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Abstract Characterization of soil properties is a key step in understanding the source of spatial

variability in the productivity across agricultural fields. A study on a 16 ha field located in the

eastern region of Saudi Arabia was undertaken to investigate the spatial variability of selected soil

properties, such as soil compaction ‘SC’, electrical conductivity ‘EC’, pH (acidity or alkalinity of

soil) and soil texture and its impact on the productivity of Rhodes grass (Chloris gayana L.). The

productivity of Rhodes grass was investigated using the Cumulative Normalized Difference

Vegetation Index (CNDVI), which was determined from Landsat-8 (OLI) images. The statistical

analysis showed high spatial variability across the experimental field based on SC, clay and silt;

indicated by values of the coefficient of variation (CV) of 22.08%, 21.89% and 21.02%, respec-

tively. However, low to very low variability was observed for soil EC, sand and pH; with CV values

of 13.94%, 7.20% and 0.53%, respectively. Results of the CNDVI of two successive harvests

showed a relatively similar trend of Rhodes grass productivity across the experimental area

(r = 0.74, p= 0.0001). Soil physicochemical layers of a considerable spatial variability (SC, clay,

silt and EC) were utilized to delineate the experimental field into three management zones

(MZ-1, MZ-2 and MZ-3); which covered 30.23%, 33.85% and 35.92% of the total area, respec-

tively. The results of CNDVI indicated that the MZ-1 was the most productive zone, as its major
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areas of 50.28% and 45.09% were occupied by the highest CNDVI classes of 0.97–1.08 and 4.26–

4.72, for the first and second harvests, respectively.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Farming systems have various types of soils, habitats, microcli-

matic features, and crop varieties, which result in wide varia-
tions in soil fertility, water retention and crop productivity
(Sciarretta and Trematerra, 2014). Crop yield variability can
be caused by many factors, including spatial variability of soil

type, landscape position, crop history, soil physical and chem-
ical properties and nutrient availability (Wibawa et al., 1993).
Understanding the spatial variability of soil physicochemical

characteristics, in both its static (e.g. texture and mineralogy)
and dynamic (e.g. water content, compaction, electrical con-
ductivity and carbon content) forms is necessary for site-

specific management of agricultural practices, as it is directly
contributing to variability in crop yields and quality (Jabro
et al., 2010; Silva Cruz et al., 2011). Site-specific practices could
help significantly in managing the spatial variability in the pro-

ductivity of agricultural soils by tailoring the agricultural
inputs to fit the spatial requirements of soil and crop
(Fraisse et al., 1999). Spatial variations of soil properties

across agricultural fields have been reported by many scientists
as a major source of variability in crop yields (Gaston et al.,
2001). Therefore, determination of the major sources of varia-

tion in productivity is a key parameter in achieving efficient
site-specific management practices (Mzuku et al., 2005). Vari-
ability in agricultural soils is a function of both soil structure

and the imposed management practices for crop production
(Hulugalle et al., 1997).

Soil Physicochemical properties that are important in crop
production are characterized as those that directly affect crop

growth, such as water, oxygen, temperature and soil resistance,
and others, such as bulk density, texture, aggregation and pore
size distribution, that indirectly affect crop growth (Letey,

1995). Soil compaction risk occurs when soil density reaches
a critical value, beyond which soil performance is affected con-
siderably. Such critical soil densities are different for different

crops in different soils and different climatic regions (Bouma,
2012). Soil compaction negatively affects essential soil proper-
ties and functions, such as hydraulic properties and gas-phase

transport or root growth; hence, it is associated with various
environmental and agronomic problems, such as erosion,
leaching of agrochemicals to water bodies, emissions of green-
house gases and crop yield losses (Keller and Lamandé, 2012).

The susceptibility of agricultural soils to soil compaction
depends mainly on soil type and moisture status. In general,
for moist soils, soil compaction increases with the decrease in

soil particle size (Sutherland, 2003).
Spectral vegetation indices are being successfully used as

effective measures of vegetation activity and are considered

as useful parameters to characterize differences in crop canopy
characteristics; hence, for the assessment of spatial variability
in agricultural fields (Al-Gaadi et al., 2014; Henik, 2012).
The Normalized Difference Vegetation Index (NDVI) is con-

sidered by many scientists and researchers as one of the most
important vegetation indices utilized for the prediction of crop
production, because of its strong relationship with crop yield
(Yin et al., 2012; Bhunia and Shit, 2013; Matinfar, 2013;

Sheffield and Morse-McNabb, 2015).
Geostatistical methods are essential for the investigation of

spatial variations of soil and crop parameters across agricul-

tural fields, which can lead to the efficient implementation of
site-specific management systems (Najafian et al., 2012). An
experimental variogram is usually used to measure the average

degree of dissimilarity between locations that are not sampled
and nearby data values (Deutsch and Journel, 1998). Hence,
correlations at various distances can be established to come
up with values for non-sampled field locations.

Soil parameters are the most important factors in crop
production systems. Hence, understanding their spatial
variability across agricultural fields is essential in optimizing

the application of agricultural inputs and crop yield. There-
fore, the objectives of this study were: (i) to characterize the
spatial variability of selected soil physicochemical properties

across an agricultural field, and (ii) to investigate the spatial
correlation between the studied soil properties and CNDVI
as an indicator of Rhodes grass productivity.

2. Materials and methods

2.1. Experimental site

The study was conducted on a 16 ha field irrigated by a center
pivot system in a commercial farm located in the eastern region

of Saudi Arabia that extended between the latitudes of 23� 480
46.8500 and 24� 140 22.6500 N and the longitudes of 48� 490

48.9800 and 49� 200 55.4500 E (Fig. 1). The farm was laid out

along a valley area with small undulations under an arid
climatic zone. The study area experienced hot summers with
mean temperature of 42 �C and cold to moderate winter with

a mean temperature of 18 �C. The mean annual rainfall was
in the range from 60 to 90 mm. The major crops cultivated
in the experimental farm include potatoes, wheat, alfalfa, corn,

Rhodes grass and Sudanese grass.
2.2. Sampling strategy

The field was sampled on a 40 m � 40 m grid strategy

described by Mallarino and Wittry (2001) and Franzen
(2011). This sampling strategy resulted in 96 sampling loca-
tions (field data points) covering the whole experimental field

(Fig. 2). Of the 96 sampling locations of the experimental field,
data of 86 sampling points within the actual experimental area
were used for this study. The preparation of the sampling grid

map was generated using ArcGIS (Ver. 2010) software
program, while a GPS-receiver was used for locating the pre-
determined sample points in the field, for the collection of soil
samples in the period from 10 to 15 April, 2013.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Location map of the experimental field.

Figure 2 Grid sampling map of the experimental field.
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2.3. Field data collection

Geo-referenced soil samples were collected from the top soil

layer at a depth of 0–20 cm and analyzed for soil electrical
conductivity (EC) and soil pH as described by Estefan et al.
(2013). The same samples were analyzed for soil texture

analysis, adopting the hydrometer method (Ryan et al.,
2001). In addition, soil compaction measurements were also
recorded at a soil depth of 0–15 cm using the soil cone

penetrometer (Model: Field Scout SC 900). While taking soil
measurements, average soil moisture of 13% (d.b.) was
maintained.

2.4. Geostatistical analysis

Geostatistical techniques play an important role in the quanti-
tative evaluation of spatial variability within a field (Yang

et al., 2011). Kriging, for example, is characterized as a method
of optimal prediction or estimation in geographical space and
is often referred to as being the best linear unbiased predictor

(Oliver, 2010). Hence, the collected soil physicochemical data
(EC, pH, texture and SC) were assigned to the respective
geo-coordinates and exported to a GIS domain (Arc GIS

Software of ESRI, Inc., 2010) as a shape file for geostatistical
analysis. The longitude and latitude of each sampled location
were designated with x and y variables, respectively. The field

data sets, soil EC, pH, soil texture and SC were termed as z1,
z2,z3, . . .zn.

In kriging (ordinary), interpolation algorithm was devel-

oped and tested, by using the collected observations from 96
sampling locations, according to the ratio distribution of 6:4
(58 locations as training samples and the remaining 38 catego-

rized as test samples). Training sampling (58 locations) was
used for kriging interpolation; however, the 38 test samples
validated the ability tointerpolate unknown values of soil
EC, pH, SC and soil texture (Childs, 2004). The variance

was calculated on 0.0–1.0 scales. Kriging estimation was made
and compared with the measured values. Thus, for each
sampled location, the collected observations included the mea-

sured value, Z(xi) and the estimated value, Z0(xi), as well as
their standard values of Z1(xi) and Z2(xi). The performance
statistics were assessed in terms of Mean Error (ME), Mean

Standard Error (MSE), Average Standard Error (ASE), Root
Mean Square Error (RMSE) and Root Mean Square
Standardized Error (RMSSE) as described in Yang et al.
(2011) and illustrated in Eqs. (1)–(5). Geostatistical software

program (Gamma Design Software) was used to construct
semivariograms and to address the spatial structural analysis
for the variables.

ME ¼ 1

N

XN
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ME ¼ 1

N
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2.5. Rhodes grass crop productivity

Eight Landsat-8 cloud-free images, corresponding to Rhodes
grass growth period, were downloaded from the Earth
explorer portal of the USGS (http://earthexplorer.usgs.gov),

Table 1. The spatial variability of the experimental field was
investigated through the Normalized Difference Vegetation
Index (NDVI) resulting from Rhodes grass reflectance at red
and Near Infrared (NIR) channels captured by Landsat-8

(OLI) images. Consequently, the vigor/productivity of Rhodes
grass was assessed against the recorded soil physicochemical
properties.

Initially, the downloaded cloud free images were subjected
to radiometric calibration (top of atmosphere – TOA correc-
tion) for surface reflectance using ENVI (ver. 5.1) software

program. Then, the NDVI image was developed from the
surface reflectance image, using Eq. (6).

NDVI ¼ NIR�Red

NIRþRed
ð6Þ

where NIR is the reflectance from the near infrared portion
(i.e. band 5) and Red is the reflectance from the red portion
(i.e. band 4) of the electromagnetic spectrum detected by

landsat-8 (OLI) sensors.
The NDVI of the experimental field was calculated for all

acquired images (Table 1). Subsequently, a cumulative NDVI

(CNDVI) was determined for each of the two Rhodes grass
cuts/harvests. The obtained CNDVI maps, for the growth
period of each of the two harvests, were overlaid on soil

physicochemical maps (i.e. soil EC, pH, SC and texture), in
order to visualize their impact on the spatial variability in
Rhodes grass productivity. In addition, Rhodes grass crop
performance was also assessed against the management zones

delineated in accordance with the studied soil physicochemical
properties of the experimental area.

2.6. Delineation of management zones (MZ)

The generated maps of soil physicochemical properties and
CNDVI were subjected to fuzzy c-means clustering analysis

and used as inputs to determine MZ using Management Zone
Analyst (MZA) software (Fridgen et al., 2004). Harvest-wise
Table 1 Details on Rhodes grass sowing, harvesting and

satellite overpass (images) dates.

Description Date Crop age

(days)

Remarks

Sowing date 25 April, 2013 00 Cut/harvest

number 1Image 1 11 May, 2013 16

Image 2 27 May, 2013 32

Harvesting date 7 June, 2013 43

Image 3 12 June, 2013 05 Cut/harvest

number 2Image 4 28 June, 2013 21

Image 5 14 July, 2013 37

Image 6 30 July, 2013 53

Image 7 15 August, 2013 69

Image 8 31 August, 2013 85

Harvesting date 7 September, 2013 92
generated CNDVI of Landsat-8 data was integrated with the
thematic maps of soil physiochemical properties. The output
file of MZA was imported to ArcGIS (Ver. 2010) software

program to generate management zone map of the experimen-
tal field. The management zones were determined based on the
representation of Fuzziness Performance Index (FPI) and

Normalized Classification Entrophy (NCE) performance
indices as described by Fraisse et al. (1999) and Lark and
Stafford (1997).

3. Results and discussion

The analysis of the collected data of soil physicochemical

parameters (soil EC, pH, SC, and soil texture components)
was first achieved through the conventional statistics
(minimum, maximum, arithmetic mean, median, mode, stan-

dard deviation, standard error, coefficient of variation (CV),
Kurtosis and Skewness) as given in Table 2. However, spatial
variability of each parameter was assessed using semivari-
ogram measures (range, nugget, sill and nugget ratio), Table 3;

and the maps of the studied parameters were generated using
the kriging (ordinary) technique (Osama et al., 2005). Results
of the descriptive statistics indicated that the observations of

soil pH, SC and clay content showed almost symmetric data.
However, the distribution of sand and silt observations skewed
to the left and soil EC observations skewed to the right.

Kurtosis results indicated that except for sand, all physico-
chemical parameters revealed a lower and broader central peak
with shorter and thinner tails, while the distribution of sand
observations exhibited a higher and sharper central peak with

longer and fatter tails.

3.1. Soil texture

Soil texture data were analyzed (Table 2) and subsequently
subjected to geospatial analysis (Table 3) to investigate the
spatial variability of sand, clay and silt components across

the experimental field. The results revealed that sand was the
dominant soil texture component in the experimental field
(80.53%), followed by clay (10.84%) and silt (8.63%). As indi-

cated by the values of the coefficient of variation (CV), it was
observed that the spatial variability of the clay component
across the experimental field was the highest (CV of 21.89%)
compared to silt (CV of 21.02%) and sand (CV of 7.20%).

This was also shown from the results of geostatistical analysis
(Table 3), as the least variance was shown for sand (0.04),
followed by clay (0.19) and silt (0.12), with semivariogram

range values of 99.11, 5.22 and 76.58 m, respectively. The
RMSSEE values for sand (0.819), silt (0.921) and clay
(1.161) indicated a slight under-estimation of sand and silt

components and an over-estimation of the clay component.
In general, the results revealed that, in terms of soil texture
components, the experimental field was relatively homoge-

neous in sand with a low spatial variability in clay and silt
components. The spatial variability maps of soil sand, silt
and clay are provided in Figs. 3–5, respectively.

3.2. Soil electrical conductivity (EC) and soil pH

The results of the descriptive statistics (Table 2) revealed that
the values of soil EC across the experimental field varied

http://earthexplorer.usgs.gov),


Figure 3 Spatial variability of sand component across the

experimental field.

Figure 4 Spatial variability of silt component across the exper-

imental field.

Figure 5 Spatial variability of clay component across the

experimental field.
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between 0.70 and 1.19 dS m�1 and the values of soil pH varied
between 7.82 and 7.98. As per the standards of soil EC and pH
scales (Soil Survey Division Staff, 1993), the field soil was

characterized as non-saline and moderately alkaline soil. The
spatial distribution of both soil EC and soil pH across the
experimental field is illustrated by Figs. 6 and 7, respectively.

The soil pH showed a very low variability across the experi-
mental field, as indicated by the very low value of CV of
0.53%. However, low variability of EC was observed across

the experimental field with a CV value of 13.94%. Further-
more, geostatistical analysis (Table 3) showed a variance value
of 0.28 for soil EC across the study field, while for pH it was
0.02. The variance strength was also assessed through the

RMSSEE, which resulted in a variogram of 0.862 for EC
and 1.379 for pH. The variance and its associated RMSSEE
results also indicated that the experimental field was relatively

homogeneous in terms of soil pH with low to moderate spatial
variation in soil EC with semivariogram range values of 28.2
and 16.6 m, respectively.
Figure 6 Spatial variability map of soil EC.

Figure 7 Spatial variability map of soil pH.



426 E. Tola et al.
3.3. Soil compaction (SC)

The descriptive statistics (Table 2), as well as the geostatistical
results (Table 3), showed a considerable variability of SC
across the experimental field (CV of 22.08%), with values of

soil resistance to penetration ranging between 617 and
2264 kPa. The generated SC map (Fig. 8) showed its spatial
distribution across the experimental field. In terms of spatial
variation of SC, variogram analysis showed a variance value

of 0.29 across the sampled data (Table 3) with an associated
RMSSE value of 0.904.

3.4. Rhodes grass productivity

Rhodes grass productivity was assessed through the spatial
variability of the Cumulative Normalized Difference Vegeta-

tion Index (CNDVI), which was determined from two
Landsat-8 images for the first Rhodes grass harvest and six
images for the second harvest. The spatial distribution of the

CNDVI across the experimental field is illustrated by the
results of the descriptive statistics and the geostatistical analy-
sis (Tables 2 and 3). The spatial variability of CNDVI was very
low as reflected in the values of CV of 3.88% and 6.79% for

the first and second harvests, respectively. Similarly, variances
Figure 8 Spatial distribution of soil compaction across the

experimental field.

Table 2 Descriptive statistics of the measured soil physicochemical

Description Soil EC (dS m�1) Soil pH SC (kPa)

Minimum 0.70 7.82 617

Maximum 1.19 7.98 2264

Mean 0.91 7.90 1600

Median 0.89 7.91 1614

Mode 0.86 7.93 1614

Standard Deviation (SD) 0.13 0.04 353.28

Standard Error (SE) 0.01 0.004 38.09

CV, % 13.94 0.53 22.08

Skewness 0.46 0.01 �0.17

Kurtosis �0.61 �1.09 0.12
of 0.69 and 0.76 with semivariogram range values of 32.77 and
38.90 m were observed for CNDVI data of the first and second
harvests, respectively.

3.5. Interrelations between soil parameters and their impact on

CNDVI

To study the interrelations among soil physicochemical
properties, as well as, between soil properties and Rhodes grass
productivity, the collected observations were subjected to

correlation matrix. The results shown in Table 4 indicated that
soil texture components correlated significantly with soil EC.
For example, the clay component showed a significant direct

correlation with soil EC. However, the sand component of
the soil texture showed a significant inverse correlation with
soil EC, which coincided with the findings reported by Heil
and Schmidhalter (2012). Although, soil compaction showed

no significant effects on Rhodes grass performance, it showed
a significant inverse correlation with the clay component of soil
texture, and a high significant inverse correlation with soil EC.

However, a direct relationship of high significant correlation
was observed between soil compaction and pH.

The spatial variability of Rhodes grass productivity was

observed to be of the same trend as indicated by the highly sig-
nificant spatial correlation between the CNDVI values of the
first and second harvests, with a correlation coefficient (r) of
0.74 (p= 0.0001). The results of this study also revealed that

all soil texture components (sand, silt and clay) showed signif-
icant spatial correlations with Rhodes grass productivity repre-
sented by the CNDVI. Among soil texture components, the silt

component showed the most significant correlation with
CNDVI; with (r, p) values of (0.22, 0.043) and (0.32, 0.002)
for the first and second Rhodes crop harvests, respectively.

Although, the results showed inverse correlations between
the CNDVI and other tested soil parameters (SC, EC and
pH), significant correlation was observed only between

CNDVI and soil pH for the first harvest (r = �0.22,
p= 0.041).

According to the results of geostatistical analysis for soil
texture components, soil EC and SC, it can be concluded that

low to moderate spatial variability in these parameters was
observed across the experimental field. These components were
ranked in a descending order based on the degree of variability

(CV, Table 2) as: SC > clay > silt > EC. To address the
cumulative impact of soil parameters on Rhodes grass
properties.

Soil texture CNDVI

Sand % Clay % Silt % Harvest No. 1 Harvest No. 2

53.47 4.18 3.55 0.76 3.35

97.01 17.36 12.77 1.08 4.72

80.53 10.84 8.63 0.96 4.39

80.08 10.96 8.79 0.98 4.45

81.48 11.54 10.56 0.98 4.57

5.80 2.37 1.81 0.04 0.30

0.62 0.26 0.20 0.007 0.028

7.20 21.89 21.02 3.88 6.79

�0.80 �0.10 �0.35 �1.51 �2.47

5.37 0.78 �0.39 3.97 7.05



Table 3 Geostatistical analysis results for soil physicochemical properties.

Description Soil texture components Soil EC (dS m�1) Soil pH SC (kPa) CNDVI

Sand % Clay % Silt % Harvest No. 1 Harvest No. 2

Model G G G G G G G S

Nugget (C0) 0.01 0.02 0.00 0.00 0.00 0.02 0.02 0.01

Sill (C0 + C) 0.23 0.24 0.04 0.10 0.20 0.25 0.06 0.06

Range (A) 99.11 76.58 5.22 16.60 28.18 63.80 32.77 38.90

Variance 0.04 0.19 0.12 0.28 0.02 0.29 0.69 0.76

R2 0.91 0.91 0.81 0.98 0.98 0.97 0.94 0.95

RSS 3.0E�04 1.2E�04 7.4E�05 2.3E�04 5.5E�04 1.8E�04 2.5E�05 2.1E�05

ME 0.0045 0.0004 0.0051 0.0027 0.0034 0.0003 0.0069 0.0048

RMSE 0.0920 0.0640 0.0780 0.0570 0.0590 0.0390 0.0450 0.0580

ASE 0.0460 0.0570 0.0680 0.0490 0.0360 0.0420 0.0590 0.0420

MSE 0.0090 0.0059 0.0028 0.0052 0.0060 0.0038 0.0046 0.0019

RMSSE 0.819 1.161 0.921 0.862 1.379 0.904 1.112 0.864

G – Gaussian; S – spherical; E – exponential; RSS – residual sums of squares.

Table 4 Correlation coefficient (r) between soil properties and NDVI.

CNDVI (1st harvest) CNDVI (2nd harvest) Clay EC Sand Silt Compaction pH

CNDVI (1st harvest) –

CNDVI (2nd harvest) 0.74** –

Clay 0.16 0.24* –

EC 0.00 �0.06 0.24* –

Sand 0.22* 0.17 �0.27* �0.25* –

Silt 0.22* 0.32** 0.31** 0.12 �0.30** –

Compaction �0.08 0.00 �0.27* �0.31** 0.11 0.06 –

pH �0.22* �0.11 �0.19 �0.46** 0.23* �0.14 0.53** –

* Significant (p < 0.05).
** Highly significant (p< 0.01).
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productivity, the selected soil physicochemical layers were
subjected to management zone analysis for the characteriza-

tion of the experimental field (Fig. 9). The delineated MZ
map resulted in three distinct zones: MZ-1, MZ-2 and MZ-3,
which covered 35.78%, 37.66% and 26.56% of the experimen-

tal field area, respectively.
Figure 9 Management zone map of the experimental field.
The spatial layers of CNDVI for the first and second
harvests (Figs. 10 and 11) were overlaid on the generated

MZ map, and quantitatively assessed for CNDVI distribution
across the experimental field (Table 5). The major areas of
MZ-1 were occupied by the high CNDVI classes under both

first (50.28%) and second (45.09%) harvests. The major areas
Figure 10 CNDVI of the 1st harvest overlaid on the MZ map.



Figure 11 CNDVI of the 2nd harvest overlaid on the MZ map.

Table 5 CNDVI distribution across the management zones as

a percentage of total experimental area.

Harvest

No.

CNDVI (Area, %)

MZ-1 MZ-2 MZ-3 Total

1 Low (0.76–0.86) 4.31 14.77 25.23 44.31

Medium (0.87–0.96) 10.72 14.08 10.32 35.13

High (0.97–1.08) 15.20 5.00 0.37 20.57

Total area (%) 30.23 33.85 35.92 100.00

2 Low (3.35–3.80) 4.27 13.83 24.01 42.11

Medium (3.81–4.25) 12.34 15.54 11.61 39.48

High (4.26–4.72) 13.63 4.48 0.30 18.41

Total area (%) 30.23 33.85 35.92 100.00
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of MZ-3 were occupied by the low CNDVI classes for both
first (70.24%) and second (66.84%) harvests. However, low

and medium CNDVI classes occupied relatively the same areas
of MZ-2 for both first and second harvests. In general, MZ-1
showed the highest Rhodes grass productivity followed by

MZ-2, while MZ-3 was characterized as the least productive
zone in the experimental field. These results indicated that
the experimental field was successfully delineated into three

distinct management zones based on Rhodes grass
productivity.

4. Conclusions

A field study was conducted to investigate the spatial variabil-
ity of soil physicochemicals and to study its impact on the
productivity of Rhodes grass. The following conclusions are

inferred from the study:

� Low to moderate spatial variability in soil physicochemical

properties was observed across the experimental field. The
four soil properties that showed a considerable degree of
variation were soil compaction (CV of 22.08%), clay

(CV of 21.89%), silt (CV of 21.02%) and soil EC (CV of
13.94%).
� Based on soil physicochemical layers, the experimental field

was delineated into three distinct management zones
(MZ-1, MZ-2, and MZ-3), which covered 30.23%,
33.85% and 35.92% of the experimental area, respectively.

� Soil texture components showed a significant correlation
with Rhodes grass productivity. Silt component showed a
high significant spatial correlation with CNDVI (r= 0.32
and p= 0.002), while, clay (r= 0.24, p= 0.025) and sand

(r = 0.22, p = 0.042) components showed a low significant
correlation with the CNDVI.

� Although, the results showed inverse correlations between

Rhodes grass CNDVI with SC, EC and pH, significant
correlation was observed only between CNDVI and soil
pH for the first harvest (r= �0.22, p = 0.041).
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