment
that some factors are more properly treated as uncertainties, while others are variabilities. They
suggest that the results could be reported graphically using separate dimensions for uncertainty
and variability, although they do not actually do so.

A paper by Bogen and Spear (1987) and a book by Bogen (1990) consider in more detail

the differences between uncertainty and variability. These studies do a thorough job of
distinguishing between variability and uncertainty as inputs to an assessment. Although Bogen
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and Spear do not present a graphical representation of results as suggested by McKone and
Bogen, they do present a number of probabilistic descriptors of risk to different individualsin the
population. These include arandomly selected individual, a mean risk individual, a 95th
percentile individual, and a"maximum risk" individual. Each individual represents a different
sample from the variability in the population distribution. For each of these defined individuals,
an estimate of uncertainty inrisk isgiven. A key assumption in the analysis was that the
uncertainties faced by all individuals are the same, such that there is no ambiguity regarding the
ranking of their risk compared to other individuals. Interpreted differently, the underlying
assumption is that the uncertainties are 100 percent correlated between all individuals. The
validity of this assumption depends, of course, on the specific problem.

A review of these and other studiesindicate that there istypically little attention paid to
the notion of separating variability and uncertainty. However, these types of quantities have
different implications for estimating population and individual exposures (and risks), and should
not be mixed together without a clear statement as to the purpose of such a mixture. For
example, in cases where there is relatively little uncertainty, combining uncertainty and
variability in asimulation may lead to little error in estimating population characteristics (e.g.,
percentages of the population subject to various exposure levels). The next chapter presents an
alternative approach to simulating uncertainty and variability in amodel.
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50 A GENERALIZABLE APPROACH TO SIMULATING VARIABILITY AND
UNCERTAINTY

An approach to separately modeling variability and uncertainty was developed based on a
two-dimensional Monte Carlo ssimulation. First, ataxonomy of Monte Carlo simulation options
are described which motivate the need for considering uncertainty and variability separately.
Then a generalized approach for Monte Carlo simulation of variability and uncertainty is
described. The approach isillustrated by a case study of a hypothetical exposure model.

51 A Taxonomy of Simulation Options

In general, exposure (e.g., lifetime average daily dose) is a hybrid frequency/probability
distribution, representing the frequency of different exposure levels due to the interindividual
heterogeneity of the population of exposed individuals, and the probability of obtaining specific
exposure levelsfor agiven individual based on uncertainty in measurements or estimates. Thus,
an exposure model may be written as:

E=E(V,U) (6)

The estimate of exposure to the population of exposed individualsis afunction of variability in
parameters V, which have different values for each member of the population, and uncertainty in
parameters U for which there is some lack of information about their true values. In generd, it is
possible for multiple uncertain quantities to be correlated with each other. It isalso possible for
the uncertainties, U, to be correlated or dependent on the variable quantities.

For a specific individual, the exposure equation may be written as:
E =E(vi,U) @

The specific values v; of the empirical quantities V differ from one individual to another,
representing the interindividual heterogeneity of the population of exposed individuals.
However, in this formulation, the uncertainty in exposure faced by each individual is assumed to
be the same; the realization of uncertain values is independent of each individual and,
furthermore, the realization of uncertain valuesis the same for al individuals. An example of
this type of problem would be exposure of a population of individuals to a contaminant in
drinking water from a central supply system. Each individual will differ in terms of how much
water they drink and over what exposure period they consume water from the contaminated
supply system. However, given that the supply system equally distributes the contaminant to all
users, all users are faced with the same value of the concentration. The measurements of the
concentration may be uncertain, but all individuals face the same actual concentration level.

In amore general case, the realization of uncertainties may differ from one individual to
another. Thiswould be the case, for example, at a hazardous waste site, where different
individuals may spend time at different parts of the site. Thus, individuals are exposed to
different levels of contaminants, with different uncertainties regarding the actual amounts.
Furthermore, the uncertainty in the measurements of a contaminant level at one part of the site
will generally be independent of the uncertainty in the measurement at another location. Thus,
the concentration level actually consists of a variable component and an uncertain component.
Assuming that the variability and uncertainty in the concentration are appropriately
disaggregated, the resulting general exposure equation for asingle individual becomes:

E = E(vi,ui) )

35



H.C. Frey Quantitative Analysis of Uncertainty and Variability in Environmental Policy Making

The uncertainty in measurements of concentration may be proportional to the level of
concentration. For example, many measurement techniques tend to have less precision, on an
absolute basis, as the magnitude of the quantity being measured increases. Thus, we may have
the case where the uncertainty is conditional (or dependent upon) the specific values of the
empirical (variable) quantities:

& =E(vi,ui(vi)) 9

For example, the variance in measurement of a concentration level is often proportional in some
way to the actual value of the concentration. The concentration may vary from one site location
to another, and thus be a source of variability in the exposure estimate.

An aternative way to view these simulation optionsisin terms of the effect that different
relationships between variability and uncertainty have on the cumulative distribution function for
the population of exposuresto all individuals. In general, individuals can be rank ordered with
regard to their exposures. Anaogous to the discussion presented by Bogen and Spear (1987) for
risks, we consider the following cases. In thefirst case, we assume that there are no variable
guantities in the exposure model, implying that all individuals are homogeneous in terms of
behavior. Thus, all individuals face the same exposure, which is uncertain:

E=E=EU) (10)

The cumulative distribution function (cdf) of E, F(E<e), isthe probability distribution of
exposure faced by all individuals. The function F(E<e) varies from 0 to 1 and represents the
fraction of the population with an exposure level less than or equal to some value e.

If there are no uncertain quantities in the exposure model, then each individual can be
rank ordered unambiguously with respect to increasing exposure levels. The exposure model is
written as:

E=E(V) (12)

where E is a frequency distribution of the certain exposure levels faced by different individuals.
We may rank order each of the n individuals with respect to their exposure levels such that:

FEE) < F(EB)< - <FEE) (12)

If thereis both variability and uncertainty in the exposure model, and if the uncertainties
are systematically applicableto al individuals (e.i., if al individuals face the same rank ordering
of realizations of the uncertain quantities), then the rank ordering of individualsis the same as
the case when only variability in empirical quantitiesis simulated. However, for any given
individual, there will be arange of values associated with the uncertainty in exposure. Thus, we
may define two cumulative distribution functions. One, given by Equation (11), represents the
frequency distribution of variability across all individuas, while the other, shown as Equation
(12), represents the probability distribution of the uncertainty in exposure level for a specific
individual:

E =E(vi,U) (13)

36



H.C. Frey Quantitative Analysis of Uncertainty and Variability in Environmental Policy Making

Cumulative probability Cumulative probability
1 7 L 1 7
0.75 0.75
05 - J 05 1

oo | / s /
/ 4

0 —— T T 1 0 — 1 T T 1
2 4 6 8 10 -5 -2.5 0 25 5

(a) Exposure Level (b) Difference in Exposure Level
assuming p=1 (narrow distribution)
and p=0 (wide distribution)
Figure 4. Effect of assumptions regarding uncertainty on the differencesin exposure between
two individuals.

In the case where the uncertainties are not correlated with p=1 for all individuals, as assumed
above, then the rank ordering of individuals will change depending on each realization of
uncertainty. Thus, in addition to uncertainty regarding the actual exposure level faced by agiven
individual, thereis also uncertainty regarding that individual's percentile within the population
distribution.

To illustrate this concept, consider two individual s whose behaviors and exposures are
nearly the same. The uncertaintiesin their exposures are modeled by the probability
distributions in Figure 4(a). Note that there appears to be a slight difference in the means of the
two distributions, although their standard deviations are nearly the same. In Figure 4(a), the
difference in exposure level between the two individualsis modeled. If the uncertainty in the
exposure levelsis +100 percent correlated for the two individuals, then the individual with the
higher mean exposure will always have a higher exposure. Therefore, thisindividua will always
rank higher in the variability frequency distribution compared to the other individual. If,
however, there is no correlation in the uncertainties in exposure to the two individuals, thereisa
48 percent probability (in this case) that the individual with the lower mean could have a higher
exposure. Thus, the rank ordering of the two individualsis uncertain. Forty-eight percent of the
time, the individual with the lower mean exposure would actually have a higher rank than the
other individual. Thistype of interaction would extend, of course, to all individuals within
several standard deviations of the mean exposure values.

52 Two-Dimensional Monte Carlo Simulation

A two-dimensional approach to Monte Carlo simulation was devel oped to properly
disaggregate and eval uate the consequences of variability and uncertainty, as well asto simulate
their interactions. Thus, this approach is able to deal with the general case in which uncertainties
may be independent from one individua to another and conditional on variable quantities.
Because policy questions often focus on popul ation characteristics such as the number of
individuals at or above a given exposure level, or individual descriptors, such asthe
characteristics of persons at the high end of exposures and the amount of their exposures, it is
critically important to disaggregate variability and uncertainty. However, it is also important to
properly evaluate any interactions between them that might affect the rank ordering of
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Figure 5. Two-Dimensional Monte Carlo Simulation of Variability and Uncertainty.

individuals. These types of interactions cannot be evaluated in traditional approachesto Monte
Carlo simulation in exposure assessment. The two-dimensional simulation approach is shown
schematically in Figure 5.

Given ageneral model E=f(V ,U) as described above, the first step is to disaggregate the
model variables into variable and uncertain components. For all variable quantities, frequency
distributions must be specified. For all uncertain quantities, probability distributions must be
specified. The development of both sets of distributions can be based on bootstrapping with
actual data, goodness-of-fit tests of data and parametric distribution models, or technical
judgments, as discussed in previous sections. A sampling scheme, such as random Monte Carlo
simulation or Latin Hypercube sampling, is then employed to generate two sets of samples. For
each of M variable quantities, the frequency distributions are simulated with a sample size of m.
For each of the N uncertain quantities in the model, the corresponding probability distributions
are simulated with a sample size of n. In principle, the sample sizes m and n for the variable and
uncertain dimensions of the simulation need not be the same. However, it is preferable that
these sample sizes be the same. Clearly, the precision of simulated distributions for uncertainties
in exposure depends on the uncertainty sample size, n. Interactions among the multiple variable
guantities can give rise to similar exposure levels. 1n cases where uncertainties between
individuals are statistically independent, the rank ordering of the individuals can change, leading
to uncertainty in both exposure levels and population fractiles. The precision of estimates of
population fractiles depends on the variability sample size, m.  Thus, the sample sizes of both
dimensions can be equally important. In this case, the sample size for the two-dimensional

38



H.C. Frey Quantitative Analysis of Uncertainty and Variability in Environmental Policy Making

simulation ismen = m2 = n2. Clearly, this can impose a potentially severe computational burden,
depending on the required sample size.

The model is repetitively evaluated for each combination of samples from the variable
and uncertain parameters. Thisis represented in Figure 5 by the matrix of values Ej j, wherei is
an index from 1 to m of the sample values for the vector of variable quantities, and j isan index
from 1 to n of the sample values for the vector of uncertain quantities. Any column of the matrix
represents the frequency distribution for variability in exposure levels for the population of
individuals for agiven realization of uncertainties for each individual. Any row of the matrix
represents the probability distribution for uncertainty in exposure level for a given member of the
population.

In cases where the uncertainties are independent from one individual to another, the rank
ordering of individualsis also uncertain. Thisimportant interaction is captured by the two
dimensional approach to simulation, because for every sample of values for the vector of
uncertain quantities, a separate frequency distribution for variability is ssmulated. For agiven
individual, each sample in the uncertainty dimension yields a separate estimate of the rank within
the population. Therefore, there will be n estimates of the rank, or percentile, of each individual
in the population. These estimates represent a probability distribution for the rank of the
individual within the population. Thus, it ispossible, using the two-dimensiona approach to
explicitly estimate not only the uncertainty in the exposure level faced by that individual, but
also the associated uncertainty in their rank within the population. In this regard, the two-
dimensional approach presented hereis a systematic method to model and evaluate both the
separate and interacting effects of variability and uncertainty in amodel.

In contrast, the typical approaches used by investigators as described in Chapter 5 do not
capture these interactions, nor do they properly convey the differences between variability and
uncertainty. In the simulations by Constantinou et al (1992) and McKone and Bogen (1992), and
others, variability and uncertainty were ssmulated in the same dimension. The resulting hybrid
frequency/probability distribution for exposure is only meaningful if interpreted to represent an
individual selected at random from the population. However, it isinaccurate to draw conclusions
from such results regarding the rank ordering of individuals within the population, or the
exposure level faced by an individua at a given fractile of the population.

Consider the taxonomy of simulation options in the previous section. In the case where
there are only variable quantities in the model, the two-dimensional ssmulation ssimplifiesto a
one dimensional simulation, and the matrix E; j smplifiesto avector Ej. The vector E;
represents the variability in exposures due to the variability in the model input parameters. In
this one-dimensional simulation, it is assumed that the variability is known without uncertainty.
In the other limiting case, if there is no variability from one individual to another (e.g., all
individuals are the same), but there is uncertainty, the two-dimensional simulation again
simplifiesto one dimension. The matrix E;j j simplifiesto avector Ej, representing the
uncertainty in exposures due to uncertainty in model inputs. However, the traditional one-
dimensional approaches to modeling uncertainty and variability do not fall into either of these
categories.

5.3 Anlllustrative Case Study

The two-dimensional Monte Carlo simulation approach for dealing with variability and
uncertainty isillustrated here via a hypothetical case study. Consider a simple scenario
involving exposure to a chemical viaingestion of a contaminated fluid (e.g., drinking water). A
simple exposure model would be:
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Figure 6. Influence diagram for a simple exposure model

C+ED|
LT | (14)

no0=(45

In this formulation, intake rate and body weight are treated as a single parameter, because they
are known to be correlated. This model is shown graphically as an influence diagram in Figure
6. For smplicity, it is assumed that all of each exposed individual's drinking water consumption
is from the contaminated source.

5.3.1 Mode Formulation

In order to evaluate the separate and interactive effects of variability and uncertainty, itis
necessary to disaggregate all model inputs into separate variability and uncertainty components.
In this example, it is assumed that variable and uncertain components of each parameter are
additive, and the exposure equation is rewritten as:

_ (Cy+Cy) * (EDy+EDy)
LADD = {(BI\TV)V * (I_?I,\F/\)V)u} { (LTy+LTy) } (15)

The additivity assumption is based on the notion that there may be systematic and/or random
error associated with the values of the model parameters. The disaggregated exposure model is
illustrated graphically in Figure 7.

While the disaggregation of each model parameter into two components may seem
arbitrary, in principle it should be possible to separately estimate the underlying variability and
the uncertainty associated with measurements of the variable quantity. Asanillustration,
consider the simple case of measurement of a variable quantity. The distribution of measured
valuesisgiven by:
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Exposure Equation: Variability and Uncertainty
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Figure 7. Influence diagram for exposure model with separate components for variability and
uncertainty.

M=V +U (16)
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where V isthe actual variability in the quantity being measured, and U is the uncertainty
associated with the measurement technique. This uncertainty may be both random and biased.
In principle, measurements made as part of EPA programs should be based on validated test
methods, for which there is quantitative information about the distribution for U. Therefore,
given samplesfor M and knowledge of the distribution of U, it is possible to estimate V:

V'=M-U (17)

In this manner, uncertainty and variability can in principle be disaggregated and used as inputs to
amodel. Alternatively, another approach for separating variability and uncertainty is based on
estimating confidence intervals for the parameters of distributions intended to represent
variability. Knowledge about the uncertainty in the parameters of the distribution can be used to
simulate uncertainty about the frequency distribution. Whitmore (1985) touches upon thisissue
in his study.

5.3.2 Modd Input Assumptions: Variability and Uncertainty

The data requirements for the disaggregated model include probabilistic estimates of both
variability and uncertainty in each model parameter. To illustrate the modeling approach,
hypothetical distributions have been assumed. However, to demonstrate that data are available

41



H.C. Frey Quantitative Analysis of Uncertainty and Variability in Environmental Policy Making

Cumulative Probability « Intake Rate/ BodyWeight (Var. Input) (I/lkg-day)
1

0.75 1

0.5 1

0.25 1

0
0 0.02 0.04 0.06 0.08

Intake Rate/ BodyWeight (Var. Input) (I/kg-day)
Figure 8. Model input frequency distribution for variability in intake rate per unit body
weight.

to support such assessments, afew of these distributions are based directly on the exposure
assessment literature.

5.3.2.1 Sources of Variahility

The exposure assessment model consists of five parameters. All five of these are sources
of variability in the assessment. Body weight, intake rate, exposure duration, and lifetime vary
from one individual to another. Concentration of the chemical in the liquid stream which comes
in contact with each individual may aso be variable, due to the spatial or temporal distribution of
individual s and the mechanism for transport and dilution of the contaminated stream. Each of
these potential sources of variability are discussed in more detail.

Body weight and daily water intake rate are clearly variable from one individual to
another, and also tend to be afunction of developmental stage and sex. However, variability in
body weight and daily intake rate are also correlated, with larger persons tending to drink more.
McKone and Bogen (1992) have cal culated a frequency distribution for the variability in the
ratio of intake rate to body weight that is based on an assumed rel ationship between the two.

The distribution for the ratio of intake rate to body weight represents the variability in intake rate
that cannot be explained by body weight alone. The distribution estimated by McKone and

Bogen is lognormal, with an arithmetic mean of 3x10-2 I/kg-day, and a geometric standard
deviation of 1.4. Thisdistribution is shown graphically in Figure 8.

Exposure duration is the length of time, in days, that an individual consumes
contaminated water. To afirst approximation, the exposure duration in this case is the amount of
time an individual livesin a home connected to the contaminated water supply. Neglecting the
possibility that the individual could change homes both connected to the same water supply, we
model the exposure duration based on census survey data for the amount of time that people have
lived in their current homes, per the Exposure Factors Handbook (EPA, 1989). Inamore
detailed assessment, it would be preferable to conduct a survey for the specific community
exposed to the contaminated water supply, because the distribution of their exposure duration
behavior may differ from the national distribution. However, there are two other shortcomings
to the use of the data from the Exposure Factors Handbook.

One shortcoming is that the distribution is not completely specified, and the second is

that the data are for a surrogate to the parameter we want to estimate. With regard to the first
point, distributional data are presented in the Exposure Factors Handbook for individual s based
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Figure 9. Model input frequency distribution for variability in exposure duration.

on the percentage of al respondents who have lived in their homes within certain time ranges.
However, a number of respondents have lived in their home longer than the highest value report
(33 years). Therefore, a bounding assumption was made that individuals would typically livein
ahome no longer than the average lifetime of an American, which is 75 years. Note that this
assumption has no effect on the fractiles of the distribution below the 93rd percentile, but it does
affect the mean of the distribution. The empirically-based distribution for exposure duration,
including the bounding assumption, is shown in Figure 9. The second shortcoming is that the
reported data are for the number of years lived in the current household at the time of the survey.
Thisis not the same as the total number of years which a given respondent will actually livein
their current household. Thus, the survey datawill systematically underestimate the total time a
resident will livein their current dwelling.2 Thisis a source of uncertainty and is dealt with

separately.

Thelifetime of an individual is variable across the population. Some analysts have
assigned distributions to this parameter, while others have used a fixed value of 75 years. From
apolicy perspective, it may be less controversial to use afixed value. Thisin effect isarights-
based approach that implies that all individuals have aright to live at least as long as the national
average. However, because the lifetime is used in this example as an averaging time, such an
approach would also lead to underestimation of the lifetime average daily dose faced by
members of the population who do not live as long as the national average. For illustrative
purposes only, the variability in lifetime is assumed to be normally distributed with a standard
deviation of five years, and amean of 75 years. In principle, amore realistic distribution can be
developed based on mortality data, but such an effort was beyond the scope of thisillustrative
case study.

Finally, the remaining source of variability isthe concentration of the chemical
contaminant in the drinking water. This quantity is site-specific, and thus a hypothetical
assumption is made here. In the case of a municipal water supply system, the average

2 The data are complete up to the 93rd percentile, with seven percent of those surveyed having lived in their current
residence more than 33 years. Based on linear extrapolation of the data, the 50th percentile is approximately 9 years
and the 90th percentile is 30 years. Asan aside, the EPA Exposure Factors Handbook states that the "50th
percentile represents the average length of time atypical homeowner will live in the same house." This statement is
wrong on two counts: (1) the 50th percentile is the median, not the average (mean) of the distribution. Depending
on the upper bound assumptions, the average is on the order of 15 years; (2) the data are not for the total length of
time of residence in a house, as discussed.
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Figure 10. Model input frequency distribution for variability in contaminant concentration.

concentration may be very similar for all exposed individuals. In the case of individuals who
draw their water from wells, the average concentration would be variable depending on location,
due to dilution, diffusion, and transport of the contaminant within the aquifer. For the purposes
of this case study, it is assumed that the variability in concentration is lognormally distributed, as
shown in Figure 10.

The assumptions made here regarding sources of variability are summarized in Table 1.

Table 1. lllustrative Assumptions Regarding Sources of Variability

Nominal Distribution
Parameter Symbo | Units | Value Distribution | Parameters | Comments
I
Intake Rate per IRIBW [1/kg- | 3x102 | Lognorma L=3x104 | McKoneand
Unit Body Weight day GSD=1.4 Bogen (1992)
Concentration C mg/l 3x104 Lognormal H=3x10-2 Hypothetical,
GSD=25 | dependson
' Ste.
Exposure Duration | ED days 3,300 Empirical Empirical Based on
EPA, 1989
Lifetime LD days 27,400 [ Norma HU=27,400 [Mustrative
B (seetext)
0=1825

5.3.2.2 Sources of Uncertainty

Of the four parametersin theillustrative exposure model, all four are modeled as sources
of variability. Three of these are also modeled as sources of variability. Itisassumed that there
isnot a significant source of uncertainty in the population distribution for lifetimes.

The estimate of variability in intake rate per unit body weight is based, presumably, on
measurements. However, data regarding the measurement precision and accuracy are not readily
available. In principle, such information could be used as described previously to explicitly
separate uncertainty and variability. However, given the lack of such data and theillustrative
nature of this case study, two simple cases where considered. Both cases assume that the
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Figure 11. Family of Probability Distributions for Uncertainty in Concentration Associated
with Each Individual in the Population.

lognormal distribution for variability represents the true variability, and that the measurement
error is unbiased (mean equals zero) and normally distributed. In one case, a standard deviation
of 10 percent of the "actual" value is assumed, and in an alternate case, a standard deviation of
30 percent isassumed. Similar illustrative assumptions were made regarding uncertainty in the
measurements of concentration.

The estimate of variability for the exposure duration is believed to be biased toward low
values, as previously described. Therefore, the uncertainty in the exposure duration was
assumed to be biased, and is represented as a uniform distribution with alower value equal to the
sample from the variability distribution and an upper value of five years additional timein the
current residence. An alternate sensitivity case was considered assuming up to 10 additional
yearsin the current residence.

For all three sources of uncertainty, the shapes of the distributions were assumed to apply
to all individuals, but to be statistically independent from one individual to another. Although
the shapes of the distributions are the same for all individuals, the parameters of the distributions
arenot. For example, in the case of intake rate per unit body weight, it is assumed that the
standard deviation is 10 (or 30) percent of the nominal value sampled from the variability
frequency distribution. A similar assumption was made regarding uncertainty in concentration.
Thus, the standard deviations of the uncertainty in intake rate per unit body weight and
concentration were modeled as a function of the variability in those two parameters. As aresult,
thereisafamily of distributions for each of these uncertainty parameters associated with each
individual in the population. The family of distributionsisillustrated in Figure 11 for
uncertainty in concentration.

The assumptions regarding sources of uncertainty are summarized in Table 2.

5.3.3. Running the M odel

A two-dimensional simulation of the model in Equation (15) was performed using Latin
Hypercube sampling. The software package Demos was used for this ssmulation. Demos
functions were used to model the input frequency and probability distributions. Independence
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Table 2. lllustrative Assumptions Regarding Sources of Uncertainty

Nomina Distribution
Parameter Symbo | Units | Vaue Distribution | Parameters | Comments
I
Intake Rate per IR/IBW | I/kg- 0 Normal v=0.1 Unbiased
Unit Body Weight day ' measurement
v=0.3 error, two
cases
Concentration C mg/l 0 Normal v=0.1 Unbiased
measurement
v=0.3 error, two
cases
Exposure Duration | ED days 0 Uniform U(0,1826), | Biased error,
U(0,3652) |two cases
Lifetime LD days n/a No
uncertainty

among uncertainties for each individual were simulated by using separate input uncertainty
distributions for intake rate per unit body weight, exposure duration, and concentration for each
individual in the ssmulated population. The sampled values from the variable and uncertain
components of each model input were separately indexed into dimensions of variability and
uncertainty, asillustrated in Figure 5. The exposure model was then evaluated for each
combination of input values for the variable and uncertain components.

For the purposes of thisillustrative case study, the selection of simulation sample sizes
was arbitrary. The selection was based primarily on atrade-off between computational speed
and obtaining reasonably stable results. Sample sizes for each dimension of 10, 20, 50, and 100
were evaluated. On thisbasis, asimulation of sample size of 50 for both the variable and
uncertain dimensions was selected for the detailed case studies. Thus, atotal of 2,500 exposure
model evaluations were performed.

5.3.4 Interpreting and Presenting Results

The modeling results are presented in Figure 12. The figure consists of 50 separate cdf's
representing the variability in exposure levels to the population of individuals for aternative
realizations of uncertainties for each individual. In turn, each of these 50 cdf'sis estimated based
on simulation of 50 separate individuals. The resultsin Figure 12 are for the base case in which
uncertainty in intake rate per unit body weight and concentration have a standard deviation of 10
percent of the variability samples for those parameters.

5.3.4.1 Uncertainty in Exposure L evels

For any given fractile of the simulation resultsin Figure 12, there is a probability
distribution representing uncertainty in the exposure level. The uncertaintiesin exposure levels
associated with five different fractiles of the distribution are shown in Figure 13. Each of these
distributions is estimated based on the exposure levels associated with the given fractile for each
of the 50 simulations of uncertainty in the exposure model. Note that the range of uncertainty
tendsto increase for the larger fractiles. Thisisaresult of the positive skewness of all of the
variability simulation results and the interactions with the variances in uncertainties for intake
rate per unit body weight and concentration, which are proportional to the values of these
guantities from the variability distributions.

These distributions provide a quantitative indication of the uncertainty in exposure level
faced by a given fractile of the population. Furthermore, they can also be used to determine to
what degree of confidence a given percentage of the population faces a specific exposure level.
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Figure 12. Results of atwo-dimensiona simulation of variability and uncertainty in a
hypothetical exposure model.

For example, suppose that an exposure level of 7.5x10-6 mg/kg-day were of regulatory interest
for health reasons. This exposure level corresponds to the 20th percentile of the probability
distribution for uncertainty in exposure levels to the 95th percentile of the exposed population.
Thus, the ssmulation results indicate that there is a 20 percent probability that 95 percent of the
population would face an exposure less than this amount, due to the interactions between
variability and uncertainty. Conversely, thereis an 80 percent probability that five percent of the
population would face a higher exposure level. If ahigher exposure level were of concern, such

as 1.0x10-6 mg/kg-day, there would be only afive percent probability that five percent of the
population would have a higher exposure level. In this case, one could assert with 95 percent
confidence that 95 percent of the population faces alower exposure level.

This approach and interpretation differs significantly from typical approachesin which
uncertainty and variability are smulated as part of the same dimension. In such simulations,
uncertainty is usualy treated asif it were variability, and results are reported in terms of the
percent of the population at or above a given exposure level. However, these results can be
erroneous if there are significant uncertainties involved, because the simulation of uncertainties
with variability leads to bias. At the upper fractiles of the distribution, a one-dimensional
simulation including both variability and simulation will tend to over-estimate exposure levels,
while at the lower fractiles, such a simulation tends to under-estimate the exposure levels. The
resulting estimates of exposure levels will not properly reflect either the uncertainty in the
exposure level faced by a specific fractile of the population, nor will it account for interactions
between uncertainty and variability that affect the rank ordering of individuals.

5.3.4.2 Uncertainty in Fractiles

For any given exposure level of the simulation resultsin Figure 12, there is a probability
distribution representing uncertainty in the associated fractile of the population. This uncertainty
is partly due to the different rank ordering of individuals within the population with respect to
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Figure 13. Uncertainty in exposure levels for specific fractiles of the population distribution.

exposure levels, based on alternative realizations (samples) of the uncertaintiesin the exposure
modd.

The uncertainties in fractiles associated with five different exposure levels of the
population distribution are shown in Figure 14. Each of these distributions is estimated based on
the fractile associated with the given exposure level for each of the 50 simulations of uncertainty
in the exposure model. Note that while the number of samples used to estimate these cdf'sisthe
same as the uncertainty sample size, n, the resolution of the estimates of the fractiles (the x-axis
of the graph) depends on the variability sample size, m. In this case, because a sample size of
m=50 was used, the fractiles are estimated in intervals of approximately 0.02.

These distributions provide a quantitative indication of the uncertainty in the fractile of
the population faced with a given exposure level. Furthermore, they can be used to determine
the probability that a given fractile of the population faces an exposure of less than or equal to a
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Figure 14. Uncertainty in fractiles for specific exposure levels of the population distribution.
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certain value. For example, consider the probability distribution for the fractile of the population

with an exposure of less than or equal to 2.1x10-6 mg/kg/day. The fifth percentile of this
uncertainty distribution corresponds to afractile of 0.67, while the 95th percentile corresponds to
afractile of 0.73. Thus, with 90 percent confidence, between 67 and 73 percent of the

population have an exposure level of lessthan or equal to 2.1x10-6 mg/kg/day. An aternative
interpretation is that there is a 95 percent probability that at least 67 percent of the population has

an exposure level of lessthan or equal to 2.1x10-6 mg/kg/day.

Thetype of interpretation would depend on the policy question. If we are interested, for
example, in the characteristics of a highly exposed individual, we might be more interested in the

percentage of the population facing a higher exposure level such as 8.4x10-6 mg/kg/day. Inthe
example of Figure 14, between 92 and 96 percent of the population would be expected to have an
exposure this high, with a 98 percent confidence level. Conversely, between four and eight
percent of the population would have an exposure greater or equal to thislevel. Whether thisis
an acceptable proportion of the population would have to be weighed with other factors, such as
regulatory options for reducing exposures, their cost, and equity issues related to subpopulations
subject to exposures.

5.3.4.3 A Graphica Summary of Results

In the previous two sections, uncertainties in the exposure levels for specific fractiles of
the population, and uncertainties in the fractiles of the frequency distribution for a given level of
exposure, have been presented using cumulative distribution functions. In this section, an
alternate presentation format is considered.

An aternative approach for presenting the modeling resultsisillustrated in Figure 15.
The figure is based on a ssimple model in which the simulated quantity E is afunction of a
variable quantity V and an uncertain quantity U. The variable quantity V islognormally
distributed, and the uncertain quantity U is normally distributed. In this simple example, the
uncertainty is assumed to be +100 percent correlated for all individuals. Thus, the resulting
estimate of E can be represented by a set of cdf's for the frequency distributions of variability in
E, each based on an unambiguous percentile of the uncertainty distribution.

For selected percentiles of the frequency distributions, uncertainty distributions for
exposure levels can be constructed. One way to represent these distributions graphically is
through tukey plots. These are a convenient representation to use in cases of two-dimensional
uncertainty or variability (Morgan and Henrion, 1990, p. 241). In Figure 15, tukey boxes (or
"error bars") are shown graphically for five fractiles of the variability distribution. This type of
graphical tool provides a method for communication information about both variability and
uncertainty. While there have been no studies to determine if thisisin fact the best approach for
communicating two-dimensional results, discussions with several analysts and presentations
reveal that it isat least aformat that is understandable to many.

In the more detailed example described previously, uncertainties in both fractiles and
exposure levels have been estimated and reported as probability distributionsin Figures 13 and
14. A tota of 10 distributions are shown in the two figures. These distributions can be
represented by tukey plots. The results presented in Figure 12 are presented in Figure 16 with
the alternative format.

The dark line in Figure 16 is the frequency distributi on for a simulation based solely on
variability, without regard to uncertainty. The dotted lines represent the approximate outer
boundary of the simulation results given in Figure 12. The horizontal error bars represent the
probability distributions for uncertainty in exposure levels given in Figure 13. The vertical error
bars represent the probability distributions for uncertainty in fractiles given in Figure 14. The
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Figure 15. Use of error bars to represent uncertainty in exposure levels for specific fractiles of
the population distribution: A simple example.

tukey barsillustrate the general features of both the range and shape of the uncertainties. For
example, the ranges of uncertainty in exposure level become wider with increasing percentiles of
the variability distribution. For the 95th percentile of the population, the uncertainty in exposure
level is positively skewed, asindicated by the longer tail of the tukey bar between the 75th and
95th percentiles of the uncertainty compared to the 5th and 25th percentiles.

5.3.4.4 Relative Effects of Variability and Uncertainty

The relative magnitude of uncertainties and variabilities may differ from one problem to
another. Toillustrate the interactions between varying magnitudes of uncertainty and variability,
an alternative case study was conducted with a higher magnitude of uncertainty. This case study
assumed that the standard deviation of the uncertainty in intake rate per unit body weight and the
concentration was 30 percent, instead of 10 percent, of the nominal value for each individual,
and that the uncertainty in exposure duration ranged from 0 to 10 years, instead of 0 to 5 years.
The effect of these assumptions about increased uncertainties on model resultsis shownin
Figure 17.

The increased uncertainty has several consequences. Oneis that the overall distributions
for variability have more variance and significantly longer tails than the base case. Thisisa
direct result of the increased range of uncertainties and the assumption regarding independence
of uncertainties from one individual to another. The latter factor leads to increased interactions
involving re-ranking of individuals. The maximum exposure levels from the increased

uncertainty case study exceed 4x10-> mg/kg-day, in contrast to maximum values for the base

case of lessthan 1.75x10°° mg/kg-day. These higher values are the result of the increased
skewness in the assumption regarding exposure duration, as well as of interactions among the
increased range of uncertainties for intake rate per unit body weight and concentration.
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Figure 16. Results of atwo-dimensiona simulation of variability and uncertainty in a

hypothetical exposure model: Representation of uncertainties using error bars.
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Figure 17. Results of a hypothetical case study with increased uncertainty.
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The uncertainties in the exposure levels are larger in variance than for the base case,
although the effect is more pronounced for the upper percentiles of the population. For example,
the 95th percentile of the population faces a 90 percent confidence range of exposures from

6x10°6 to 1.6x10-5 mg/kg-day, in contrast to the range of 7x10-6 to 1.0x10-> mg/kg-day for the
base case. For the lower population percentiles, the exposure levels tend to be similar to the
base case. For example, the 90 percent confidence range for the 25th percentile of the population

isfrom 2.7x10-7 to 4.2x10°7 mg/kg-day in the base case, and 2.9x10-7 to 5.0x10-7 mg/kg-day in
the increased uncertainty case.

The uncertainties in the fractiles of the population distribution associated with specific
exposure levels also tend to be more uncertain than for the base case, indicating that there are
increased effects associated with re-ranking of individuals in the population.

5.3.5 Prioritizing Data Needs

The results of the two-dimensional simulation provide distinct information regarding both
variability and uncertainty in exposure to a population. The results of the simulation can aso be
used to identify priorities for future data collection and research. Statistical techniques can be
employed to identify and prioritize the key sources of variability and uncertainty in the model.

In this case study, rank correlation coefficients were used for this purpose. For each combination
of model outputs and inputs, rank correlation coefficients were calculated. These coefficients
measure the strength of the linear relationships between the rank values of the samples of the
input and output distributions of interest.

5.3.5.1 Identifying Key Sources of Variability

The coefficients for rank correlation between the population estimate of variability in
exposure and each of the four variability inputsis shown in Figure 18. The strongest correlation
in exposure is with the exposure duration. Variability in concentration is also strongly correlated
with the lifetime average daily dose. The correlations for the intake rate per unit body weight
and the assumed distribution for lifetime are small. These results indicate that any additional
effort to refine the estimates of variability should focus on exposure duration and concentration.
The modeling results are not very sensitive to the current assumptions about intake rate per unit
body weight and lifetime. As noted earlier, estimates of variability can be refined by stratifying
the population under study into more homogeneous subgroups. Thus, these results suggest that
there may be sensitive subpopulations characterized by high exposure durations and/or
concentrations which merit more detailed study. Of course, the results here are hypothetical, but
the types of insights regarding key sources of variability yielded by this methodological
approach would be obtained in other studies.

5.3.5.2 Identifying Key Sources of Uncertainty

The evaluation of key sources of uncertainty is not as straight-forward in this case as was
the evaluation of key sources of variability. The three uncertain quantitiesin the model may
have varying importance from one individual to another. The rank correlations between the
uncertainty in the lifetime average daily dose and the input uncertainties are shown in Figure 19
as afunction of the mean exposure level for different individuals in the population.
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Figure 18. Identification of key sources of variability using rank correlation coefficients.

From Figure 19, it appears that uncertainty in exposure duration tends to have a high rank

correlation for individuals with low mean exposure levels (i.e. less than 1.0x10-6 mg/kg-day).
For these same individuals, the rank correlations with both concentration and exposure duration
tend to be significantly lower. Thisresult is more clearly indicated on alogarithmic scale, as
shown in Figure 20.

As noted previously, the variance in the uncertainty for exposure duration is the same for
al individuals. However, the variance in the uncertainty for concentration and ingestion rate per
unit body weight were assumed to be proportional to the values of those parameters sampled
from the variability frequency distributions. Individuals with low mean exposures are those who
tend to have low intake rates per unit body weight or who tend to face low concentration levels.
Therefore, for these individuals, there isless uncertainty, on an absolute basis, in their intake
rates and concentrations. Thus, the uncertainty in exposure duration emerges as the key
uncertainty for these individuals. For more highly exposed individuals, the results suggest that
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Figure 19. Rank correlations of LADD with model input uncertainties as a function of the
mean LADD for the different individuals in the population.
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Figure 20. Rank correlations of LADD with model input uncertainties as a function of the mean
LADD for the different individuals in the population (logarithmic scale).

all three sources of uncertainty are equally important.

The scatter in the curves for rank correlations associated with a specific input variable are
the result of the interactions among variabilities and uncertainties. There are different ways that
any given individual could have a specific exposure level. For example, one individual might
have a high intake rate, but drink water from awell with alow concentration. Another
individual might have alower intake rate, but ingest more highly contaminated water. Thus,
their exposure levels might be similar for different reasons. The alternative possibilities for
pairing different values of the input uncertaintiesto get similar results is are manifested by the
varying correlations for similarly exposed individuals.

The implications of this particular case study are that for the most highly exposed
individuals, al sources of uncertainty need to be carefully considered. However, the results may
differ depending on the magnitude of the input uncertainties. For example, consider the
increased uncertainties case discussed previously. The rank correlation of each uncertain input
parameter with the lifetime average daily dose is shown in Figure 21. The resultsfor this case
indicate that for the most highly exposed individuals in the population, uncertainty regarding
intake rate per unit body weight and contaminant concentration are the key contributors to
uncertainty. Thus, additional research in this case should be focused on reducing the uncertainty
associated with measurement and survey techniques.

54  Implications of Two-Dimensional Approach

The two-dimensional approach to Monte Carlo smulation of variability and uncertainty
allows the conceptual differences between these two to be properly modeled. The methodology
facilitates more technically correct thinking about policy questions related to characterizing
exposed populations, evaluated different exposure levels, prioritizing model directions (i.e. needs
for stratification or identification of sensitive subpopulations), and prioritization of research
needs. The principle drawback of this approach isits computational intensity. A key challenge
for this method is the disaggregation of input data into separate variable and uncertain
components.
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Figure 21. Rank correlations of LADD with model input uncertainties as afunction of the
mean LADD for the different individuals in the population: Increased Uncertainty Case.

The selection of sample size in the two-dimensional approach poses a unigque challenge.
The number of samples obtained for the frequency distributions representing variability depend
on the sample size m, whereas the number of samples obtained for probability distributions (i.e.,
uncertainty in exposure for a given population fractile, and uncertainty in population fractile for
agiven exposure level) depend directly on the uncertainty sample size n. However, interactions
among variabilities and uncertainties together influence the results. Thisistruein the cases
where uncertainties are statistically independent from one individual to another. Thus, as
illustrated in Figure 4, the rank ordering of individuals for any single estimate of the variability
frequency distributions depends on the realized samples from both the variability and frequency
inputs. Thisinteraction suggests that the sample sizes for the two dimensions should be
comparable.

Although the sampl e size of the estimated distributions for the uncertainty in population
fractile associated with a given exposure level depends directly on the uncertainty sample size,
the resolution of the fractile estimates depends on the variability sasmple size. Thus, if estimates
of uncertainty in the fractile distributions are the key objective, it may be desirable to set the
variability sample size to be larger than the uncertainty sample size.

The hypothetical case study hasillustrated several ways of interpreting modeling results.
Both population and individual descriptors of exposure are possible with this approach. For
example, population questions often focus on the proportion of the population subject to
exposure at or above agiven level. Asdescribed previously, traditional approachesto Monte
Carlo ssmulation do not properly answer this question, except in the rare cases when
uncertainties are not important. When uncertainties do matter, it is necessary to provide an
indication of the confidence associated with any estimate of the fractile of the population with an
exposure less than or equal to some value.

The implications of the uncertainties regarding variability will depend on the specific
problem. If thereis, say, a 95 percent probability that a 95 percent of the population has
exposures less than any level of concern, then regulatory action may not be required. If,
however, there is a 95 percent probability that 10 percent of the population faces an unacceptably
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high exposure from a health risk standpoint, then regulatory action may be warranted or
necessary. These examples represent extreme cases in which decisions about whether regulatory
action are needed may be unambiguously clear even in the face of uncertainties. However, there
may be cases in which the range of uncertainties encompasses an exposure level of concern. In
such cases, additional efforts to obtain better data, and thus to reduce the uncertainties, may be
warranted. In thisregard, the types of analyses presented in Section 5.3.5 can be performed to
identify priorities for additional research and study.

A key advantage of the two-dimensional simulation approach is the proper
characterizations of interactions between uncertainty and variability in an assessment. This
guantitative approach permits the implications of uncertainty and variability to be concisely
summarized in graphical form, as discussed in Section 5.3.4.3. In the context of EPA
assessments, such a summary would be consistent with the spirit of the Habicht memo.

While the benefits of the two-dimensional approach to Monte Carlo simulation have been
illustrated, a critical issue is whether data are available or can be devel oped to support such
analyses. The answer should be yes, because it is critically important in any type of survey or
measurement to quantitatively understand and characterize the precision and accuracy of the
techniques. If thistype of information is available, asit should be, then it is possible to
disaggregate the effects of variability and uncertainty, as previously discussed. If such dataare
not available, then the characterizations of uncertainty and variability may haveto rely, at least
initially, on expert judgments regarding subjective probability distributions. It isimportant to
emphasize that subjective assessments can be very useful in helping to identify future data
gathering and research priorities, even if such studies are problematic from a regulatory
perspective. However, defensible approaches to expert elicitation are possible and can be (and
have been) employed in the context of EPA studies.
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6.0 DISCUSSION

The previous section has focused on atechnical discussion of issues specific to the
analysis of variability and uncertainty in exposure assessment. This section addresses
ingtitutional issues regarding needs and means for uncertainty analysis within EPA.

6.1 Educational Needs

Although there are many motivating forces for performing uncertainty analyses within
EPA, these have not been sufficient to motivate the use of quantitative approaches to uncertainty
analysis even in many areas where such an approach iswarranted. Many believe that uncertainty
analysis poses an additional drain on scarce resources of time. While uncertainty analysis does
require an initial up-front investment in terms of effort to characterize uncertainties in model
inputs and evaluate the results of probabilistic simulations, uncertainty analysis can reduce the
overal timeinvolved in an analysis by helping to identify and prioritize key uncertainties. This
information can then be used to focus project resources on refining the analysis as necessary,
resulting in potentially net savings of time and other resources.

However, more common criticisms to quantitative uncertainty analysis, and resistance to
it on the part of some, are often based on alack of understanding about what uncertainty analysis
is, how it should be applied, and how it should be interpreted. Examples of misconceptions are
found even in EPA guidance documents, as discussed in Section 2.1.5.

To facilitate the diffusion of quantitative uncertainty analysis within EPA, it is necessary
to convey theory and examples regarding the fundamentals to those analysts who would be
involved in such analyses. Furthermore, decision-makers who would be required to interpret
such analyses would also require a grounding in the decision analytical aspects of uncertainty.
These needs could be met through such means as short courses in fundamentals, as well as
workshops in problem-specific areas (e.g., exposure assessment, benefit/cost analysis). Because
methods for quantitative approaches to evaluating uncertainty and variability are evolving, an
iterative approach to information exchange may be required. Thiswould be facilitated by
periodic updating of short courses, or the development of more advanced courses or workshops.

6.2 Data Needs

As noted previously, quantitative uncertainty analysis can be used to prioritize data
collection. In addition, Monte Carlo technigues can be used to help design surveys. For
example, questions about how many data points are needed for a given statistical precision can
be evaluated using Monte Carlo simulation or related techniques.

While uncertainty analysis techniques can help prioritize and design data collection
efforts, they also require information to characterize uncertainties. Quantitative uncertainty
analysis may involve simulation of uncertainty in quantities that are directly measured, or
estimation of uncertainty in quantities calculated in amodel as afunction of uncertain inputs.
Some typical data needs might include paired data sets for quantities that are statistically
dependent, sufficient and representative data to characterize distributions, quantitative
characterization of errorsin measurement technigues, and data unique to specific problems.

In reality, such data are not always available. In such cases, a number of techniques
previously discussed may be employed to evaluate alternative hypotheses or assumptions
regarding uncertainties. Critics of quantitative uncertainty analysis often characterize such
efforts as "making up data." However, it is more appropriate and defensible to make a good faith
effort to characterize what is known about uncertainties, even if some or al of the effort involves
professional judgment, than to completely side-step and ignore uncertainties in a point-estimate
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analysis. Furthermore, what many critics of Monte Carlo techniques fail to either appreciate or
acknowledge is the considerable amount of judgment that enters into the selection of single
numbers for quantities in a deterministic analysis.

Currently, many efforts at dealing with uncertainty in EPA contexts are based on a post-
hoc qualitative laundry-list approach to enumerating potential sources of uncertainty, without
any quantitative evaluation. Inthe more rigorous approach to dealing with uncertainties
guantitatively, uncertainty needsto be an integral part of an analysis. Collection of information
and data to support an uncertainty analysis should begin early in problem analysis. Identification
of data needs and evaluation of data gapsisan integral part of such an effort. Approachesto
dealing with data gaps include sensitivity analysis and/or uncertainty analysis based on
professional judgments. While such judgments may not always provide a comfortable basis for
rule-making, they can be a useful basis for identifying data collection priorities.

As pressure mounts to do more quantitative uncertainty analysis at EPA and elsewhere,
more attention to the development of appropriate data sets will be necessary. The focus for data
collection efforts can be identified and prioritized based on preliminary screening studies of
uncertainties. Thus, uncertainty analysis provides a useful tool for iteratively identifying the data
needs required to support future assessments.

6.3 Other Needs

In order to bolster the credibility and facility of quantitative approaches to uncertainty
analysis within EPA, a number of ingredients are required. These include exemplary case
studies which demonstrate methodological approaches to uncertainty analysisin various problem
domains, software tools that facilitate the types of analyses that are useful in specific problem
domains, peer review of uncertainty analyses, and handbook-type publications specific to the
needs of EPA programs.

While training in uncertainty analysis can be useful for many analysts, the devel opment
of exemplary case studies featuring analyses of real problems can provide perhaps a more
meaningful introduction to methodology and the types of insights obtained from it. For example,
it would be useful to develop a detailed exposure assessment case study for an actual problem in
which variability and uncertainty are evaluated using the two-dimensional approach to Monte
Carlo simulation.

One limitation to the use of quantitative uncertainty analysisisthe availability of user-
friendly software tools with the capabilities required for specific applications. A number of
commercialy available software tools are available, including @risk , Crystal Ball, and Demos,
and all of these are used to some extent either at EPA or by EPA contractors. Furthermore, a
number of software tools developed within EPA are available, with the most applicable one
being MOUSE. For many applications, the capabilities of these software tools may be sufficient.
In some cases, problem-specific modeling needs may motivate the devel opment of new software
tools. For example, if two-dimensional simulation of variability and uncertainty were to become
an essential part of exposure assessment modeling, then a generalizable modeling environment
with such a capability would be useful.

The use of probabilistic approaches to uncertainty analysisisin itself afield of study
which transcends specific problem domains. Thus, the appropriate peer review of uncertainty
analyses may pose a challenge. Scientists trained in a specific problem domain who may be
eminent expertsin a specific field may nonetheless not be optimally suited to reviewing and
commenting on a quantitative uncertainty analysis featuring Monte Carlo techniques. Thus,
attention should be given to the selection of review panels that include persons with appropriate
background relevant to uncertainty analysis.
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Methodological handbooks dealing with uncertainty analysis and issues specific to
environmental problem domains would prove to be useful to EPA analysts. Such publications
would summarize approaches for dealing with various types of problemsin uncertainty analysis.
However, because the approaches to characterizing uncertainties depend on the type of analysis
being done, the level of detail, and the availability of data, among other factors, the development
of any strict and binding guidelines should be avoided.

6.4  Separating Analysisand Decision-Making

The use of quantitative uncertainty analysis promotes the separation of assessment and
decision-making functions. Uncertainty analyses performed to support decision-making do not
have to be biased based on policy directives, such as regarding the use of conservative
assumptionsin some model parameters but not others, or by focusing on only certain
characteristics of afrequency or uncertainty distribution to the exclusion of others. Instead,
uncertainty analysis permits an evaluation of the full range of possible outcomes, leaving to a
decision-maker the policy questions of how to interpret scientific information in the face of
potentially conflicting economic or socia objectives. Furthermore, the estimates of uncertainty
reflect the state of the underlying science better than point estimates, and concisely convey to a
decision maker information about the degree of confidence that can be placed in any point
estimate. It isthe risk manager, not the analyst, who ultimately should make decisions regarding
what point estimatesto use. Thus, the basis of the decision is more explicit than one based on a
point-estimate analysis with buried policy assumptions.
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7.0 CONCLUSIONS

Failure to fully consider the implications of uncertaintiesin environmental problems
often yields the wrong answer and gives decision-makers a deceptive and incorrect sense of
confidence about numbers. To properly characterize uncertainties in environmental analyses,
results should be presented in the form of distributions wherever possible. Although quantitative
analysis requires more critical attention to assumptions and inputs to an analysis, theresultisa
more defensible and meaningful estimate of both the range and likelihood of possible outcomes.
Uncertainty analysis also involves a dynamic process of screening and iteration, in which
priorities for research and data collection can be evaluated quantitatively. In thisregard,
uncertainty analysis provides a quantitative basis for caveating the results of a study, and for
simultaneously identifying ways to improve the study in the future.

There isincreasing discussion within EPA regarding the need for more rigorous
approaches to dealing with uncertainties in analyses, and more complete communication of
uncertainties to decision-makers. Such an approach is desirable, because it more explicitly
separates the role of the analyst from that of the decision-maker, and provides the decision maker
with the information required to evaluate the degree of confidence that can be placed in the
results of an assessment.

While quantitative approaches to uncertainty analysis do not in themselves resolve
debates, they do help focus them on both the concepts and quantities that really matter. Inthis
report, an approach to evaluating the implications of variability and uncertainty in exposure
assessments was devel oped based on two-dimensional Monte Carlo simulation. Uncertainty isa
lack of knowledge of some type, whereas variability isareal differencein values among
different individualsin a population. These important conceptual differences are muddied in
traditional approaches to exposure assessment. The two-dimensional approach was applied to an
example case study featuring a hypothetical exposure assessment. The results of the case study
illustrated the benefits to separately simulating variability and uncertainty in terms of technical
rigor, communication of results to decision-makers, identification of the characteristics of
sensitive subpopulations, and identification of data collection needs.

Quantitative approaches to uncertainty analysis generate insights that help both analysts
and decision makers ask the right questions about environmental problems.
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80 NOMENCLATURE

BW = Body weight, kg

C = Concentration, mg/l

ED = Exposure Duration, days

IR = Intake Rate, |/day

LADD = Lifetime Average Daily Dose, mg/kg-day

LT = Lifetime, days

m = Sample size for simulation of variabilities

M = Number of quantitiesin asimulation which are variabilities

n = Sample size for simulation of uncertainties

N = Number of quantities in a simulation which are uncertainties

U = vector of uncertain quantities{U,, U, U3, ..., Uy}

uj (or Uj) = avector (or matrix) of realizations (samples) for the uncertain quantities
U, for aspecificindividual i.

Ui j = one realization (or sample) j for the uncertainty quantity U;

\% = vector of variable (empirical) quantities{V,,V2, V3, ..., Vj}

vj (or V) = vector of particular vaues[vyj, v2,i, V3jj, ..., Vj,i] of V

for aspecific individual, where there are j (or m) variable quantities and
one sample of each for an individual i.
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