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ABSTRACT
We review some practical aspects of measuring the amplitude of variability in ‘red noise’
light curves typical of those from active galactic nuclei (AGN). The quantities commonly
used to estimate the variability amplitude in AGN light curves, such as the fractional rms
variability amplitude, Fvar, and excess variance, σ 2

XS, are examined. Their statistical properties,
relationship to the power spectrum and uses for investigating the nature of the variability
processes are discussed. We demonstrate that σ 2

XS (or similarly Fvar) shows large changes from
one part of the light curve to the next, even when the variability is produced by a stationary
process. This limits the usefulness of these estimators for quantifying differences in variability
amplitude between different sources or from epoch to epoch in one source. Some examples
of the expected scatter in the variance are tabulated for various typical power spectral shapes,
based on Monte Carlo simulations. The excess variance can be useful for comparing the
variability amplitudes of light curves in different energy bands from the same observation.
Monte Carlo simulations are used to derive a description of the uncertainty in the amplitude
expected between different energy bands (due to measurement errors). Finally, these estimators
are used to demonstrate some variability properties of the bright Seyfert 1 galaxy Markarian
766. The source is found to show a strong, linear correlation between rms amplitude and flux,
and to show significant spectral variability.

Key words: methods: data analysis – galaxies: active – galaxies: individual: Mrk 766 – galaxies:
Seyfert – X-rays: galaxies.

1 I N T RO D U C T I O N

One of the defining characteristics of active galactic nuclei (AGN) is
that their X-ray emission is variable. X-ray light curves from Seyfert
1 galaxies show unpredictable and seemingly aperiodic variability
(Lawrence et al. 1987; McHardy 1989). Such random variability is
often referred to as noise, meaning that it is the result of a stochastic,
as opposed to deterministic, process. In this context the ‘noise’ is
intrinsic to the source and not a result of measurement errors (such
as Poisson noise), i.e. the signal itself is the output of a noise process.

One of the most common tools for examining AGN variability
(and noise processes in general) is the fluctuation power spectral
density (PSD), which represents the amount of variability power
(mean of the squared amplitude) as a function of temporal frequency
(time-scale−1). The high-frequency PSDs of Seyferts are usually
well represented by power laws over a broad range of frequencies

�E-mail: sav2@star.le.ac.uk

[P( f ) ∝ f −α , where P( f ) is the power at frequency f ] with slopes
α = 1–2 (Green, McHardy & Lehto 1993; Lawrence & Papadakis
1993; Edelson & Nandra 1999; Uttley, McHardy & Papadakis 2002;
Markowitz et al. 2003; Vaughan, Fabian & Nandra 2003). Such a
spectrum, with a slope α � 1 is usually called ‘red noise’ (for an
introduction to red noise see Press 1978).

If Seyfert 1 light curves are viewed as the product of a stochastic
(in this case red noise) process then the specific details of each in-
dividual light curve provide little physical insight. Each light curve
is only one realization of the underlying stochastic process, i.e. it is
one of the ensemble of random light curves that might be generated
by the process. Each new realization will look different and these
changes are simply statistical fluctuations inherent in any stochas-
tic process (as opposed to changes in the nature of the process it-
self). Therefore, one should expect two light curves to have different
characteristics (such as mean and variance) even if they are realiza-
tions of the same process. On the other hand, data from determin-
istic processes, for example the energy spectrum of a non-varying
source or the light curve of a strictly periodic source (such as a
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pulsar), should be repeatable within the limits set by the measure-
ment errors.

It is the average properties of the variability (such as the PSD) that
often provide most insight into the driving process. For example, the
PSD of any real red noise process cannot continue as a steep power
law indefinitely to longer time-scales or the integrated variability
power would diverge. Therefore, the PSDs of AGN variability must
break to a flatter index at low frequencies; the position of such
a break would represent a characteristic variability time-scale and
may yield information concerning the underlying driving process.
Recent timing studies have indeed found evidence that the steep
power-law PSDs of Seyfert 1s show a flattening, or turnover, at low
frequencies (Edelson & Nandra 1999; Uttley et al. 2002; Markowitz
et al. 2003).

In many cases, however, the data are not adequate for PSD anal-
ysis. In these situations the variability is usually described in terms
of the statistical moments (e.g. the sample mean and variance, etc.).
However, due to the stochastic nature of red noise variability there
is a large degree of randomness associated with these quantities. In
practice this means that it is difficult to assign meaningful errors to
the variance. This in turn makes it difficult to quantitatively com-
pare variances, say from repeated observations of the same source
(and thereby to test whether the variability is stationary). Such an
analysis might be desirable; it could in principle reveal changes in
the ‘state’ of the source if its variability properties were found to
evolve with time. This paper discusses this and related problems
that are encountered when examining the variability properties of
AGN. Particular emphasis is placed on the mathematical proper-
ties and implications of the inherent randomness in the variability.
The mathematical details are well understood from the general the-
ory of stochastic processes (e.g. Priestley 1981 for spectral analy-
sis) but some of the practical consequences for AGN observations
have not been discussed in detail. On the basis of simulated data
some recipes are developed that may serve as a useful guide for
observers wishing make quantitative use of their variability anal-
ysis without recourse to extensive Monte Carlo simulations, for
example.

The paper is organized as follows. Section 2 defines the estimators
to be discussed (namely the periodogram and the variance). Simu-
lated data are used to illustrate various aspects of these estimators;
Section 3 describes methods for producing artificial red noise time
series. Section 4 discusses the stationarity of time series. Sections 5
and 6 discuss two sources of uncertainty associated with measuring
variability amplitudes, the first due to the stochastic nature of the
variability and the second due to flux measurement errors. Section 7
gives an example using a real XMM–Newton observation of Mrk
766. Finally, a brief discussion of these results is given in Section 8
and the conclusions are summarized in Section 9.

2 E S T I M AT I N G T H E P OW E R
S P E C T R A L D E N S I T Y

The PSD defines the amount of variability ‘power’ as a function of
temporal frequency. It is estimated by calculating the periodogram1

(Priestley 1981; Bloomfield 2000).

1 Following Priestley (1981) the term ‘periodogram’ is used for the discrete
function P( f j), which is an estimator of the continuous PSD P( f ). The
periodogram is therefore specific to each realization of the process, whereas
the PSD is representative of the true, underlying process.

For an evenly sampled light curve (with a sampling period�T) the
periodogram is the modulus-squared of the discrete Fourier trans-
form (DFT) of the data (Press et al. 1996). For a light curve com-
prising a series of fluxes xi measured at discrete times t i (i = 1,
2, . . . , N ):

|DFT( f j )|2 =
∣∣∣∣∣

N∑
i=1

xi e
2πi f j ti

∣∣∣∣∣
2

=
[

N∑
i=1

xi cos(2π f j ti )

]2

+
[

N∑
i=1

xi sin(2π f j ti )

]2

,

(1)

at N/2 evenly spaced frequencies f j = j/N�T (where j = 1, 2, . . . ,
N/2), fN/2 = 1/2�T is the Nyquist frequency, f Nyq. Note that it
is customary to subtract the mean flux from the light curve before
calculating the DFT. This eliminates the zero-frequency power. The
periodogram, P( f j ), is then calculated by choosing an appropriate
normalization A (see Appendix A for more on periodogram normal-
izations). For example,

P( f j ) = A|DFT( f j )|2 = 2�T

N
|DFT( f j )|2. (2)

If the time series is a photon counting signal such as normally en-
countered in X-ray astronomy, and is binned into intervals of �T , the
effect of Poisson noise is to add an approximately constant amount
of power to the periodogram at all frequencies. With the above nor-
malization this constant Poisson noise level is 2x̄ (assuming the light
curve is not background subtracted).

2.1 Statistical properties of the periodogram

The periodogram of a noise process, if measured from a single time
series, shows a great deal of scatter around the underlying PSD. In
particular, the periodogram at a given frequency [P(f )] is scattered
around the PSD [P( f )] following a χ 2 distribution with two degrees
of freedom (van der Klis 1989):

P( f ) = P( f )χ 2
2

/
2, (3)

where χ 2
2 is a random variable distributed as χ 2 with two degrees

of freedom, i.e. an exponential distribution with a mean and vari-
ance of 2 and 4, respectively. The periodogram is distributed in
this way because the real and imaginary parts of the DFT are nor-
mally distributed for a stochastic process2 (Jenkins & Watts 1968;
Section 6.2 of Priestley 1981). The expectation value of the peri-
odogram is equal to the PSD but its standard deviation is 100 per
cent, leading to the large scatter in the periodogram (see Fig. 1). See
Leahy et al. (1983), van der Klis (1989), Papadakis & Lawrence
(1993), Timmer & König (1995) and Stella et al. (1997) for a fur-
ther discussion of this point.

When applied to real data the periodogram is an inconsistent
estimator of the PSD, meaning that the scatter in the periodogram
does not decrease as the number of data points in the light curve
increases (Jenkins & Watts 1968). In order to reduce this scatter
the periodogram must be smoothed (averaged) in some fashion. As
the number of data points per bin increases (either by binning over
frequencies or averaging over many data segments) the scatter in
the binned periodogram decreases, i.e. the averaged periodogram is

2 The DFT at the Nyquist frequency is always real when N is even so the
periodogram at this frequency is distributed as χ2

1, i.e. with one degree of
freedom.
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Properties of X-ray light curves from AGN 1273

Figure 1. Simulated time series (left) and their periodograms (right). The
upper panel shows a ‘flicker noise’ time series that has an f −1 PSD. The
lower panel shows a ‘random walk’ time series with an f −2 PSD. Note
the large scatter in the periodogram (dots) around the underlying PSD (solid
line). It is clear that the time series with the steeper PSD shows more power
in long-term variability while the time series with the flatter PSD shows
relatively more power in short-term variability (flickering). The two series
were generated using the same random number sequence.

a consistent estimator of the PSD (see Papadakis & Lawrence 1993;
van der Klis 1997 for more on binned periodogram estimates). A
further point is that periodograms measured from finite data tend
to be biased by windowing effects which further complicate their
interpretation (van der Klis 1989; Papadakis & Lawrence 1993;
Uttley et al. 2002 and see below).

2.2 Integrated power

The integral of the PSD between two frequencies ( f1 and f2) yields
the contribution to the expectation value of the (‘true’) variance
due to variations between the corresponding time-scales (1/f1 and
1/f 2). This result follows from Parseval’s theorem (see e.g. van der
Klis 1989)

〈S2〉 =
∫ f2

f1

P( f ) d f. (4)

Correspondingly, for a discrete time series the integrated peri-
odogram yields the observed variance for that particular realization,

S2 =
N/2∑
j=1

P( f j )� f, (5)

where � f is the frequency resolution of the DFT (� f = 1/N�T ).
The total variance of a real light curve is equal to its periodogram
integrated over the frequency range f1 = 1/N�T to f Nyq = 1/2�T .

The sample variance (which will differ from observation to ob-
servation) is given by

S2 = 1

N − 1

N∑
i=1

(xi − x̄)2, (6)

where x̄ is the arithmetic mean of xi. In the limit of large N these
two variance estimates are identical. The normalized variance3 is
simply S2/x̄2.

3 In AGN studies normalized quantities are often used in preference to abso-
lute quantities as they are independent of the flux of a specific source. This

3 S I M U L AT I N G R E D N O I S E L I G H T C U RV E S

3.1 Algorithms

In order to elucidate the properties of the variance of red noise data,
random light curves were generated from power-law PSDs similar
to those of AGN. Fig. 1 shows two artificial time series and their
periodograms. It is worth reiterating that the large scatter in the
periodograms is an intrinsic property of stochastic processes – it
does not depend on the number of data points and is not related to
Poisson noise in the data.

These artificial time series were produced using the algorithm of
Timmer & König (1995). This generates random time series with ar-
bitrary broad-band PSD, correctly accounting for the intrinsic scatter
in the powers (i.e. equation 3). Other methods of generating random
light curves include the related ‘summing of sines’ method (Done
et al. 1992). Note that it is not correct to randomize only the phases
of the component sine functions, their amplitudes must also be ran-
domized. Otherwise this method does not account for this intrinsic
scatter in the powers. Shot-noise models can produce red noise time
series with certain PSD shapes (see Lehto 1989). There also exist
various mathematical tricks for producing data with specific power-
law PSD slopes. Data with an α = 1 PSD (often called ‘flicker
noise’) can be generated using the half-integral method outlined in
Press (1978), while α = 2 (‘random walk’) data can be generated
using a first-order autoregressive process (AR[1]), essentially a run-
ning sum of Gaussian deviates (see Deeming 1970; Scargle 1981,
for more on such methods). The method of Timmer & König (1995)
is used below as this can generate time series from an arbitrary PSD
and is computationally efficient.

3.2 Simulating ‘realistic’ data

Some caution should be applied when using these routines to pro-
duce artificial time series. As mentioned briefly in the previous sec-
tion, periodograms measured from real data tend to be biased by
windowing effects. For uninterrupted but finite observations data of
red noise processes the most important of these effects is ‘red noise
leak’ – the transfer of power from low to high frequencies by the
lobes of the window function (see, e.g., Deeter & Boynton 1982;
van der Klis 1997). If there is significant power at frequencies below
the lowest frequency probed by the periodogram (i.e. on time-scales
longer than the length of the observation) this can give rise to slow
rising or falling trends across the light curve. These trends contribute
to the variance of the light curve. Thus variability power ‘leaks’ into
the data from frequencies below the observed frequency bandpass.
The degree to which this occurs, and the resultant bias on the mea-
sured periodogram, depend on the shape of the underlying PSD and
the length of the observation (Papadakis & Lawrence 1995; Uttley
et al. 2002). For flat PSD slopes (α < 1.5) the amount of leakage
from low frequencies is usually negligible.

Since AGN light curves usually contain significant power on time-
scales longer than those probed (see Section 4.1) the effects of red
noise leak must be included in simulations of AGN light curves.
This can be achieved by using the Timmer & König (1995) al-
gorithm to generate a long light curve from a PSD that extends
to very low frequencies and then using a light-curve segment of
the required length. Data simulated in such a fashion will include

means that, in principle, normalized amplitudes can be used to compare
sources with different fluxes.
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power on time-scales much longer than covered in the short segment.
The effects of measurement errors (e.g. Poisson noise) can be in-
cluded in the simulations using standard techniques (e.g. Press et al.
1996).

4 S TAT I O NA R I T Y

A stationary process is one for which the statistical properties (such
as the mean, variance, etc.) do not depend on time. Fig. 2 shows
an artificial red noise time series together with its mean and vari-
ance measured every 20 data points. The simulation was produced
from a single, well-defined PSD (which did not vary). The process
is therefore stationary. It would have been reasonable to expect the
resulting time series (a realization of the process) to appear sta-
tionary. This is not the case, however; both the mean and variance

Figure 2. Panel 1: simulated red noise time series (with an f −2 PSD)
with N = 2800 points. Panel 2 and 3: mean and variance measured from
segments of 20 points (calculated using equation 6). The variances follow
a distribution of the form shown in the bottom panel of Fig. 3. (Note that
the variance is plotted on a logarithmic scale.) Panel 4: averaged variance
measured by binning the individual variances into groups of 20 consecutive
estimates. The errors are the standard error on the mean (equation 4.14 of
Bevington & Robinson 1992). These averaged variances are consistent with
staying constant. In other words, although the instantaneous value of the
variance fluctuates, its expectation value is consistent with being constant

(i.e. a stationary process). Panel 5: fractional rms amplitude (
√

S2/x̄2)
measured from segments of 20 points. Panel 6: averaged fractional rms
amplitude measured by binning the individual amplitudes into groups of 20.
The fractional amplitude is anticorrelated with the light curve because 〈S2〉
is constant but Fvar is normalized by the light-curve flux.

change with time (panels 2 and 3). This has nothing whatsoever to
do with measurement errors – the simulation has zero errors. This
simulation demonstrates that, when dealing with red noise, fluctu-
ations in variance are not sufficient to claim the variability process
is non-stationary.

As the purpose of time series analysis is to gain insight into the
process, not the details of any specific realization, a more robust
approach is needed to determine whether these data were produced
by a time-stationary process or a non-stationary process. It would
be more insightful to consider whether the expectation values of
the characteristics (such as the variance) are time-variable. The ex-
pectation values should be representative of the properties of the
underlying process, not just any one realization. See Section 1.3 of
Bendat & Piersol (1986) for a discussion of this point.

4.1 Weak non-stationarity

For a process with a steep red noise PSD (α � 1), the integrated
periodogram will diverge as f → 0. This means that (following
equation 4) the variance of a red noise time series with a steep PSD
will diverge with time. In this case there is no well-defined mean;
Press & Rybicki (1997) describe this form of variability as ‘weakly
non-stationary.’ For time series with power spectra flatter than this
the variance converges as f → 0, thus for a white noise process with
a flat PSD (α = 0), the variance will converge as the observation
length increases, and there will be a well-defined mean on long
time-scales.

Of course, for any real process the PSD must eventually flatten
such that the power does not diverge (i.e. α < 1 on sufficiently long
time-scales). Thus, weak non-stationarity is entirely due to observa-
tions sampling only the steep part of the PSD of a source. However,
in AGN this flattening occurs on time-scales much longer than those
probed by typical observations. For instance, XMM–Newton obser-
vations of AGN typically last for ∼few × 104 s, whereas in many
objects the PSD is steep until >105 s and in some cases probably
much longer (Edelson & Nandra 1999; Uttley et al. 2002; Markowitz
et al. 2003). Therefore, on the time-scales relevant for most
X-ray observations, AGN light curves should be considered weakly
non-stationary.

4.2 Stochasticity

Fluctuations in the statistical moments (such as the mean and the
variance) of a light curve are intrinsic to red noise processes. There-
fore, even in the absence of measurement errors (e.g. no Poisson
noise) the means and variances of two light curves produced by
exactly the same process can be significantly different. This can be
seen in Fig. 2 (panels 2 and 3), where each 20-point segment of the
light curve shows a different mean and variance. These random fluc-
tuations in variance are, however, governed by the normal statistical
rules of noise processes and can thus be understood in a statistical
sense.

Any given series is only one realization of the processes and its
periodogram will show the scatter predicted by equation (3). The
integrated periodogram (which gives the variance; equation 5) will
therefore be randomly scattered around the true value for the PSD
of the process. The variance in a specific time series is given by

S2 = 1

N�T

N/2∑
i=1

P( fi )χ
2
2

/
2, (7)
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Properties of X-ray light curves from AGN 1275

i.e. the variance of a given realization is a sum of χ 2
2 distributions

weighted by the PSD.4 (This assumes biases such as red noise leak
are not significant. If this is not true then these biases will further
distort the distribution of variances.) It is the expectation value of the
variance that is representative of the integrated power in the PSD,
and thus the average amplitude of the variability process (equa-
tion 4). Thus, while the expectation value of the variance is equal
to the integrated PSD, each realization (time series) of the same
process will show a different variance even if the parent variability
process is stationary. This is particularly important for steep PSD
time series (i.e. weakly non-stationary data) since the variance does
not converge as more data are collected. Only if the time series
spans time-scales on which the integrated power converges at low
frequencies (i.e. α < 1) will the variance converge as the length of
the time series increases.

These points are illustrated by Fig. 3, which shows the distribu-
tions of variances in random time series with three different PSD
slopes (α = 0, 1, 2). This plot was produced by generating 50 000
random time series (each 100 points long) for each PSD slope and
measuring the variance of each one. The scatter in the variance is
entirely due to random fluctuations between different realizations
because the PSD normalization was kept fixed and no instrumental
noise was added. The shape of the distribution of variances can be
seen to depend on the PSD slope.

Consider a white noise process (α = 0, i.e. P( f ) = constant).
The periodogram of each realization is randomly scattered around
its flat PSD. Following equation (7) the variance is simply the sum
of the N/2 χ 2

2-distributed powers in the periodogram, and these are
evenly weighted (PSD is constant). The sum of N/2 χ2

2 distributions
follows a χ 2

N distribution. This tends to a normal distribution as N
increases. Thus the variance of a white noise process is approxi-
mately normally distributed (as can be seen in Fig. 3) and converges
as N increases. The fractional standard deviation of χ2

N is given by√
2/N , so for the 100-point light curves used the (1σ ) fractional

width of the variance distribution is ≈14.1 per cent, in agreement
with the simulations (Fig. 3, top panel).

For time series with steeper PSDs the lower-frequency peri-
odogram points contribute more strongly to the sum than the higher-
frequency points. The variance of such a time series is therefore
dominated by a few low-frequency powers5 and thus resembles a
χ2

ν distribution with low ‘effective degrees of freedom’. The distri-
bution of variances in red noise data is dependent on the underlying
PSD and is, in general, non-Gaussian (Fig. 3). The fractional stan-
dard deviation of χ2

ν is
√

2/ν, which tends to unity as the PSD
becomes steeper (i.e. as effective ν → 2). Thus the largest fluctua-
tions in variance (up to a limit of ∼100 per cent rms) are expected
to result from very steep PSD slopes.

5 I N T R I N S I C S C AT T E R I N VA R I A N C E

As discussed above, when examining AGN light curves one should
expect random changes in the mean and variance with time (between
segments of a long observation or between observations taken at
different epochs). This is true even if the measurement errors are
zero, and is independent of the number of data points used (due to

4 As noted earlier, the periodogram at the Nyquist frequency is actually
distributed as χ2

1 for even N. However, for large N this will make a negligible
difference to the sum (cf. equation 2.9 of van der Klis 1989).
5 The windowing effects mentioned above mean that fluctuations at powers
above and below the frequency range of the periodogram may also affect the
variance.

Figure 3. Distribution of variances in time series with three different PSD
shapes: f 0 (top), f −1 (middle) and f −2 (bottom). Each distribution is derived
from 50 000 realizations. As the PSD gets steeper the distribution of variances
becomes less Gaussian and more like a χ2 distribution with a low effective
degrees of freedom.

the weak non-stationarity). However, it is also possible that the un-
derlying process responsible for the variability itself changes with
time (e.g. the PSD changes), in which case the variability is non-
stationary in a more meaningful sense – ‘strongly non-stationary’.
Such changes in the variability process could provide an insight into
the changing physical conditions in the nuclear regions. On the other
hand, the random changes expected for a red noise process yield no
such physical insight. The question thus arises: how does one tell,
from a set of time series of the same source, whether they were
produced by a strongly non-stationary process? In other words, is it
possible to differentiate between differences in variance caused by
real changes in the variability process (physical changes in the sys-
tem) and random fluctuations expected from red noise (the random
nature of the process)?

If the process responsible for the variability observed in a given
source is stationary then its PSD is constant in time. The expectation
value of the absolute (unnormalized) variance will therefore be the
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same from epoch to epoch, but the individual variance estimates
will fluctuate as discussed in Section 4.2. This makes it difficult
to judge, from just the variances of two light curves taken at two
epochs, whether they were produced by a stationary process. Given
sufficient data it is, however, possible to test whether the expectation
values of the variance (estimated from an ensemble of light curves)
at two epochs are consistent with a stationary process.

5.1 Comparing PSDs

The methods most frequently employed involve comparing the
PSDs (estimated from the binned periodogram) at different epochs.
If the PSDs show significant differences (at a given confidence level)
the variability process can be said to be strongly non-stationary. As
an example of this, the PSDs of X-ray binaries evolve with time, and
the way in which the variability properties evolve provides a great
deal of information on the detailed workings of these systems (see,
e.g., Belloni & Hasinger 1990; Uttley & McHardy 2001; Belloni,
Psaltis & van der Klis 2002; Pottschmidt et al. 2003).

Papadakis & Lawrence (1995) suggested a method suitable for
testing whether large AGN data sets display evidence for strongly
non-stationary variability. Again this method works by comparing
the PSDs from different time intervals, in this case by determin-
ing whether the differences between two periodograms are consis-
tent with the scatter expected based on equation (3). In particular,
they define a statistic s based on the ratio of two normalized pe-
riodograms. If s deviates significantly from its expected value for
stationary data (〈s〉 = 0) then the hypothesis that the data are sta-
tionary can be rejected (at some confidence level).

5.2 Comparing variances

A different approach is to compare variances Si derived from M
observations of the same source (either segments of one long ob-
servation or separate short observations). In order to test whether
the Si differ significantly (i.e. more than expected for a red noise
process) a measure of the expected scatter is required. This error
could be obtained directly from the data (by measuring the standard
deviation of multiple estimates) or through simulations (based on
an assumed PSD shape).6

5.2.1 Empirical error on variance

An empirical estimate of the mean and standard deviation of the
variance can be made given M non-overlapping data segments. The
M segments each yield an estimate of the variance,7 Si. Each of
these is an independent variable of (in general) unknown but iden-
tical distribution (unless the process is strongly non-stationary).
The central limit theorem dictates that the sum of these will be-
come normally distributed as M increases. Therefore, by averaging
the M variance estimates it is possible to produce an averaged
variance (〈S2〉) and assign an error bar in the usual fashion (e.g.

6 It is assumed that the data segments being compared have identical sampling
(same bin size and observation length). Every effort should be made to
ensure this is the case, e.g. by clipping the segments to the same length.
The variances will then be calculated over the same range of time-scale
(frequencies). As the variance can increase rapidly with time-scale in red
noise data this is most important for steep PSD data such as AGN light
curves.
7 Ideally each segment should contain at least N � 20 data points in order
to yield a meaningful variance.

equation 4.14 of Bevington & Robinson 1992). This gives a robust
estimate of the variance and the standard deviation of the M vari-
ances around the mean gives an estimate of the uncertainty on the
mean variance.

If several sets of data segments are acquired it is therefore pos-
sible to compare the mean variance of each set statistically (since
each has an associated uncertainty). For example, with two long
XMM–Newton observations of the same source, taken a year apart,
one could measure the variance for each observation (by breaking
each into short segments and taking the mean variance of the seg-
ments). Thus it would be possible to test whether the variability
was stationary between the two observations. This method of esti-
mating the mean and standard deviation of the variance requires a
large amount of data; of the order of N × M = 20 × 20 = 400
data points are needed to produce a single well-determined estimate
of the mean variance and its error. A typical XMM–Newton obser-
vation of a bright Seyfert 1 galaxy (∼40 ks duration) is only likely
to yield enough data for one estimate of the mean variance. Thus
this method is suitable for testing whether the mean variance has
changed from observation to observation.

Fig. 2 (panel 4) demonstrates this empirically derived mean vari-
ance and its error bar on a long, simulated time series. These data
were produced by calculating the variances Si in bins of N = 20 data
points (panel 3) and then averaging M = 20 variances to produce
a mean variance with error bar (panel 4). These averaged variances
are consistent with a constant, as expected; fitting these data with a
constant gave χ2

ν = 0.84. Fig. 4 shows the rms amplitude is constant
with flux. These tests indicate that the integrated PSD is consistent
with being constant with time; the variance does not change signif-
icantly from epoch to epoch (or as a function of flux), as expected
for a stationary process.

5.2.2 Estimating the error on the variance through simulations

The advantage of the above method is that it requires no assumption
concerning the shape of the PSD, The drawback is that it requires a
substantial amount of data to produce a single, robust variance esti-
mate. An alternative approach is to estimate the standard deviation
of the variances Si based on simulations.

Given an assumed shape for the PSD it is possible to calculate
the distribution of variances expected for a stationary process (see
Section 4.2). Some example distributions are shown in Fig. 3, which

Figure 4. The average rms amplitude (σ =
√

S2) as a function of flux for
the simulated light curve shown in Fig. 2. The individual rms estimates were
sorted by flux and binned to M = 20 estimates per bin. Errors correspond
to the error on the mean value. The amplitude is constant with flux.
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Properties of X-ray light curves from AGN 1277

Table 1. Expected scatter in variance estimates. The 90 and 99
per cent intervals are presented in terms of ±�log(S2). (The 99 per
cent interval is given in bold.) The boundaries were calculated from
Monte Carlo simulations of light curves. The PSD was chosen to
be a broken power-law with a slope of α = 1 below the break (at a
frequency 10−3) and a slope above the break of α = 1.0, 1.5, 2.0,
2.5. The simulated data segments were chosen to be 10, 20, 50, 100,
1000 points long (the time-scale of the break in the PSD being at
1000, in arbitrary units).

Number of data points
α 10 20 50 100 1000

1.0 −0.84 −0.58 −0.40 −0.32 −0.19
−0.50 −0.36 −0.26 −0.22 −0.13
+0.33 +0.28 +0.23 +0.20 +0.15
+0.53 +0.46 +0.39 +0.35 +0.27

1.5 −0.96 −0.75 −0.62 −0.57 −0.45
−0.61 −0.50 −0.43 −0.40 −0.32
+0.39 +0.36 +0.34 +0.33 +0.28
+0.65 +0.61 +0.58 +0.57 +0.49

2.0 −1.16 −1.01 −0.93 −0.90 −0.72
−0.78 −0.71 −0.67 −0.66 −0.50
+0.46 +0.45 +0.44 +0.43 +0.36
+0.75 +0.73 +0.72 +0.72 +0.59

2.5 −1.49 −1.37 −1.31 −1.28 −0.92
−1.03 −0.98 −0.95 −0.92 −0.63
+0.52 +0.52 +0.51 +0.50 +0.40
+0.83 +0.83 +0.82 +0.80 +0.66

clearly demonstrates how the distribution depends on the slope of
the PSD. The distribution becomes more normal at flatter slopes
and more asymmetric at steep slopes. For a given PSD shape these
distributions are well defined (by equation 7) and can be computed
through Monte Carlo simulations. This makes it possible to estimate
limits within which one would expect the variance to be distributed
if the process is stationary.

The two primary factors that affect the distribution of variance
are the PSD shape and the sampling of the light curve (the length of
the data segments in the case of contiguously binned light curves).
Table 1 gives the expected confidence limits for four different PSD
shapes and five different lengths for the data segments. These val-
ues were computed by simulating one very long light curve with the
assumed PSD shape and breaking it into 1000 separate segments (of
specified length). The variance within each segment was measured
and the distribution of the 1000 variances was calculated. The 90 per
cent confidence interval was calculated by finding the fifth and 95th
percentiles of the variance distribution (in general these upper and
lower bounds will differ because the distribution is asymmetric).
The numbers given in the table are the boundaries of the 90 and
99 per cent confidence regions estimated by averaging the results
from 50 runs. The limits are given in terms of ±�log(S2) because
they are multiplicative. That is, from a particular realization the vari-
ance is expected to be scattered within some factor of the true vari-
ance (for which the absolute normalization is irrelevant). The
factors are tabulated in terms of their logarithms (since mul-
tiplicative factors in linear-space become additive offsets in
log-space).

The PSD used for the simulations was chosen to match that ex-
pected for AGN, i.e. a steep power law at high frequencies (with a
slope of α = 1.0, 1.5, 2.0, 2.5) breaking to a flatter slope (α = 1.0) at
low frequencies. The frequency of the break was fixed to be 10−3, in
other words the break time-scale was 1000 times the bin size. (The

Figure 5. Variance of the simulated data shown in Fig. 2 (panel 3) with the
90 (dotted line) and 99 per cent (dashed line) confidence intervals marked (as
calculated in Section 5.2.2). Clearly, the variances fall within these limits, as
expected for a stationary process. The solid line marks the mean variance.

absolute size of the time bins is arbitrary in the simulations. When
comparing the simulated results with real data sampled with, for
example, 25-s time resolution, the break time-scale in the simulated
PSD is thus 25 ks.)

The numbers given in the table provide an approximate prescrip-
tion for the expected scatter in the variance of a stationary process
with a red noise PSD similar to that of AGN. The simulated light
curve shown in Fig. 2 was used to demonstrate the use of this ta-
ble. In this case the PSD is know to have a slope of α = 2, and
the variances (shown in panel 3 of Fig. 2) were calculated every 20
points. Therefore, the 90 per cent interval for the expected variance
is given by log(S2)+0.45

−0.71. Taking the mean variance as the expectation
value for S2, this translates to S2 = 59.9(11.7 − 168.8). The inter-
val boundaries were calculated by converting the logarithmic value
into a linear factor and multiplying by the sample mean (assumed
to represent the true variance). This interval is shown in Fig. 5 by
the dotted lines. The corresponding 99 per cent confidence interval
is also marked.

As expected the individual variances fall within the expected re-
gion. However, the 90 per cent region spans an order of magnitude
in variance. Thus even order of magnitude differences in variance
between short sections of a light curve are to be expected and do
not necessarily indicate that the underlying process is not stationary.
Subtle changes in the PSD will thus be difficult to detect by examin-
ing the raw variances as the intrinsic scatter is so large. Such changes
could be revealed by comparing averaged variances or comparing
the PSDs as described above.

6 E F F E C T O F M E A S U R E M E N T E R RO R S

6.1 Excess variance and Fvar

The data sets considered thus far have been ideal, in the sense that
they are free from flux uncertainties. In real life, however, a light
curve xi will have finite uncertaintiesσerr,i due to measurement errors
(such as Poisson noise in the case of an X-ray photon counting
signal). These uncertainties on the individual flux measurements
will contribute an additional variance. This leads to the use of the
‘excess variance’ (Nandra et al. 1997; Edelson et al. 2002) as an
estimator of the intrinsic source variance. This is the variance after
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subtracting the contribution expected from measurement errors

σ 2
XS = S2 − σ 2

err, (8)

where σ 2
err is the mean square error

σ 2
err = 1

N

N∑
i=1

σ 2
err,i . (9)

The normalized excess variance is given by σ 2
NXS = σ 2

XS/x̄2 and
the fractional root mean square (rms) variability amplitude (Fvar;
Edelson, Pike & Krolik 1990; Rodriguez-Pascual et al. 1997) is the
square root of this, i.e.

Fvar =
√

S2 − σ 2
err

x̄2
. (10)

The statistic Fvar is often chosen in preference to σ 2
NXS, although

the two convey exactly the same information. Fvar is a linear statistic
and can therefore give the rms variability amplitude in percentage
terms. The choice of whether to quote Fvar or σ 2

NXS is usually purely
one of presentation. It is worth noting that the Monte Carlo results
given in Section 5.2.2, to estimate the expected scatter on the vari-
ance, can also be applied to its square root. The expected boundaries
of the confidence region of the logarithm of the rms is approximately
half those of the variance. Specifically, �log(σ ) ≈ �log(S2)/2 and
similarly �log(Fvar) ≈ �log(σ 2

NXS)/2.

6.2 Spectral variability

An X-ray light curve of an AGN can be split into different energy
bands. The light curves in each band will be strictly simultaneous
and can be used to test whether the X-ray variability is a function
of energy. For example, one might examine the ratio of a soft band
light curve to a hard band light curve. The statistical significance
of any variations in the ratio can be quantified by propagating the
measurement errors and applying an appropriate test, such as the χ2

test of the constant ratio hypothesis.8 If the ratio shows variations
greater than those expected from the errors then the two light curves
are intrinsically different and the source does indeed show spectral
variability. Such changes in the energy spectrum with time can in
principle provide valuable clues to the nature of the X-ray source.
This test does not provide any quantitative description of the spectral
variability.

Another tool for investigating spectral variability is the rms spec-
trum, i.e. the rms variability amplitude (or Fvar) as a function of
energy. See, e.g., Inoue & Matsumoto (2001), Edelson et al. (2002),
Fabian et al. (2002) and Schurch & Warwick (2002) for some ex-
amples of rms spectra from AGN. However, when examining rms
spectra it is often not clear whether changes in the amplitude with
energy reflect the real energy dependence of the intrinsic variabil-
ity amplitude or are caused by random errors in the light curves.
The finite measurement errors on the individual fluxes (e.g. due to
Poisson noise) will introduce some uncertainty in the estimated rms
amplitudes. An estimate of this uncertainty would help answer the
question posed above, namely of whether features in rms spectra are
the result of random errors in the data or represent spectral variations
intrinsic to the source.

The problem of how to assess the uncertainty on the excess vari-
ance (or Fvar) is a long-standing one (e.g. Nandra et al. 1997; Turner

8 This does, of course, assume the light curves have been binned sufficiently
for the error bars to be approximately Gaussian.

et al. 1999; Edelson et al. 2002). The standard error formulae pre-
sented in the literature (e.g. Turner et al. 1999; Edelson et al. 2002)
are formally valid in the case of uncorrelated Gaussian processes.
Typically AGN light curves at different X-ray energies are strongly
correlated and are not Gaussian. However, when searching for subtle
differences in amplitude between simultaneous and correlated light
curves it may be more useful to have an indication of the uncertainty
resulting from the finite flux errors.

6.2.1 Uncertainty on excess variance due to measurement errors

A Monte Carlo approach was used to develop a prescription of the
effect of measurement errors on estimates of Fvar (and σ 2

NXS). A
short red noise light curve was generated. Poisson noise was added
(i.e. the individual flux measurements were randomized following
the Poisson distribution) and the excess variance was recorded. The
fluxes of the original light curve were randomized again and the ex-
cess variance recorded, this was repeated many times. The distribu-
tion of excess variances was then used to determine the uncertainty
in the variance estimate caused by Poisson noise. Full details of the
procedure are given in Appendix B.

For these simulations it was found that the error on σ 2
NXS decreases

as the signal-to-noise (S/N) ratio in the light curve is increased
according to

err(σ 2
NXS) =

√√√√(√ 2

N
· σ 2

err

x̄2

)2

+
(√

σ 2
err

N
· 2Fvar

x̄

)2

. (11)

See Appendix B for details of this equation and its equivalent in
terms of Fvar.

As this only accounts for the effect of flux measurement errors
(such as Poisson noise) in a given light curve it can be used to
test whether two simultaneously observed light curves of the same
source, but in different bands, show consistent amplitudes. A demon-
stration of this using real data is given in the following section. This
uncertainty does not account for the random scatter intrinsic to the
red noise process, therefore the absolute value of the rms spectrum
will change between realizations (i.e. from epoch to epoch). How-
ever, if a source shows achromatic variability then the values of Fvar

calculated in each energy band (at a given epoch) should match to
within the limits set by the Poisson noise (i.e. the fractional rms
spectrum should be constant to within the uncertainties given by the
above equation). Differences in Fvar significantly larger than these
would indicate that the source variability amplitude is a function
of energy. This would then mean that the PSD amplitude/shape is
different in different energy bands, or there are multiple spectral
components that vary independently.

The above uncertainty estimates can be used to test the hypothesis
that the source variability is achromatic. If significant differences be-
tween energy bands are detected (as in the case of Mrk 766 presented
below) then these errors should not be used to fit the rms spectrum.
The assumption that the differences are due only to measurement
errors is no longer the case. In such situations the light curves in
adjacent energy bands are likely to be partially correlated and so
χ 2-fitting of the rms spectrum is not appropriate. The differences
in excess variance will be a combination of intrinsic differences
and measurement errors. Their uncertainty will therefore be more
difficult to quantify.
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Properties of X-ray light curves from AGN 1279

7 C A S E S T U DY: A N X M M – N E W TO N
O B S E RVAT I O N O F M R K 7 6 6

In this section a long (∼105 s) XMM–Newton observation of the
bright, variable Seyfert 1 galaxy Markarian 766 is used to illustrate
the points discussed above. The data were obtained from the XMM–
Newton Data Archive.9 Details of the observation are discussed in
Mason et al. (2003) and an analysis of the PSD is presented in
Vaughan & Fabian (2003).

7.1 Observation details

Mrk 766 was observed by XMM–Newton (Jansen et al. 2001) over
the period 2001 May 20–21 (rev. 265). The present analysis is re-
stricted to the data from the pn European Photon Imaging Camera
(EPIC), which was operated in small-window mode. Extraction of
science products from the Observation Data Files (ODFs) followed
standard procedures using the XMM–Newton SCIENCE ANALYSIS SYS-
TEM (SAS) version 5.3.3. Source data were extracted from a circular
region of radius 35 arcsec from the processed image and only events
corresponding to patterns 0–4 (single and double pixel events) were
used. Background events were extracted from regions in the small
window least affected by source photons, these showed that the
background rate increased dramatically during the final ∼1.5 × 103

s of the observation. This section of the data was excluded, leaving
1.05 × 105 s of uninterrupted data. The light curves were corrected
for telemetry drop outs (less than 1 per cent of the total time) and
background subtracted. The errors on the light curves were calcu-
lated by propagating the Poisson noise.

7.2 Stationarity of the data

The broad-band (0.2–10 keV) light curve extracted from the pn is
shown in Fig. 6 (panel 1). As was the case for the simulated data
shown in Fig. 2, the mean and variance (calculated every 20 data
points)10 show changes during the length of the observation (panels
2 and 3). The expected range for the excess variance, calculated
using the results of Section 5.2.2 (and assuming a PSD slope of
α = 2.0), is marked in Fig. 7. Fig. 8 shows the same data in terms
of normalized excess variances. Neither of these show fluctuations
larger than expected for a stationary process. However, given the
large expected scatter this is a rather insensitive test. In the case
of the Mrk 766 light curve, however, there are sufficient data to
examine variations of the average variance with time, allowing a
more sensitive test for non-stationarity.

By averaging the excess variance estimates (in time bins contain-
ing 20 excess variance estimates) significant changes in the variance
with time are revealed (panel 4). This contrasts with the simulated
data shown in Fig. 2. The binned excess variance is inconsistent with
a constant hypothesis: fitting with a constant gave χ2 = 23.1 for nine
degrees of freedom (dof), rejected at 99 per cent confidence. The
average variance is therefore changing with time, indicating that the
variability is strongly non-stationary.

A careful inspection of Fig. 6 (panels 3 and 4) shows that the
individual variance estimates have a tendency to track the source
count rate. This is difficult to discern from the individual variances
(panel 3), due to the larger intrinsic scatter, but is much clearer in
the averaged variances (panel 4). This can be seen clearly in Fig. 9

9 http://xmm.vilspa.esa.es
10 These correspond to ‘instantaneous’ estimates of the source variance on
time-scales of 50–500 s.

Figure 6. Top panel: 0.2–10.0 keV pn light curve of Mrk 766 (with 25 s bins,
in units of count s−1). Panel 2 and 3: mean count rate and excess variance
measured from segments of 20 points. Panel 4: averaged excess variance
measured by binning the individual variance estimates into groups of 20.
This average variance is inconsistent with constant. Panel 5: fractional rms
amplitude measured from segments of 20 points. Panel 6: averaged fractional
rms amplitude measured by binning the individual amplitudes into groups
of 20. This average fractional amplitude is consistent with constant. This
contrasts with the situation shown in Fig. 2.

(top panel) where the rms amplitude (
√

σ 2
XS) is shown as a function

of count rate. To produce this plot the individual rms estimates
(Fig. 6, panel 3) were sorted by count rate and binned by flux (such
that there were 20 estimates per bin). The error on the mean rms
was calculated in the standard fashion (see above). This indicates
that the source does show a form of genuine non-stationarity: the
absolute rms amplitude of the variations increases, on average, as
the source flux increases. This effect has been noted in other Seyferts
(Uttley & McHardy 2001; Edelson et al. 2002; Vaughan et al. 2003)
and is due to a linear correlation between rms and flux [see Uttley
et al. (in preparation) for a further discussion of this effect]. Non-
stationarity of this form can be ‘factored out’ using the normalized
amplitude (Fvar or σ 2

NXS) instead of the absolute values. Normalizing
each variance (or rms) estimate by its local flux removes this trend.
The bottom panel of Fig. 9 shows that Fvar is indeed constant with
flux (fitting a constant gave χ2 = 7.8 for nine dof). Fig. 6 (panels 5
and 6) shows Fvar and its average as a function of time; the average
is consistent with staying constant (χ2 = 5.8 for nine dof). The
variability of Mrk 766 does show genuine (strong) non-stationarity,
in the sense that the absolute rms increases linearly with flux, but this
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1280 S. Vaughan et al.

Figure 7. Excess variance of the Mrk 766 data shown in Fig. 6 (panel 3)
with the 90 (dotted line) and 99 per cent (dashed line) confidence intervals
marked (as calculated in Section 5.2.2). The variances fall within these limits,
as expected for a stationary process. The solid line marks the mean variance.

Figure 8. As for Fig. 7 but using the normalized excess variance of the Mrk
766 data.

trend can be removed by using normalized units, Fvar (and therefore
the normalized excess variance) is consistent with it being constant
(with time and flux).

The above analysis suggests that, after accounting for the effect
of the rms–flux correlation, there is no other evidence for strong
non-stationarity in the rapid variability of Mrk 766. This was con-
firmed using the s-test of Papadakis & Lawrence (1995, see their
Appendix A). A periodogram was calculated for three consecutive
segments of 3.4 × 104 s duration, and normalized to fractional units
(see Appendix A). The s value was computed by comparing pe-
riodograms at frequencies below 2 × 10−3 Hz (above which the
Poisson noise power becomes comparable to the source variabil-
ity). For each pair of periodograms the value of s was within the
range expected for stationary data (specifically |s| < 1, within one
standard deviation of the expected value).

7.3 Rms spectrum

The variability amplitude as a function of energy was calculated by
measuring Fvar from light curves extracted in various energy ranges.

Figure 9. Top panel: The average absolute rms amplitude (
√

σ 2
XS) as a

function of flux for the Mrk 766 light curve (compare with Fig. 4). Bottom

panel: the average fractional rms amplitude (
√

σ 2
NXS) as a function of flux.

Clearly, the absolute rms amplitude is a function of flux, but this dependence
is removed in the fractional rms.

Figure 10. rms spectrum of Mrk 766 measured using EPIC pn light curves
with 1000 s bins.

The results are shown in Fig. 10 and the errors were calculated using
equation (B2) to account for the effect of Poisson noise. The vari-
ability amplitude is clearly a function of energy, i.e. Mrk 766 shows
significant spectral variability. This was confirmed by a Fourier
analysis of the light curves in different energy bands (Vaughan
& Fabian 2003), which revealed complex energy-dependent
variability.
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The rms spectrum was recalculated for light curves containing
only single-pixel (pattern 0) events and again for double-pixel (pat-
terns 1–4) events. These two sets of data were extracted from the
same detector and using identical extraction regions, etc. After ac-
counting for the difference in count rate between single- and double-
pixel events the two sets of light curves should be identical except
for the effects of Poisson noise. The two rms spectra should be the
same except for Poisson errors. Comparing the ratio of the two rms
spectra using a χ2-test (against the hypothesis of unity ratio) gave
χ 2 = 25.3/20 degrees of freedom. Comparing the difference of the
two rms spectra with the hypothesis of zero difference gave identical
results and shows the two rms spectra are indeed fairly consistent.
This test indicates that for real data the error formula given above
does provide a reasonable description of the uncertainty induced by
photon noise.

8 D I S C U S S I O N

The analysis of stochastic processes, such as X-ray variability of
AGN, is conceptually different from the analysis of deterministic
data such as time-averaged spectra (see the discussions in, for exam-
ple, Jenkins & Watts 1968; Priestley 1981; Bendat & Piersol 1986;
Bloomfield 2000). For example, when observing the spectrum of a
constant source one expects repeatability of the data to within the
limits set by measurement errors, i.e. each new realization of the
spectrum should be consistent within the errors. In AGN variability
analysis it is the signal itself that is randomly variable; one does not
expected repeatability of quantities such as the mean or variance.
These statistical moments will change (randomly) with each new
light curve even if there are no measurement errors.

The stochastic nature of red noise processes means that it is usu-
ally only their average properties that can provide physical insight.
Non-deterministic data should be handled statistically. For example,
it is customary to examine the timing properties of X-ray binaries
using PSDs estimated from the average periodogram of an ensem-
ble of light curves (e.g. van der Klis 1995). Averaging over many
independent realizations reduces the random fluctuations inherent
in the noise process.

In most AGN timing studies, however, there are rarely enough
data to construct averages in this way (but see Papadakis & Lawrence
1993 and Uttley et al. 2002, for more on PSD estimation for AGN).
As a result of this relative lack of data, AGN timing studies often
emphasize the properties of a single light curve. However, emphasis
on the detailed properties of any single realization of a stochastic
process can be misleading. For example, AGN light curves show
large fluctuations in variance. These changes provide little insight
as they are expected even when the underlying physical process
responsible for the variability is constant. Rather, they may simply
be statistical fluctuations intrinsic to the stochastic process. All red
noise processes show random fluctuations in both the mean and
the variance, and the variance will be distributed in a non-Gaussian
fashion with a large scatter (see Sections 4.2 and 5).

Previous claims of non-stationary variability based on changes in
variance (e.g. Nandra et al. 1997; Dewangan et al. 2002; Gliozzi,
Sambruna & Eracleous 2003) should therefore be treated with cau-
tion since they did not account for this intrinsic scatter (see also
Section 3.3.1 of Leighly 1999 for a discussion of this point). Real
changes in the PSD would indicate genuine non-stationarity and
reflect real changes in the physical conditions of the variability pro-
cess. Such changes can be measured from the average properties of
the light curve, such as the averaged periodogram or the averaged
variance (see Section 5).

A different issue is that differences between the variance of si-
multaneous light curves obtained in different energy bands can be
examined using the excess variance (or Fvar) statistic. It is possible
to estimate the uncertainty in the excess variance due to errors in
the flux measurements. This uncertainty, accounting only for mea-
surement (e.g. Poisson) errors, can be used when testing for spectral
variability, as demonstrated in Section 7.

Estimators such as the excess variance provide a useful, if crude,
means of quantifying the variability of AGN. Even though the
stochastic nature of AGN light curves makes it difficult to estimate
variability amplitudes robustly from short observations, the excess
variance can provide useful information. For example, an analysis
of the excess variances measured from short observations of Seyfert
1 galaxies demonstrated that the variability amplitude (over a given
range of time-scales) is inversely correlated with the luminosity of
the source (Nandra et al. 1997; Leighly 1999; Markowitz & Edelson
2001). Although random fluctuations in variance are expected for
AGN light curves the range of variances observed is far larger than
could be accounted for by this effect alone. Another example is given
in Section 7.2 when it is demonstrated that the average variance of
Mrk 766 is a function of the flux of the source. A similar effect
has been observed in X-ray binaries (Uttley & McHardy 2001). A
discussion of the implications of this result will be given in Uttley
et al. (in preparation).

9 C O N C L U S I O N S

This paper discusses some aspects of quantifying the variability of
AGN using simple statistics such as the variance. Various possible
uses of these are presented and some possible problems with their
significance and interpretation are brought to light. The primary
issues are as follows.

(i) In order to search for non-stationary variability in an ensemble
of short light curves (or short light curve segments) one can test
whether the individual variances are consistent with their mean.
Two practical methods are presented (Sections 5.2.1 and 5.2.2).

(ii) In the first method the mean variance and its error are calcu-
lated at various epochs by binning the individual variance estimates.
This is most useful when searching for subtle changes in variability
amplitude but requires large data sets (in order that the variance can
be sufficiently averaged).

(iii) In the second method the individual variance estimates are
compared with the expected scatter around the mean. The expected
scatter is calculated using Monte Carlo simulations of stationary
processes. The table gives some examples of the scatter expected
for various PSD shapes typical of AGN. This table can therefore be
used to provide a ‘quick look’ at whether the observed fluctuations in
the variance are larger than expected. One drawback is that, because
the intrinsic scatter in the variance is rather large for red noise data,
this method is only sensitive to very large changes in the variability
amplitude. Another drawback is that one has to assume a shape for
the PSD.

(iv) The excess variance can also be used to quantify how the
variance changes as a function of energy (Section 6.2). An approx-
imate formula is presented (based on the results of Monte Carlo
simulations) that gives the expected error in the excess variance
resulting from only observation uncertainties (flux errors such as
Poisson noise). This can be used to test for significant differences in
variance between energy bands. If the normalized excess variances
(or Fvars) are found to differ significantly between energy bands this
implies that the PSD is energy dependent and/or there are indepen-
dently varying spectral components.
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(v) Possibly the most robust yet practical approach to variability
analysis from AGN data is to test the validity of hypotheses using
Monte Carlo simulations. This approach has yielded reliable PSD
estimates for Seyfert galaxies (Green, McHardy & Lehto 1999; Ut-
tley et al. 2002; Vaughan et al. 2003; Markowitz et al. 2003) and
has been used to test the reliability of cross-correlation results (e.g.
Welsh 1999) amongst other things. Section 3 discusses some meth-
ods for simulating red noise data.
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A P P E N D I X A : P E R I O D O G R A M
N O R M A L I Z AT I O N

The periodogram is calculated by normalizing the modulus-squared
of the DFT (see equation 1):

P( f j ) = A|DFT( f j )|2. (A1)

There are a variety of options for the normalization A used in
the literature, each has desirable properties. In the mathematical
literature on time series analysis a normalization of the form A =
2/N is standard (e.g. Priestley 1981; Bloomfield 2000). However,
this normalization is generally not used for time series analysis
in astronomy because the periodogram then depends on flux of the
source and the binning of the time series. Below are listed three of the
most commonly used normalizations, which only differ by factors
of x̄ , the mean count rate in count s−1 (Aabs = x̄ ALeahy = x̄2 Arms2 ).
The factor of 2 is present in all of these normalizations to make
the periodogram ‘one-sided,’ meaning that integrating over positive
frequencies only yields the correct variance.

(i) Arms2 = 2�Tsamp/x̄2 N – defined by van der Klis (1997) (see
also Miyamoto et al. 1991). This is the normalization most often
used in analysis of AGN and X-ray binaries because the integrated
periodogram yields the fractional variance of the data. The units for
the periodogram ordinate are (rms/mean)2 Hz−1 (where rms/mean
is the dimensionless quantity Fvar), or simply Hz−1.

If a light curve consists of a binned photon counting signal (and in
the absence of other effects such as detector dead-time) the expected
Poisson noise ‘background’ level in its periodogram is given by

Pnoise = 2(x̄ + B)

x̄2

�Tsamp

�Tbin
, (A2)

where x̄ is the mean source count rate, B is the mean background
count rate, �Tsamp is the sampling interval and �Tbin is the time bin
width. The factor of �Tsamp/�Tbin accounts for aliasing of the Pois-
son noise level if the original photon counting signal contained gaps.
If the light curve is a series of contiguous time bins (i.e. �Tbin =
�Tsamp) and has zero background (which is approximately true
for many XMM–Newton light curves of AGN) then this reduces
to Pnoise = 2/x̄ .

C© 2003 RAS, MNRAS 345, 1271–1284

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/345/4/1271/1071679 by guest on 18 April 2020



Properties of X-ray light curves from AGN 1283

For a light curve with Gaussian errors σ err,i the noise level in the
periodogram is

Pnoise = 2�Tbinσ 2
err

x̄2

�Tsamp

�Tbin
. (A3)

(ii) ALeahy = 2�Tsamp/x̄ N – originally due to Leahy et al. (1983).
This has the property that the expected Poisson noise level is sim-
ply 2 (for continuous, binned photon counting data). If the light
curve consists only of Poisson fluctuations then the periodogram
should be distributed exactly as χ 2

2. It is this property that makes
this normalization the standard for searching for periodic signals in
the presence of Poisson noise (see Leahy et al. 1983). If the input
light curve is in units of count s−1 then the periodogram ordinate is
in units of count s−1 Hz−1.

(iii) Aabs = 2�Tsamp/N – this is the normalization used in equa-
tion (2). This gives the periodogram in absolute units [e.g. (count
s−1)2 Hz−1] and so the integrated periodogram gives the total vari-
ance in absolute units [e.g. (count s−1)2] For a contiguously binned
light curve with Poisson errors the noise level is Pnoise = 2x̄ , and
for Gaussian errors the noise level is Pnoise = 2�Tbinσ 2

err.

A P P E N D I X B : M O N T E C A R L O
D E M O N S T R AT I O N O F P O I S S O N N O I S E
I N D U C E D U N C E RTA I N T Y O N E X C E S S
VA R I A N C E

To estimate the effect on σ 2
NXS due only to Poisson noise the basic

strategy was as follows.

(i) Generate a random red noise light curve. This acts as the ‘true’
light curve of the source.

(ii) Add Poisson noise, i.e. draw fluxes from the light curve ac-
cording to the Poisson distribution. This simulates ‘observing’ the
true light curve. Error bars were assigned based on the ‘observed’
counts in each bin (

√
counts).

(iii) Measure the normalized excess variance σ 2
NXS of the ob-

served light curve. This will be different from the variance of the
true light curve because of the Poisson noise.

Steps 2 and 3 were repeated, using the same true light curve, to
obtain the distribution of σ 2

NXS. Fig. B1 shows some results. In this
example the ‘true’ light curve was generated with a f −2 PSD and
normalized to a pre-defined mean and variance, e.g. S2/x̄2 = 0.04
(Fvar = 20 per cent). This light curve was then observed (i.e. steps
2 and 3 were repeated) 104 times.11 The three panels correspond to
different mean count rates for the true light curve (i.e. different S/N
of the observation). The (1σ ) widths of the σ 2

NXS distributions are
Monte Carlo estimates of the size of the error bars on σ 2

NXS due to
Poisson noise.

As is clear from Fig. B1 the distribution of σ 2
NXS becomes nar-

rower, i.e. the error on σ 2
NXS gets smaller, as the S/N of the data

increases. Obviously in the limit of very high S/N data the mea-
sured value of σ 2

NXS will tend to the ‘true’ value (in this case 0.04),
i.e. err(σ 2

NXS) → 0 as counts → ∞. It should also be noted that the
distributions are quite symmetrically centred on the correct value,

11 As this measures only the effect due to Poisson noise, the results are largely
independent of the details of the light curve, including the PSD, as long as the
flux is non-zero throughout the light curve. This was confirmed by repeating
the above experiment using data produced from PSD slopes in the range
α = 0–2.

Figure B1. Distribution of measured σ 2
NXS from 10 000 ‘observations’ of

the same light curve. In each case the ‘true’ σ 2
NXS is 0.04 (dotted line).

The top panel used the lowest S/N data, the bottom panel used the highest
S/N data. The mean number of counts per bin in the simulated light curves
was 15 (top), 30 (middle) and 100 (bottom). As the S/N increases (count
rate increases) the distribution of σ 2

NXS becomes narrower. (Note that this
is different from Fig. 3, which shows how the variance changes between
different realizations of the same stochastic process.)

indicating that σ 2
NXS is an unbiased estimator of the intrinsic variance

in the light curve, even in relatively low S/N ratio data.
In order to assess how the error on σ 2

NXS changes with S/N, the
width of its distribution was measured from simulated data at vari-
ous different settings of S/N ratio and intrinsic variance (i.e. S2/x̄2).
Width of the distribution at each setting was calculated from only
500 ‘observations’ of each light curve. In order that no particular re-
alization adversely affect the outcome, and to increase the statistics,
this was repeated for 20 different random light curves (of the same
fractional variance) and the width of the σ 2

NXS distributions were
averaged (i.e. the whole cycle of steps 1–3 was repeated 20 times).
Thus for each specified value of S/N and fractional variance, the er-
ror on σ 2

NXS is estimated from 104 simulated ‘observations.’ These
Monte Carlo estimated errors on the normalized excess variance are
shown in Fig. B2.
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Figure B2. Width of the distribution of σ 2
NXS (resulting from Poisson noise)

as a function of the number of counts per bin. Compare with Fig. B1. The
solid curve shows the function described in the text (equation 11).

The solid lines show the functions defined by equation (11) (which
was obtained by fitting various trial functions to the Monte Carlo
results). Clearly, this equation gives a very good match to the Monte
Carlo results.

If the variability is not well detected, either because the S/N ratio
is low or the intrinsic amplitude is weak, then S2 ≈ σ 2

err. It is the
first term on the right-hand side of equation (11) that dominates. If
the variability is well detected, i.e. S2 � σ 2

err, then it is the second
term that dominates:

err
(
σ 2

NXS

) ≈




√
2

N

σ 2
err

x̄2
S2 ≈ σ 2

err√
σ 2

err

N

2Fvar

x̄
S2 � σ 2

err.

(B1)

In the former case the deviations from the mean are dominated
by the errors and the fluxes are approximately normally distributed.
In this regime the error equation becomes the same as that given
in equation (A9) of Edelson et al. (2002). In the latter case the
deviations in the light curve are enhanced by the intrinsic variance.
The second term is similar to the first except multiplied by a factor

of
√

2σ 2
XS/σ

2
err to account for this.

Equation (11) can be used to give the uncertainty on Fvar, thusly

err(Fvar) = 1

2Fvar
err
(
σ 2

NXS

)

=

√√√√(√ 1

2N

σ 2
err

x̄2 Fvar

)2

+
(√

σ 2
err

N

1

x̄

)2

, (B2)

and this is the equation used to derive the errors shown in Fig. 10.
In the two regimes this becomes

err(Fvar) ≈




√
1

2N

σ 2
err

x̄2 Fvar
S2 ≈ σ 2

err√
σ 2

err

N

1

x̄
S2 � σ 2

err.

(B3)

In the first instance, when the variability is not well detected, σ 2
NXS

should be preferred over Fvar as negative values of σ 2
NXS are possible.

Additional Monte Carlo simulations confirmed the above equations
are valid for both Gaussian and Poisson distributed flux errors. It
is worth reiterating that this error accounts only for measurement
errors on the fluxes. It does not account for the intrinsic scatter in
the fluxes inherent in any red noise process.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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