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A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field
and to construct a physical soil quality index (SQIP) map. Surface soil samples were collected using 10m × 10m grid from an
Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity,
saturated hydraulic conductivity (𝐾

𝑆
), and aggregate stability (measured as mean weight diameter, MWD) were determined. The

spatial structures of sand, clay, and 𝐾
𝑆
were moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each

of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production.
The transformed indicators were the combined into SQIP. The kriged SQIP map showed that the agricultural field studied could be
divided into two parts having “good physical quality” and “poor physical soil quality.”

1. Introduction

The term and concept of soil quality evoke various responses,
depending on our scientific and social backgrounds. Soil
quality is an integration of soil processes and provides a
measure of change in soil condition as related to factors
such as land use, climate patterns, cropping sequences, and
farming systems [1]. Presently, soil quality has been defined
by some scientist as “capacity of soil to function” [2]. Soil
quality can be assessed by selecting different indicators upon
which the functions of soil depend [2]. Doran and Parkin [2]
have developed a list of basic soil properties or indicators for
screening soil quality and health. USDA Staff [3] categorizes
the soil quality indicators into four general groups: visual,
physical, chemical, and biological. A minimum data set
(MDS) was also proposed to assess soil quality. Soil MDS of
different soil properties can be chosen as an indicator of soil
quality and can also be transformed into overall indicator of
soil quality for monitoring [4].The application of these prop-
erties at regional and local scales requires the development
of efficient sampling and soil quality management strategies.
This in turn requires information on the spatial variability of

properties across different types of soils and land uses. Like
other soil properties, soil quality can vary spatially [5]. Several
studies have documented that soil properties vary across farm
fields, causing spatial variability in crop yields [6]. Precision
farming or site-specific management aims at managing soil
spatial variability by applying inputs in accordance with the
site-specific requirements of a specific soil and crop [7].
Such practices require quantification of soil spatial variability
across the field. Geostatistics provides procedures to assess
spatial dependence [8].

The degree of spatial variability for each variable can be
determined by geostatistical methods using semivariogram
model [9]. Classical statistics requires the validity of some
basic hypotheses, such as the independence between obser-
vations, due to the randomness of variations from one place
to another. In addition, geostatistics, based on the theory of
regionalized variables, enables the interpretation of results
based on the structure of spatial dependence within the
sample space [10].

Among the soil quality indicators the physical soil quality
indicators influence both chemical and biological quality of
soil. The soil physical properties are associated with nutrient
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availability, solute and pollutant movement, microbial activ-
ity, and soil organicmatter stabilization [11]. Spatial variability
of soil physical properties within or among agricultural fields
is inherent in nature due to geologic and pedologic soil
forming factors, but some of the variability may be induced
by tillage and other management practices. These factors
interact with each other across spatial and temporal scales
and are further modified locally by erosion and deposition
processes [12]. Among the various soil physical properties,
saturated hydraulic conductivity (𝐾𝑆) and related measures
are reported to have the highest statistical variability [13].
Bouma [14] stressed the need for more studies on field
variability of 𝐾𝑆 and soil water retention curves. Stockton
and Warrick [15] indicated that variability in 𝐾𝑆 is both a
function of soil depth and position in the landscape, as well as
experimental errors in measuring 𝐾

𝑆
. The spatial variability

and scaling of 𝐾
𝑆
have been studied by several authors using

geostatistical techniques. Sobieraj et al. [16] used classical
and geostatistical techniques to the study spatial variability
of sand, silt, and clay contents, available water content, and
water stored at −33 kPa. Iqbal et al. [12] studied the spatial
variability of percent sand, silt and clay, bulk density, organic
matter, and available water holding capacity of soil. However,
integrating measured soil physical quality indicators into
a single physical soil quality index is quite challenging
considering the scale and units of measurements of soil
quality indicators. The transformation of measured physical
soil quality indicators into unitless binary digits depending
on whether the indicators are capable to function adequately
in a particular ecosystem could be a good approach to
integrate measured indicators in a single soil quality index
[17]. However, the single soil quality index on the basis of
whether any of the soil quality indicators meet certain soil
quality threshold does not include how effectively the soil
is performing its function. Therefore, instead of single soil
quality index, several soil quality indices of a particular soil on
the basis of the number of soil quality indicators thatmeet the
soil quality threshold would be a better approach to evaluate
soil quality.

Theobjectives of the researchworkwere to (i) evaluate the
spatial variability of physical indicators of soil quality of an
agricultural field and (ii) defining andmapping of soil quality
index.

2. Materials and Methods
2.1. Sample Collection andAnalyses. Thestudywas conducted
on an agricultural field of approximately 7000m2at Khulna,
Bangladesh. The georeference of the study area is shown in
Figure 1. The mean annual temperature and rainfall are 26∘C
and 1693mm, respectively. The climate is characterized by a
tropical monsoon climate [18]. According to the USDA soil
taxonomy the soils are of Inceptisol order and located on
the Ganges Tidal Floodplain of Bangladesh [19]. Soil samples
were collected by establishing a sampling grid (Figure 1). The
grid had four transects, parallel to x-axis, with a spacing of
10m. It contained 10 sample points with spacing of 10m.
A total of 40 surface soil (0–5 cm) samples were collected
from 10m×10m sample points for determination of physical
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Figure 1: Soil sampling grid for selected physical soil quality
indicators of an agricultural field of Ganges Tidal Floodplain soil
(classified as Inceptisols order of US Soil Taxonomy), Bangladesh.

indicators of soil quality. The indicators were selected as
proposed by USDA Staff [3] and Karlen and Stott [20]. The
indicators measured in the present investigation were soil
texture, bulk density, porosity, aggregate stability, and𝐾

𝑆
.

Undisturbed soil cores (5 cm in diameter) were collected
for bulk density, porosity, aggregate stability, and𝐾

𝑆
determi-

nation in the laboratory. The soil core samples were collected
in 6 replicates from each location. Particle size analysis of
the soils was done by hydrometer methods [21]. Bulk density
was determined by the core samplingmethod as described by
Blake andHartge [22]. Particle density of soil was determined
by the pycnometer method [22]. Total porosity of soil was
calculated from the data of particle density and bulk density
[23]. The determination of aggregate stability by wet sieving
involves the estimation of the amount of intact aggregates
against the forces of water entry into aggregates, such as
forces related to water entry in soil aggregates. It is generally
considered that retention of large aggregates against forces
of water entry is indicative of good aggregate stability [24].
Therefore, to evaluate the aggregate stability of the soil, mean
weight diameter (MWD) was determined using wet sieving.
The size ranges of aggregates used to calculate theMWDwere
1.0–2.0mm, 0.5–1.0mm, 0.25–0.5mm, and 0.125–0.25mm.
The MWD of the aggregates was calculated as

MWD =
𝑛

∑

𝑖=1

𝑋
𝑖
𝑊
𝑖
, (1)

where 𝑛 = number of size fractions, 𝑋
𝑖 = the mean diameter

of any particular size range of aggregates separated by sieving,
and 𝑊

𝑖
= the weight of aggregates in that size range as

a fraction of the total dry weight of the sample analyzed
[24]. Saturated hydraulic conductivity (𝐾

𝑆
) of the soil was

determined in the laboratory by measuring the flux of water
through the undisturbed soil core under a constant water
head maintained at the top of the soil core [25].
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Table 1: Threshold ranges of physical soil quality indicators for crop production.

Physical soil quality indicator Threshold range Comment References
Clay, % ≤40 >40% impede soil water movement and redistribution USDA staff [26]

Bulk density, g cm−3 0.9–1.2

In fine textured soils bulk density <0.9 g cm−3 may
provide insufficient soil-root contact, water retention,
and plant anchoring whereas bulk density >1.2 g cm−3
may impede root elongation and reduce soil aeration

Reynolds et al. [27]

Porosity, % ≥50–65

10% (by volume) air filled porosity is considered
limiting for plant growth. >50% of total porosity is
considered quite adequate to provide 10% air filled
porosity in silty clay and clay soils

Hall et al. [28]
Joshua and Rahman [29]

𝐾
𝑆

‡, cm day−1 ≥8.64–43.2

In fine textured soil, 𝐾
𝑆
< 8.64 cmday−1 substantially

reduced crop production by inadequate aeration in root
zone, whereas𝐾

𝑆
43.2 cmday−1 may consider ideal for

rapid infiltration and redistribution of crop available
water

Reynolds et al. [27]
McQueen and Shepherd [30]

MWD#, mm ≥1–3 Soil aggregates with >1mmMWD is considered
moderately water stable Rabbi et al. [31]

‡Saturated hydraulic conductivity; #mean weight diameter.

To construct a physical soil quality index (SQIP) we
transformed the measured physical soil quality parameters
into 0 and 1 by comparing individual physical soil quality
indicator with the threshold range from literature which
represents the best quality for crop production [17]. If any
indicator failed to meet the specific threshold range then the
data was coded as 0 and otherwise 1. The criteria that are
used for indicator transformation are presented in Table 1. As
hydrologic properties are strongly affected by the clay per-
centage of soil, the clay percentage instead of sand and silt was
used to construct SQIP. During selecting the threshold for
soil quality indicators crops other than lowland rice (Oryza
sativa) were considered. After transforming the physical soil
quality indicators, we combined the transformed indicators
into a single SQIP value by evaluating how many measured
physical soil quality parameter satisfied the threshold ranges
(Table 1) of good soil quality. We set three combination
scenarios which were termed as SQIP (2 of 5), SQIP (3 of
5), and SQIP (4 of 5). If 2 measured indicators satisfied the
threshold range of good soil quality then the SQIP (2 of
5) would be 1 and otherwise 0. Similar combinations were
carried out for SQIP (3 of 5) and SQIP (4 of 5). An example
of indicator transformation used in the current research is
presented in Table 2.

2.3. Statistical Methods. Data was statistically analyzed in
three phases: (1) data were described using the classical statis-
tics (mean, mode, median, standard deviation, coefficient of
variation, skewness, and kurtosis); (2) frequency distribution
was examined and the test for normality was conducted. The
Ryan-Joiner test [33] revealed that all measured variables
were normally distributed except the hydraulic conductivity.
Since the 𝑅2 of normal probability plot for the hydraulic
conductivity was 0.85 (𝑃 < 0.01) we assumed that it
would not strongly affect the fitting of semivariogrammodels;
(3) the spatial structure of different physical soil quality
parameters were determined. The statistical analyses of data

were carried out by MINITAB (release 13.20) and we created
contourmaps of each variable through ordinary kriging using
their respective semivariogrammodels by using SURFER 12.0
software.

The degree of spatial dependence for each variable was
determinedwith geostatisticalmethods using semivariogram
analysis and kriging [9]. The semivariogram 𝛾(ℎ) is by
definition [34]

𝛾 (ℎ) =
1

2𝑁 (ℎ)

𝑁(ℎ)

∑

𝑖=1

[𝑧
(𝑖+ℎ)
− 𝑧
𝑖
]
2
, (2)

where 𝑁(ℎ) is the number of experimental pairs [𝑧
(𝑖+ℎ)

, 𝑧
𝑖
]

of data separated by a vector ℎ. A semivariogram consists of
three basic parameters which describe the spatial structure
as 𝛾(ℎ) = 𝐶

𝑟
+ 𝐶, ℎ ≥ 𝑟. 𝐶

0
represents the nugget

effect, which is local variation occurring at scales smaller
than the sampling interval, such as sampling error; 𝐶

0
+

𝐶 is the sill (total variance); and 𝑟 is the range, at which
semivariogram levels off (beyond that distance the variables
are not spatially correlated). Data were linearly detrended
to create semivariogram. The presence of anisotropy was
detected by changing the lag direction and detecting the
changes in length scale in semivariogram using Surfer 12.0
software. After setting initial anisotropy parameters, the
semivariogram models were fitted by least square method
with 50 iterations. The semivariogram models of the soil
quality indicators (i.e., sand, silt, clay, bulk density, porosity,
MWD, and 𝐾𝑆) and SQIP were produced. Since the exact
form of semivariogram model was never known the given
model selected and used was only an approximation of its
function [34]. The semivariogram models were then used
to undertake ordinary kriging to create contour map of soil
quality indicators and SQIP. The cross-validation of semivar-
iogram models and kriging was undertaken by calculating
gridding error (i.e., difference between interpolated and
observed value of a data point) using spherical, exponential,
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Table 3: Descriptive statistics for selected physical soil quality indicators of an agricultural field of Ganges Tidal Floodplain soil (classified as
Inceptisols order of US Soil Taxonomy), Bangladesh, collected using 10m × 10m grid sampling technique.

Physical soil quality indicators Minimum Maximum Mean Median Standard deviation Skewness Kurtosis
Sand, % 3.16 16.42 9.60 9.64 3.43 −0.13 −0.56
Silt, % 25.5 51.03 39.74 38.25 6.44 0.002 −0.57
Clay, % 42.81 61.14 50.66 49.45 5.87 0.50 −0.87
Bulk density, g cm−3 0.99 1.34 1.22 1.24 0.09 −0.72 0.06
Porosity, % 43.3 57.91 48.23 47.56 3.61 0.83 0.55
𝐾
𝑆

‡, cm day−1 1.00 41.9 11.78 7.16 12.11 1.30 0.69
MWD#, mm 0.53 2.38 1.46 1.52 0.58 −0.15 −1.08
‡Saturated hydraulic conductivity; #mean weight diameter.

Table 4: Semivariogrammodel parameters of physical soil quality indicators of an agricultural field of Ganges Tidal Floodplain soil (classified
as Inceptisols order of US Soil Taxonomy), Bangladesh, collected using 10m × 10m grid sampling technique.

Physical Soil quality indicators Model Nugget Sill % Nugget∗ Spatial∗∗ class Range
Sand, % Spherical 3.1 11.2 27.7 Moderate 25
Silt, % Spherical 1.1 32.1 3.4 Strong 22
Clay, % Spherical 11.8 27.8 42.4 Moderate 25
Bulk density, g cm−3 Spherical 0.0005 0.01 5.0 Strong 21
Porosity, % Spherical 2.3 12.3 18.7 Strong 25
𝐾
𝑆

‡, cm day−1 Spherical 90.5 150.4 60.2 Moderate 30
MWD#, mm Spherical 0.03 0.3 10.0 Strong 32
% Nugget = (nugget semivariance/total semivariance) × 100.
∗∗Strong = % Nugget <25%; Moderate = %Nugget 25–75%; Weak or Random = % Nugget >75% Cambardella et al. [32]).
‡Saturated hydraulic conductivity; #mean weight diameter.

and linear semivariogram model [35]. The gridding errors
were calculated by successive removal of data points and
interpolation of the removed data point using the remain-
ing data. After interpolation of all data points, root mean
square error (RMSE) was calculated as follows: 𝑅𝑀𝑆𝐸 =
(100/𝑚)√∑ (𝑖 − 𝑜)

2
/𝑛, where 𝑚 is the mean of observed

values, 𝑖 is the interpolated value, 𝑜 is the observed values,
and 𝑛 is the number of observations [36]. The RMSE would
be 0 in case of 100% fit.The spherical model had lower RMSE
value compared to linear and exponential models and thus
selected as the acceptable model.

3. Results and Discussion

3.1. Variation in Physical Soil Quality Indicators across the
Agricultural Field. The percentages of sand, silt, and clay
of soil samples studied indicated that the soils were fine in
texture (Table 3) and textural class of the soil samples varied
between silty clay and clay. The study area was located in
the southeastern coastal belt of Bangladesh. This area has
numerous tidal river connected to the Bay of Bengal. The
soils of this area are formed on tidal clay sediments and
flooding occurrence during the monsoon each year are the
reasons for containing high percentage of silt and clay [37].
The reported bulk density in the current study was lower than
the bulk density of 1.47 g cm−3 at which root development
becomes restricted [38].Themean𝐾

𝑆
was 12 cmday−1 which

suggests that the saturated hydraulic conductivity of soil
was moderately high [26]. Soil aggregates were not strongly
water stable which was indicated by mean MWD value (i.e.,
1.46mm) of the area studied. Rabbi et al. [31] compared
measured MWD with field observed grade of soil structure
and concluded that the soils with MWD between 1 and 3mm
could be classified as moderately water stable. Therefore, on
an average, the soils of the agricultural field studied had
favorable physical quality for plant growth.

3.2. Spatial Structure of Physical Soil Quality Indicators. The
range ofMWD (33) was the highest compared of all other soil
quality parameters (Table 4 and Figure 2). The ranges of the
measured physical soil quality parameters varied between 21
and 32mwhich reflects high variability in soil quality. Due to
seasonal occurrence of floods in the study area, the silt, clay
and clay minerals, and organic matter content of the flood
sediment usually vary considerably [37]. The high variability
in properties of flood sediments may be responsible for high
spatial variability of soil quality indicators.

The spatial structure of the semivariogram models was
defined by the classes of spatial dependence proposed by
Cambardella et al. [32]. Very high nugget values tend to
mask the degree of spatial structure [39]. Therefore, relative
nugget effect (i.e., nugget semivariance as a percentage of total
semivariance) has been used to classify the spatial depen-
dence of soil properties [32]. The lower the relative nugget
effect is, the stronger the spatial dependence is. Among the
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Figure 2: Experimental (symbol) and fitted (line) semivariograms of physical soil quality indicators (y axis of the semivariograms is at
different scale).

measured variables sand, clay, and 𝐾
𝑆
showed moderate

spatial dependence while the silt, bulk density, porosity, and
MWD showed strong spatial dependence (Table 4). Iqbal et
al. [12] stated that the spatial structure of sand was strong but
wasmoderate for clay. In our investigation spatial structure of
sand and clay was moderate. Tsegaye and Hill [40] observed
lower structural variability and range in bulk density while
Iqbal et al. [12] reported high range and moderate spatial
structure.The structural variability in bulk density was strong
in the present investigation. Basaran et al. [41] observed
a strong spatial dependence but Iqbal et al. [12] found a
moderate spatial structure for 𝐾

𝑆
which was also reported

in this study. Shukla et al. [42] studied the spatial variability
of MWD and found occurrence of spatial dependence. The
present study also reported strong spatial dependence of
MWD, which was well corroborated with the findings of
Shukla et al. [42].

3.3. Kriged Contour Maps of Physical Soil Quality Indicators.
Kriged contour maps of the measured variables showed that
silt was higher at the western part than the eastern part
of the field (Figure 3). The percentage of clay was lower at
the western part than the eastern part of the field. As the
percentage of silt was high, the bulk density of the western
part of the field was much lower than the eastern part. The
spatial variation of bulk density was also in good agreement
with the spatial variation of porosity in the field. Although
percentages of clay, bulk density, and porosity have a strong

influence on𝐾
𝑆
, the kriged contourmaps of the current study

showed a weak influence of clay, bulk density, and porosity
on 𝐾
𝑆
. For example, western part of the study area had low

percent clay and higher porosity but the 𝐾
𝑆
of this part was

low.TheMWDwas higher in themiddle part of the field.The
percentage of silt at themiddle part of the field was lowwhich
might be a reason for higher MWD in this area. Rabbi et al.
[31] reported that MWD of tidal floodplain soils decreases
with the increase in silt content of the soil. The variation
of various soil physical parameters revealed in the kriged
contour maps implies the significance of the depositional
activity of tidal river.

3.4. Spatial Structure of Physical Soil Quality Index (SQI
𝑃
).

The spatial analysis showed that the spatial dependence of
(2 of 5), SQIP (3 of 5), and SQIP (4 of 5) was strong. The
highest sill value was obtained for SQIP (2 of 5) and lowest
for SQIP (4 of 5) (Figure 4). The range values of SQIP varied
from 25 to 46m. The highest range value was found in SQIP
(4 of 5). The high range value of SQIP (4 of 5) indicated that
under strict soil quality criteria combined soil quality was
spatially related to longer lag distance. The kriged map of
SQIP showed that soil quality across the field changes more
rapidly in SQIP (2 of 5) than in the other two combinations
and overall the probability of soil quality indicators exceeding
the thresholds was 55%. On the basis of the set physical soil
quality criteria it was strongly revealed that south-western
and south-eastern part of the kriged map of SQIP (3 of 5) had
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Figure 3: Kriged maps showing spatial variability of physical soil quality indicators (a) sand (%), (b) silt (%), (c) clay (%), (d) bulk density (g
cm−3), (e) porosity (%), (f)𝐾

𝑆
(cm day−1), and (g) MWD (mm) of Inceptisol in Ganges Tidal Floodplain of Bangladesh.

90% probability of exceeding soil quality threshold ranges.
Similar to SQIP (3 of 5) the SQIP (4 of 5) showed that 4 soil
quality indicators at the south-western part had 95% chance
of meeting threshold range and had only <20% chance in
the eastern part. Therefore, the field can be divided into two
distinct parts having a “good physical soil quality” and a
“poor physical soil quality” based on the probability values.
As shown in Figure 5(c), south-western part was better in
soil physical quality than that of the eastern part of the field.

Since the spatial variability of physical properties of soil has
implications for water storage, nutrient management, and
crop selection [12], the spatial variability of SQIP can be used
to identify sites for better crop production.

4. Conclusion

The highest range of semivariogram models of the measured
physical soil quality indicators was∼30m, which reflects high
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Figure 4: Experimental (symbol) and fitted (line) semivariograms of physical soil quality index (SQIP) (𝑦 axis of the semivariograms is at
different scale).

spatial variability in soil quality. Since the study area had
high occurrence of seasonal floods, the high variability in soil
propertiesmight be related to variability of properties of flood
sediments.Themeasured physical soil quality indicators were
transformed and combined into three physical soil quality
indices, that is, SQIP (2 of 5), SQIP (3 of 5), and SQIP (4 of
5). On the basis of the set physical soil quality criteria it was
strongly revealed that in case of SQIP (2 of 5) the entire field
studied had overall 55% chance of meeting threshold range of

at least 2 soil quality indicators. Under SQIP (3 of 5) scenario,
the soil quality index map showed 90% chance of meeting
threshold ranges of 3 soil quality indicators at south-western
and south-eastern parts of the agricultural field studied,
whereas south-western part had >95% chance of meeting
SQIP (4 of 5) criterion. Therefore, the soil quality indices
obtained by transformation and combination of indicators,
could be useful to evaluate the spatial variability of physical
soil quality of an agricultural field.
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Figure 5: Kriged maps showing spatial variability of physical soil quality index (SQIP) (a) SQIp (2 of 5), (b) SQIP (3 of 5), and (c) SQIP (4 of
5). Gray scale showing 0 is poor and 1 is good soil physical quality.
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