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Solute Transport 

 

16.1 INTRODUCTION 

Water entering the soil profile from rain or irrigation is essentially a dilute solution. 
Rainwater is pure when it condenses to form clouds; during descent it absorbs 
atmospheric gases (i.e., CO2, N2, products of sulfur and O2, etc.). When water flows on 
soil surface as overland flow and/or through the soil matrix, it also dissolves solutes (e.g., 
salts, fertilizers, pesticides). These solutes not only move with soil water but also within 
the soil matrix mainly due to the concentration gradients. Sometimes, solutes react among 
themselves and/or with soil material according to a range of physical and chemical 
processes. 

In agricultural ecosystems, solutes may be categorized on the basis of their function 
(e.g., nutrients, pesticides, waste compounds, salts, organic chemicals, heavy metals, 
viruses, and bacteria). Understanding transport of solutes in soil is important to many 
management problems in agriculture. It can help when developing procedures for 
maximizing the effective use of fertilizers or pesticides and other chemicals within the 
root zone while minimizing their movement into groundwater. Knowledge of these 
processes is important to understanding the problems of contamination of natural water 
through leaching or redistribution within a vadose zone to groundwater, availability of 
solutes for plant uptake, surface runoff, salt intrusion in coastal aquifers, seepage from 
storage or disposal systems, and chemical residues. 

Depending upon chemical stability and reactivity, the solutes are broadly classified 
into two categories: (i) conservative solutes, which remain unchanged physically and 
chemically, and do not undergo irreversible reactions, such as chloride (Cl) and bromide 
(Br); and (ii) nonconservative solutes, which can undergo irreversible reactions and 
change their physical or chemical phase. The nonconservative solutes can be divided into 
labile solutes and reactive solutes. The labile solutes can undergo reversible or 
irreversible physiochemical, biochemical, or microbial reactions and can change their 
physical or chemical phase with time. The examples of labile solutes are: nitrate, sulfate, 
and ammonia, which are involved in mineralization, immobilization, or redox reactions. 
Some pesticides are also labile and their lability is quantified by their half-life (White et 
al., 1998). Reactive solutes undergo reversible or irreversible reactions with soil 
constituents by way of adsorption (adsorption of cations, e.g., Ca+, Mg++, on clay 
particles), precipitation or dissolution (e.g., precipitation of calcium as calcium sulfate or 



calcium carbonate). The anions (e.g., such as nitrate and Br−), which are 
weakly adsorbed on positively charged sites, are known as nonreactive solutes. The 
transport of reactive and nonreactive solutes through soil is affected relative to the 
movement of water (Nielsen et al., 1986). 

Some solutes are already present in the water-filled pore space of the soil. These 
solutes may be present in the soil owing to: (i) mineralization of organic matter, (ii) saline 
groundwater intrusion, (iii) fertilizer and/or pesticide application, (iv) atmospheric 
deposition, and (v) weathering of mineral. When solute-free water flows through the soil 
matrix, the concentration of these preexisting solutes is the highest in those pores 
experiencing the lowest water flux. Apart from the preexisting, solutes are also applied 
on soil surface (e.g., fertilizer, pesticides, etc.). Basically solute transport within a soil 
matrix occurs by two physical processes: diffusion and convective flow. Several simple 
and complicated mathematical models have been developed in the past, which can 
reproduce the experimental results very well. Most of these models are developed for the 
macroscopic scale (Nielsen et al., 1986), although pore scale description is available (e.g., 
Navier–Stokes equation). This chapter describes the transport mechanisms in more detail 
and discusses the transport models on a macroscopic scale.  

16.2 SOLUTE TRANSPORT PROCESS 

The movement of solutes inside the soil matrix is caused by “mass flow” or 
“convection.” This type of flow is also called Darcian flow (see Chapter 12). The 
velocity at which solutes travel through soil matrix is generally known as “pore water 
velocity” and is the ratio of volumetric flow of solute through a unit cross-sectional area 
and volumetric moisture content of the soil matrix. In other words, the pore water 
velocity is the ratio of Darcian velocity and moisture content. In general, pore water 
velocity accounts for the straight-line length of path traversed in the soil in a given time. 
In reality, the flow paths are not always straight but are irregular or tortuous. This 
property is known as “tortuosity” of soil pores. Solutes do not always flow with water but 
sometimes go ahead of it due to the twin process of diffusion and dispersion or exclusion, 
lag behind due to adsorption or retardation, or get precipitated or volatilized. The 
movement of solute from the higher concentration to the lower concentration gradient is 
also known as the process of “diffusion.” This process commonly occurs within gaseous 
and liquid phases in the soil matrix due to the random thermal motion, also called 
“Brownian movement.” There is another simultaneous process that tries to mix and 
eventually even out the concentration gradients known as “hydrodynamic dispersion.” 
Diffusion is an active process, whereas dispersion is a passive process. However, in most 
practical applications these two solute transport processes are considered additive. 

Some chemicals, which are soluble in water and have a nonnegligible vapor phase, can 
exist in three different phases in a soil matrix: as a dissolved solute in soil water, as a gas 
in soil air, and as an ion absorbed on the soil organic matter or charged clay mineral 
surfaces. Therefore, all solute concentration terms are not equal in dimensions and 
depend on the concentration in these soil phases and the partitioning of these phases. The 
total solute resident concentration (C, g cm−3) in a soil matrix can be mathematically 
expressed as 
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C=ρbCa+θC1+faCg 
(16.1) 

where ρb is the soil bulk density (gcm−3), Ca is adsorbed concentration (g g−1), θ is 
volumetric soil moisture content (cm3cm−3), C1 is dissolved solute concentration (gcm−3), 
fa is the volumetric air content (cm3 cm−3), and Cg is gaseous solute concentration 
(gcm−3). Soil physical parameters (ρb, θ and fa) weight the solute concentrations in the 
three phases of soil on a volume basis, and convert different reference dimensions to cm3 
of soil. The resident concentration is the volume-averaged concentration in soil, which is 
measured by extracting a known volume of soil in water. The resident concentration is 
expressed as the mass of solute per unit volume of soil water to make it comparable to 
flux-averaged concentration. The flux concentration is the solute concentration in water 
flowing through the soil. 

16.3 MACROSCOPIC MIXING 

Several different mechanisms operating in the porous media during transport of solute are 
responsible for the mixing at macroscopic level. Some of these include the following 
(Greenkorn, 1983): 

1. Molecular diffusion: If the process is stationary or slow moving and the time required 
for the solute to move through the porous media is sufficiently long (i.e., for 
sufficiently long time scale) molecular diffusion is the primary source of macroscopic 
mixing. 

2. Tortuosity. The tourtuous flow paths inside the soil profile causes the fluid element to 
remain at different distances from the same starting position even when they travel at 
the same pore water velocity (ratio of Darcy velocity and soil moisture content). 

3. Connectivity of pores: If the pores are not well interconnected or if some of the pores 
in the porous media are not accessible to the fluid element flowing through that pore, 
they cause macroscopic mixing and dispersion. 

4. Hydrodynamic dispersion: The solute element near the wall of pore travels at a 
different velocity than the element at the center of pore (Fig. 16.1a). This results in a 
velocity gradient inside the pore and solute elements move relative to each other at 
different velocity. 

5. Immobile zones: The immobile water zones normally causes the fluid element to move 
quicker and out in the effluent solution earlier (early breakthrough), and at the same 
time, increases the tail of the breakthrough curve mainly due to the slow release of 
solute element trapped inside immobile water (see Sec. 16.12). 

6. Turbulence: If the size of the pore abruptly changes, the flow inside a pore may 
become turbulent and mixing is caused by eddies. 

7. Adsorption: When the concentration front looses some ions abruptly as they are 
removed from solution by the process known as adsorption, the unsteady state flow 
occurs and the concentration profiles becomes flat. 
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FIGURE 16.1 The physical 
mechanisms for hydrodynamic 
dispersion of solutes through soil 
matrix: (a) influence of velocity 
distribution within a soil pore; (b) 
influence of size of pore, and (c) 
influence of microscopic flow 
direction. 

16.4 FICK’S LAW 

There are two Fick’s laws, which describe diffusion of substances in porous media. The 
movement of ions from areas of higher concentration to lower concentration is 
proportional to the concentration gradient, the cross-sectional area available for diffusion, 
and the elapsed time during the solute transport. The net amount of solute crossing a 
plane of unit area in unit time is known as the solute flux density (J; gcm−2s−1), which is 
given by Eq. (16.2) known as Fick’s first law (1855) for steady state one-dimensional 
solute transport: 
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 (16.2) 

where Dm is the ionic or molecular diffusion coefficient of the porous media (cm2s−1), C 
is the solute concentration (gcm−3) and x is the distance (cm). The concentration gradient 
(∂C/∂x) in Eq. (16.2) is the driving force and the minus sign indicates that solute moves 
from areas of higher concentration to lower concentration. The molecular diffusion 
coefficient in Eq. (16.2) varies with soil physical and chemical properties of soil and 
solute (i.e., soil texture, soil moisture content, solute cocentration, and pH), soil solute 
interactions, and temperature. The solute concentration follows a normal, or Gaussian, 
distribution and can be described by the mean and variance. The depth of penetration (Xp) 
of a diffusing ion in soil for a given time duration (t) can be estimated by the root mean-
square displacement as follows: 

Xp=(2Dmt)1/2 
(16.3) 

Diffusion in soils is a relatively slow process and operates over small distances, thus 
maintaining the electrical neutrality of ions. For transient state condition, Eq. (16.2) is 
coupled with the one-dimensional mass conservation equation with no production or 
decay taking place during solute transport through soil 

 (16.4) 

Equation (16.4) implies that the net change in solute concentration is as a result of net 
change in rate of flow. Combining Eqs. (16.2) and (16.4) and assuming that Dm is 
independent of solute concentration and depth, results in Fick’s second law for one-
dimensional transient solute flow 

 (16.5) 

16.5 TRANSPORT EQUATIONS 

When a solute enters a soil matrix (which can be in a soil core, repacked soil column, or 
agricultural soil in a field) the initial sharp boundary between the resident and displacing 
solute starts diminishing mainly due to the twin processes of diffusion and dispersion. 
The transport of a solution through soil matrix consists of three main components: 
convection, diffusion, and dispersion, which are briefly described below. 

16.5.1 Convection or Mass Transport 

Convective or advective transport of a solution inside a soil matrix is known as the 
passive movement with flowing soil water. If the transport process has only convective 
transport without any diffusion, the water and solute move at the same average flow rate. 
Mathematically convective transport (Jm) can be expressed as 
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Jm=qsC 
(16.6) 

where Jm is the flux density for convective or mass transport (ML−2T−1), qs is the 
volumetric fluid flux density with dimensions of velocity (LT−1), and C is the volume 
averaged solute concentration (ML−3). The flux density of water can be calculated by the 
Darcy equation for a steady state flow of water. The qs is also analogous to θ, where v is 
the pore water velocity (LT−1). 

16.5.2 Diffusive Transport 

Diffusion is a spontaneous process resulting from the random thermal motion of 
dissolved ions and molecules. In general, the diffusion is an active process and diffusive 
transport tends to decrease the existing concentration gradients and moves the process 
towards homogeneity rather rapidly. Fick’s law defines the diffusive transport and for 
one-dimensional steady state transport is given as: 

 (16.7) 

where JD is solute flux density for diffusive transport of solute (ML−2T−1), θ is the 
volumetric moisture content (L3L−3). The diffusion coefficient in soils (Dm) is slightly 
less than the diffusion coefficient in pure water (D0) mainly due to the tortuous flow 
paths in soils. 

Dm=D0θξ 
(16.8) 

where ξ is the dimensionless tortuosity factor ranging roughly from 0.3 to 0.7 for most 
soils. 

16.5.3 Dispersive Transport 

The soil matrix consists of pores of different shapes, sizes, and orientation. This 
heterogeneity of pore structure causes a large deviation of local pore water velocities 
inside each individual pore. Consider a one-dimensional flow through a single capillary 
tube of constant radius R. According to Poiseuille’s law, the flow rate through each pore 
varies proportional to the fourth power of the radius R (Kutilek and Nielsen, 1994). 
However, the flow velocity (v) through the tube is a decreasing function of radial 
distance (r) from the center of tube. If average velocity is v′ then v=2v′(1−(r2/R2)), when 
r=R, i.e., at the wall of pore v =0, and at r=0, i.e., at the center of pore v=2v′. It is, 
therefore, clear that microscopic scale variations of pore water velocity in the soil matrix 
are very important and large. 

Dispersive transport occurs because of the velocity variations in soil matrix with 
respect to average pore water velocity. The velocity variations in a soil matrix is caused 
by several factors such as zero velocity at the particle surface, which increases gradually 
and is the maximum at the center of pore or at air water interface under unsaturated 
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conditions (Fig. 16.1a). Pore sizes also create velocity gradients with the velocity in 
larger pores greater than the velocity in smaller pores (Fig. 16.1b). The other possible 
reason is the fluctuation of flow paths of an element of water with respect to the mean 
direction of flow (Fig. 16.1c). Macroscopically, dispersion process is similar to the 
diffusion process, however, unlike diffusion, it occurs only during water movement. Field 
and laboratory experiments have shown that the dispersive transport can be described by 
an equation similar to diffusion as follows: 

 (16.9) 

where Dh is the mechanical dispersion coefficient (Bear, 1972) and is assumed to be a 
function of fluid velocity as follows: 

Dh=λvn 
(16.10) 

where λ is the dispersivity and exponent “n” is an empirical constant generally assumed 
equal to 1. 

The mixing or dispersion that occurs along the direction of flow path is called 
longitudinal dispersion and that in the direction normal to flow is known as transverse 
dispersion. Diffusion is an active process whereas dispersion is passive, in spite of this, 
most analysis on solute transport considers both processes to be additive because 
macroscopically both processes are similar. 

D=Dm+Dh 
(16.11) 

where D is the longitudinal hydrodynamic dispersion coefficient (Bear, 1972) or apparent 
dispersion coefficient (Nielsen et al., 1972).  

Combining Eqs. (16.6), (16.7), (16.9), and (16.11) leads to the following expression 
for solute flux, Js 

 (16.12) 

The equation of continuity states that: 

 (16.13) 

where Ss is adsorbed concentration (MM−1), ρb is the bulk density (ML−3), and t is time 
(T). Combining Eqs. (16.12) and (16.13) gives the following solute transport equation 

 
(16.14) 

It is well known that adsorption and exchange processes are usually nonlinear and also 
depend on the competing species in the soil system. Still, one of the most common 
approaches to describe the relationship between adsorbed and solution concentrations has 
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been to assume instantaneous adsorption and linearity between C and S of the form 
(forcing the constant or intercept to zero) 

Ss=KDC 
(16.15) 

where KD is the empirical distribution coefficient. Inserting Eq. (16.15) into Eq. (16.14) 
and dividing both sides with θ results in Eq. (16.16): 

 
(16.16) 

Assuming that the soil profile is homogeneous and moisture content and flux density are 
constant in time and space, Eq. (16.16) reduces to  

 (16.17) 

where R is the retardation factor and is given by 

 (16.18) 

KD in Eq. (16.15) can be obtained from the slope of sorbed concentration (MM−1) versus 
solution concentration (ML−3). A zero value of KD in Eq. (16.18) reduces R to 1, which 
indicates no interactions between solute and soil. A negative value of KD makes R less 
than one, which indicates anion exclusion or immobile water, which does not contribute 
to convective transport. In case of anion exclusion, (1−R) is known as anion exclusion 
volume. A positive KD results in R>1, which indicates sorption. 

16.6 BREAKTHROUGH CURVES 

When a fluid (or solute) is passed through a soil matrix containing another liquid in its 
pore space, the introduced fluid, which can also be called the displacing liquid or applied 
liquid, gradually displaces the preexisting liquid (displaced liquid). Analysis of the 
collected effluent from soil matrix at a given depth (or from one end of a repacked soil 
column) shows a change in composition of effluent solution with respect to time. If the 
displacing and displaced solutions are not mutually soluble, the process is called 
“immiscible” displacement (e.g., oil and water). On the other hand, if both solutions are 
soluble, the process is called “miscible” displacement (e.g., aqueous solutions). The 
graphical representation of the concentration of these solutes with respect to time or 
cumulative effluent volume or pore volume is known as “breakthrough curves” (BTC). 
Pore volume is the ratio of cumulative effluent volume (cm3) at a specified time and total 
volumetric moisture content of soil (cm3). Pore volume is a nondimensional number and 
is zero at time zero. 

16.6.1 Solute Input 
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As is evident in Figs. 16.2a–c, BTCs can have different shapes depending upon the solute 
application. Figure 16.2a shows a BTC where effluent solute concentration increases and 
reaches a maximum and then remains constant thereafter. The y-axis on Fig. 16.2 is the 
relative solute concentration (C/C0), which is the ratio of concentration of effluent solute 
collected at a given time (C) and the concentration of displacing or incoming solution 
(C0). The BTC in Fig. 16.2a is for a step input of displacing solute or tracer, where 
applied solution displaces all the preexisting solution gradually.  
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FIGURE 16.2 Breakthrough curves 
with respect to time of effluent arrival, 
volume of effluent, and pore volumes, 
(a) Chloride application as a step input 
through a 10 cm loam soil column 
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(pore water velocity=0.11 cm.h−1); (b) 
chloride application as a pulse input 
through a 10 cm loam soil column 
(pore water velocity=0.1 cm.h−1); and 
(c) schematic for a Dirac and square 
pulse input and output. (Modified from 
Shukla et al., 2002.) 

 

Therefore, the concentration of applied solution increases whereas that of the preexisting 
solution decreases with time. If the application of displacing or applied solution 
continues, it attains the maximum concentration equal to C0. The ETC in Fig. 16.2b is 
obtained from a predetermined volume of the displacing solution followed by the original 
or preexisting solution. This type of solute application is known as “pulse” application. A 
pulse application can be: (i) a distributed pulse, (ii) a dirac pulse, and (iii) a square pulse. 
The concentration of solution applied as a distributed pulse gradually increases, attains a 
maximum, and then gradually goes down to zero (Fig. 16.2b). A solute pulse application 
for an infmitesimally short period is known as a “dirac pulse” (Fig. 16.2c). When time for 
solute pulse application is much smaller than time of leaching, it is called a dirac pulse 
input (e.g., single application of highly soluble fertilizer, pesticide, etc.). A square pulse 
is a step-up change followed by a step-down change, and the ETC shows a steep rise 
followed by steep fall (Fig. 16.2c). 

16.6.2 Some Interpretations of Breakthrough Curves 

Pore volumes are defined as the ratio of the volume of displacing water (V, water entered 
or flowed out at a given time), and the volumetric moisture content of the soil (V/V0). 
Assuming that the moisture content of soil in a repacked column is 0.5cm3cm−3 (or 50%) 
and the total volume of soil column is 100 cm3, therefore, volumetric moisture content of 
the repacked soil column is 50 cm3. Once 50 cm3 of displacing solution is passed through 
the soil column, it corresponds to a pore volume of 1.  
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Soil–Solute Interactions 

The ETC in Fig. 16.3a depicts a condition when a solute of a given concentration 
displaces another solute (such as water) in such a way that all the soil pores start 
contributing at the same time and the solute concentration jumps from zero to the 
maximum (C0) as soon as 1 pore volumes of displacing solution passes through the soil 
column. This type of flow is known as a “piston flow,” which corresponds to pure mass 
flow or convection. In piston flow the entire center of solute front arrives at the end of 
column at the same time. Piston flow occurs in the absence of diffusion or dispersion or 
any type of interactions between solute and soil and solute and water move at the same 
velocity inside soil matrix. This type of flow is rare or near impossible under natural 
conditions. For known moisture content of soil and column dimensions, it is possible to 
calculate the number of pore volumes required before piston flow begins. The time 
required for a displacing solute to reach the other end of a column is known as 
breakthrough time, residence time, or travel time (t*), and is equal to L/v, where L is the 
length of soil column. For sorbing solutes the total travel time is obtained by multiplying 
R and L/v. 

The ETC in Fig. 16.3b shows an early arrival of displacing solute in the effluent 
solution (less than 1 pore volume). This process takes place because of the difference in 
the velocity at which water and solute travel inside the soil domain. The solute travels 
ahead of water because of “molecular diffusion and hydrodynamic dispersion.” The ETC 
presented in Fig. 16.3b passes through C/C0 of 0.5 at pore volume of 1. The area A and 
area B of this figure are numerically equal. This ETC represents a “convective dispersion 
process” with no interaction between solute and soil. The ETC in Fig. 16.3c is slightly 
shifted or retarded towards the x-axis. This type of shift is known as “sorption.” Opposite 
of sorption is “repulsion” or a phenomenon of “anion exclusion” when ETC moves away 
from x-axis (Kutilek and Nielsen, 1994) (Fig. 16.3d). 

Influence of Displacement Length 

With increasing displacement length, the tortuosity and pore size distributions of the soil 
also increases. For a given pore water velocity, the total resident time of the solute in the 
soil increases with increasing displacement length. Therefore, the total mixing by 
convection and diffusion also increases (Nielsen and Biggar, 1962). Figure 16.4 makes it 
abundantly clear that if a pulse of same amount is passed through soil columns of 10, 20, 
and 30 cm length, the progressive attenuation of the initial concentration takes  
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FIGURE 16.3 Interpretations from 
experimental breakthrough curves. 
(Modified from Kutilek and Nielsen, 
1994; Shukla et al., 2002.) 

 

FIGURE 16.4 The progressive 
attenuation of BTCs for 10 cm (A), 20 
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cm (B), and 30 cm (C) soil columns 
for a pulse type chloride application 
through laboratory soil columns. 
(Redrawn from Shukla et al., 2000.) 

place. This attenuation is the direct result of dilution. Therefore, solute applied as a pulse 
cannot carry its total mass beyond a certain depth. The total volumes of solution and total 
time required to completely displace the applied pulse increases with displacement length 
(Kutilek and Nielsen, 1994) (Fig. 16.4). 

16.7 DISPERSION PROCESSES 

Assuming the random capillary bundle concept (see Chapter 12), the classical dispersion 
theory was developed and a dispersion equation was suggested, which is similar to Fick’s 
law and takes into account both dispersive and diffusive fluxes (Taylor, 1953; De Josselin 
De Jong, 1958; Bear and Bachmat, 1967; Fried and Combarnous, 1971). There are 
several mechanisms that cause macroscopic mixing and are generally accounted for in the 
dispersion coefficient. Some of them are mixing due to tortuosity, inaccessibility of pore 
water, recirculation due to flow restrictions, macroscopic and hydrodynamic dispersion, 
and turbulence in flow paths (Greenkorn, 1983). In addition, molecular diffusion, the 
presence of dead-end pores, sorption, exclusion, and physical nonequilibrium affect the 
degree of asymmetry in BTCs in different proportions (Nielsen et al., 1986). 

The hydrodynamic dispersion coefficient (D) is proportional to the pore water velocity 
of a solute under steady state flow conditions (Biggar and Nielsen, 1967; Bear, 1972). 

 (16.19) 
D=λv 

(16.20) 

The proportionality constant, A,, in Eq. (16.20) is known as dispersivity. The value of 
dispersivity depends upon the scale over which water flux and solute convection is 
averaged. Dispersivity is also dependent on the moisture content of the porous media 
(Krupp and Elrick, 1968) and decreases rapidly as moisture content decreases from 
saturation. A 10-fold increase in longitudinal dispersivity is reported when moisture 
content decreases from saturation (Wilson and Gelhar, 1974). Some typical values of 
dispersivity for laboratory soil columns range from 0.5 to 2 cm (Jury et al., 1991), 0.11 to 
0.37 cm (for loam soil) and 0.14 to 0.22 cm (for sandy loam soil; Shukla et al., 2003). 
The dispersion processes are site specific and depend upon the subtler factors, which are 
related to the experimental conditions (Flury et al., 1998). The longitudinal dispersivity 
values are measured in field soils by placing a suction cup at different depths and 
measuring solute breakthough as a function of time. The dispersivity calculated for field 
soils by one-dimensional convective dispersion Eq. (16.23) or method of moments (Jury 
and Roth, 1990) are given in Table 16.1.  
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TABLE 16.1 Dispersivity Values Measured in 
Field Soils Using Suction Cups 

Soil Tracer Application rate, 
cmd−1 

Dispersivity 
cm 

Reference 

Clay, silty 
clay 

Cl, Tritium 2 9.4 Van de Pol et al. (1977) 

Clay loam Cl, NO3 – 8.3 Biggar and Nielsen (1976) 

Clay loam Br 96 5.2–23 Fleming and Butters (1995) 

Clay loam Br 30, 33, 41, 67 16–38 Jaynes (1991) 

Loam Cl 9.6–19.2 29 Roth et al. (1991) 

Loamy 
sand 

Br 1.1 3.2–15.8 Butters et al. (1989) 

Loamy 
sand 

Cl, NO3, 
BO3 

1.3 1–2 Ellsworth et al. (1996) 

Sand Cl 84 0.7–1.6 Hamlen and 

    132 0.8–2 Kachanowski (1992) 

Sand Cl 84, 117 17, 2.7 Van Wesenbeck and 
Kachanowski (1991) 

Source: Modified from Flury et al., 1998. 

16.8 RELATIONS BETWEEN DISPERSION COEFFICIENT AND 
PORE WATER VELOCITY 

The effective dispersion coefficient generally varies with mean microscopic flow 
velocity. Based upon the magnitude of the Peclet number (P, defined as vL/D, where L is 
a characteristic length), within the range of average pore water velocities, molecular 
diffusion dominates the dispersion of the solute at smaller displacement velocities and 
gives way to convective dispersion at greater velocities. Hence, for relatively small 
average pore water velocities we expect the apparent diffusion coefficient to have values 
close to that of the diffusion coefficient (Do) in the soil solution, and to be only somewhat 
dependent on pore water velocity. At relatively large velocities, the dispersion coefficient 
is strongly related to pore water velocity. 

The five dispersion regimes can be identified in Fig. 16.5 as (i) pure molecular 
diffusion; (ii) molecular diffusion and kinematic dispersion; (iii) predominant kinematic 
dispersion and (iv) and (v) as pure kinematic dispersion regimes (Shukla et al., 2002). In 
regimes ii-v, an increase in average pore water velocity increases mixing and reduces the 
impact of molecular diffusion in the direction of flow. Using mixing cell approximations, 
it can be shown that in the region 0.01<P<50, dispersion is directly proportional to pore 
water velocity (Perkins and Johnston, 1963). Further  
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FIGURE 16.5 The relationship 
between DD0

−1 and Peclet number for: 
(A) field soil (A) (from Biggar and 
Nielsen, 1976), (B) loam, (C) sandy 
loam (from Shukla et al., 2002), and 
(D) single grain material (from 
Pfannkuch, 1963). (Redrawn from 
Shukla et al., 2002.) 

increases in P results in a nonlinear relation to velocity (  with n>1). Pfannkuch 
(1962) and Torelli and Scheidegger (1972) reported an n value of 1.2, Taylor (1953) of 2, 
Biggar and Nielsen (1976) of 1.11, and Shukla et al. (2002) of 1.71 for sandy loam and 
1.21 for loam.  

The relations between D/Do and Peclet number (vd/Do) given as solid lines in Fig. 16.5 
for natural undisturbed field soil by Biggar and Nielsen (1976), and for laboratory 
columns of loam and sandy loam soils (Shukla et al., 2002) and for graded sands and 
other single-grained materials (Pfannkuch, 1962) satisfy Eq. (16.21) 

 
(16.21) 

where 
Do=0.66θ Dm 

(16.22) 

with Dm being the diffusion coefficient for free solution. The D0 in Eq. (16.22) can be 
obtained from known values of θ and Dm (see also Chapter 18). For loam and the sandy 
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loam soils D0 is 0.0222 and 0.0216 cm2 h−1, respectively (Shukla et al., 2002). Other 
reported values of D0 in literature are: 0.02 cm2 h−1 by Jury et al. (1991), 0.01 cm2 h−1 by 
Sposito (1989), and 0.0203 cm2 h−1 by Shukla et al. (2003). The values of m increase with 
decreasing values of average particle diameter d while values of n range between 1 and 2 
(Table 16.2). In the loam and sandy loam soils as well as the field soil, decreasing 
average particle diameter (increasing clay content) is associated with soil structure. The 
loam has relatively large pores as a result of microaggregates, and the sandy loam, 
although containing less clay than the loam, nevertheless has large pores also associated 
with its microaggregates as well as those associated with its high sand content. The field 
soil manifests the greatest value of m because of its large pore size distribution owing to 
its high clay content, its aggregation and its natural field structure. 

16.9 MATHEMATICAL REPRESENTATION OF THE SOLUTE 
TRANSPORT PROCESS 

The simplest form of one dimensional convective-dispersive equation (CDE), assuming 
macroscopic steady state water flow, constant soil– moisture content, and no interactions 
between the chemical and the solid  

TABLE 16.2 Parameters for Eq. (21) for the 
Results Illustrated in Fig. 16.5 

Soil m n d mm Do cm2h−1 

Laboratory columns (mostly sand) (Pfannkuch 1962) 0.5 1.2 0.156 0.022 

Sandy loam (Shukla et al. 2001) 70.5 1.71 0.0508 0.0216 

Loam (Shukla et al. 2001) 141 1.21 0.0158 0.0222 

Field soil (more clay) (Biggar and Nielsen 1976) 17780 1.11 0.00272 0.0250 

phase was developed by Lapidus and Amundson, (1952), which is similar to Eq. (16.17), 
for R=1 

 (16.22) 

One additional term is added to Eq. (16.23) when chemical adsorption is included. 
Following is the one-dimensional solute transport equation describing transport through a 
homogeneous medium during steady state flow with adsorption [same as Eq. (16.17)] 

 (16.24) 

The solution of Eq. (16.24) depends upon the knowledge of the relationship between 
adsorbed concentrations, Ss, and the solution concentration, C. Adsorption or exchange 
reactions perceived as instantaneous are described by equilibrium isotherms Ss(C), which 
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can be of the mass action, linear, Freundlich, Langmuir, or any other functional form 
(Nielsen et al., 1986). Besides adsorption, the reactive process such as first-order 
degradation and zero-order production can also be taken into account during miscible 
displacement process. Therefore, the comprehensive CDE for one-dimensional transport 
of reactive solutes, subject to adsorption, first-order degradation, and zero-order 
production, in a homogeneous soil, is  

written as: 

(16.25) 

where Cr is the volume-averaged or resident concentration of liquid phase (ML−3), Ss is 
the concentration of the adsorbed phase (MM−1), v is the volumetric water flux density 
(LT−1), µl and µs are first-order decay coefficients for degradation of the solute in the 
liquid and adsorbed phases respectively (T−1), γ1 (ML−3T−1), and γs (MM−1 T−1) are zero-
order production terms for the liquid and adsorbed phases, D, θ, ρb, x, and t are the same 
as defined above. Assuming reversible equilibrium adsorption [Eq. (16.16)] and steady 
state flow in a homogeneous soil, Eq. (16.25) is modified to: 

 (16.26) 

where µ and γ are combined first- and zero-order rate coefficients 

 (16.27) 

 (16.28) 

16.10 SORPTION PHENOMENON 

Adsorption is a process where ions or molecules are attached to the surfaces of soil 
solids. This results in a higher concentration of solute at the surface of solid phase than in 
the bulk solution. The opposite of adsorption is anion exclusion where concentration in a 
soil solution is higher than the solid phase. Sorption and exclusion processes are 
important in modifying the movement of chemicals through a soil domain. The plot 
between amount adsorbed and the amount in solution is known as the adsorption 
isotherm (Fig. 16.6). The forces active at soil-water interface and at molecular level are 
electrical and are the same at both levels. These forces vary as the reciprocal of the 
separation distance raised to a power. Equilibrium sorption (Fig. 16.6) of organic 
molecules is dominated by the organic fraction of soil.  
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FIGURE 16.6 A schematic of 
adsorption isotherms. (Modified from 
July et al., 1994) 

To account for this effect, value of KD [Eq. (16.15)] is divided by soil organic carbon 
content (SOC) as below: 

KD=SOC * foc 
(16.29) 

The Freundlich adsorption model is given as where n is close to 1 (Fig. 
16.6). The Freundlich model is based on the assumption that there is no limiting 
concentration of adsorbate as solution concentration is increased without limit. This is 
unrealistic because available surfaces in soil domain are limited for adsorption to occur. 
The Langmuir adsorption model was developed from kinetics of gas adsorption on solid 
surfaces and has a sound conceptual basis. The model assumes that the energy of 
adsorption is constant and independent of surface coverage, the adsorbed molecules do 
not interact with each other, and the maximum possible adsorption is that of a complete 
monolayer (Fig. 16.6). The equilibrium adsorption (Ss) by Langmuir model is as follows: 

 (16.30) 

where a is the ratio of adsorption rate constant, Q is the total number of available 
adsorption sites, and Cl is the solute concentration in solution. Several sorption models 
are available in literature, some are derived from the adsorption of gases by solids while 
others are either empirical or kinetic. 

Based upon multireaction approach, Selim (1992) proposed a model that involves 
three types of sites during sorption. The first type of site is equilibrium (Sse), where 
equilibrium between the sorbed and solution phases is established quickly. The second 

Solute transport     451



type of sites is kinetic, Ssk, where adsorption is considered time dependent, and the third 
type-site is subjected to irreversible retention Ssir. Total amount of sorption can be 
described by the following relationship 

Ss=Sse+Ssk+Ssir 
(16.31) 

Some of the equilibrium and kinetic sorption relationships are presented in Table 16.3. 

16.11 EQUILIBRIUM ANION EXCLUSION MODEL 

Certain anions interact with the negatively charged solid surfaces of the soil (such as clay 
or ionizable organic matter) and are excluded from the liquid region adjacent to the soil 
particle surfaces. This phenomenon is known as anion exclusion or negative adsorption. 
Eq. (16.17) represents the anion exclusion phenomenon for R<1. In the presence of a soil 
solution, the negative charge extends from the surfaces of particles into the solution and 
forms diffuse double layer (Bolt, 1979). The existence of the negative charge causes 
repulsion of anions from this region. The resulting concentration gradient reduces the 
concentration of anion at the soil surface to zero, which increases exponentially with 
distance and at the limit of diffuse double layer becomes equal to the concentration of 
bulk solution (Bolt, 1979). Assuming that effective exclusion volume (θex) expressed as 
volumetric moisture content is evenly distributed over the particle surface, the one-
dimensional transport of an anionic solute exhibiting anion exclusion can be described as 
follows (Bresler, 1973; James and Rubin, 1986) 

 (16.32) 

The observed concentration (C) is less than the concentration of bulk solution (C0) 
because of the exclusion volume, which does not contain ions. This interrelationship 
between C and C0 can be expressed as follows: 

 
(16.33) 

TABLE 16.3 Equilibrium and Kinetic Models for 
Sorption in Soilsa 

Model Formulation 

EQUILIBRIUM TYPE 

Linear Sse=KDCl 

Freundlich  
General Freundlich Ss/Ssmax=[ωC/(1+ωC)]β 

Rothmund-Kornfeld ion exchange Ssi/SsT=KD(Ci/CT)n 
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Langmuir Ss/Ssmax=(ωC)β+ωC) 

General Langmuir-Freundlich Ss/Ssmax=(ωC)β/(1+ωC)β 

Langmuir with sigmoidicity Ss/Ssmax=(ωC)/(1+ωC+ω/C) 

KINETIC TYPE 

First order ∂Ss/∂t=KD(θ/ρb)(Cl−KD1Ss) 

nth order  
Irreversible (sink/source) ∂Ss/∂t=KD(θ/ρb)(C−Cp) 

Second-order irreversible ∂Ss/dt=KD(θ/ρb)C(Ssmax−Ss) 

Langmuir kinetic ∂Ss/∂t=KD(θ/ρb)C(Ssmax−Ss)−KDSs 

Elovich ∂Ss/∂t=A exp(−BSs) 

Power  
Mass transfer ∂Ss/∂t=KD(θ/ρb)(C−C*) 
a Where k, A, B, n m, Ss, Ssmax, C*, Cp, and ω are adjustable model parameters. 
Source: Modified from Selim and Amacher, 1997. 

If the sufficient volume of input solution (concentration=C0) infiltrates in a soil column 
for a long duration, the excluded water content can be calculated by using Eq. (16.34) 
(Bond et al., 1982) 

 
(16.34) 

The C in the soil profile is always lower than C0 when anion exclusion is occurring. The 
anion exclusion also increases the average velocity of travel of anions in the soil profile. 
By excluding the anions from the diffuse double layer where water is either moving 
slowly or is immobile, the rate of transport is greater than given by q/θ. Bolt (1979) 
assumed anion exclusion to be evenly distributed over the soil surface of thickness dex. 

 (16.35) 

where β is a constant (1.06×1019 mkeq−1 at 25°C), N is the total normality of bulk 
solution (keq m−3), Q is a factor for ionic composition of bulk solution (m−1), and δ a 
correction term. The specific surface area (Ar) can be calculated from exclusion volume 
and bulk density (ρb; Mg m−3) as follows 

 (16.36) 

16.12 NONEQUILIBRIUM TRANSPORT 
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The application of Eq. (16.24) or (16.26) to transport through laboratory soil columns or 
in fields having relatively uniform soils involving nonreactive or weakly reactive solutes 
was found to be fairly successful (Biggar and Nielsen, 1976; Jaynes, 1991; Ellsworth et 
al., 1996; Shukla et al., 2003). The BTCs for these tracers are symmetrical and mass 
recoveries are relatively high (Fig. 16.7). However, for strongly adsorbed chemicals and 
aggregated soils these equations do not perform very well (van Genuchten and Wierenga, 
1976; Nkedi-Kizza et al., 1984). 

During solute transport in heterogeneous soils, the assumption of local equilibrium 
implies instantaneous interchange of mass, large residence time sufficient to make 
concentration gradients negligible, and high degrees of interactions between macroscopic 
transport properties and microscopic soil  

 

FIGURE 16.7 Schematic of 
equilibrium and nonequilibrium 
transport of a tracer through laboratory 
soil columns, the ETC “A” is 
symmetrical and mass recoveries are 
higher than a asymmetrical ETC “B”. 

physical properties. Some of the macroscopic transport properties are water flux, 
apparent dispersion, and moisture content, and microscopic properties are aggregate size, 
exchange, pore geometry. The microscopic properties impose a rate limiting effect on 
solute transport through heterogeneous soils and deviations from local equilibrium 
conditions are observed. The mass recoveries, for these asymmetrical and nonsigmoidal 
concentration distributions or BTCs, are less and the BTCs have a long tail (Fig. 16.7). 
Such a deviation is caused by a number of physical and chemical nonequilibrium 
processes. The physical nonequilibrium is caused by a heterogeneous flow regime and a 
chemical nonequilibrium by the kinetic adsorption. This paves the way for the 
examination of diffusion controlled or chemically controlled kinetic rate reactions or both 
of the form ∂S/∂t=f(Ss, C). The following sections will examine briefly the 
nonequilibrium processes arising out of physical or chemical nonequilibrium. 
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16.13 TWO-REGION NONEQUILIBRIUM TRANSPORT MODEL 

There are several factors responsible for physical nonequilibrium conditions occurring in 
a soil system during solute transport. Some of them are: (i) heterogeneity of pore size 
distribution or aggregation; (ii) heterogeneous diffusion into the Neurst film of water 
surrounding soil particles than soil bulk solution. Physical nonequilibrium is represented 
by a two-region (dual porosity) type formation. In this case, the medium is assumed to 
contain two distinct mobile (flowing) and immobile (stagnant) liquid regions. The 
simplest explanation of a two region mobile and immobile formation is the water inside 
an aggregated soil. All the intraaggregate water held within an aggregate is immobile and 
the interaggregate (between aggregates) water is mobile. The water flowing around dry 
aggregates imbibes them and solute entry inside aggregate is by convection. For moist 
aggregate, solute entry is governed by diffusion. However, there must be a concentration 
gradient from outside to the inside of an aggregate, and a first-order process can 
adequately describe the mass transfer between the two regions. In a two-region model, 
convective diffusion transport is assumed to take place in the mobile region while 
transfer of solutes into and out of mobile region is assumed to be diffusion controlled. 
One-dimensional unsaturated flow of conservative nonsorbing solute in a soil is given as 
follows (Coats and Smith, 1964): 

 (16.37) 

 (16.38) 

where t is time (T); Cm and Cim are the solute concentrations in the mobile and immobile 
liquid phases (ML−3) with corresponding volumetric moisture contents θm and θim (L3/L3) 
respectively; Dm is apparent diffusion coefficient of mobile liquid phase (L2T−1); x is the 
distance from the inflow boundary in the direction of flow (L); vm is the average mobile 
pore water velocity in (LT−1); and a is the first order rate coefficient (T−1). 

In Eqs. (16.37) and (16.38) as the ratio of mobile water fraction (θm) to total moisture 
content (θ) increases (i.e., θm increases), more and more of the wetted pore space is 
included in the transport, which causes greater and more complete mixing, and the ETC 
shifts further to the right. At the extreme end, the θm=θ, where the above equation reduces 
to one-dimensional CDE [Eq. (16.23)]. The parameter α, which has the dimensions of 
T−1, can vary from 0 to ∞. A zero value of a indicates no mixing between mobile and 
immobile water fractions. Therefore, the term on left-hand side of Eq. (16.38) equals zero 
and Eq. (16.37) reduces to one-dimensional CDE, similar to Eq. (16.23) but with total 
moisture content of θm. When a=∞, the two concentrations mix instantaneously and 
Cm=Cim. In this case Eq. (16.37) reduces to Eq. (16.23). 

One-dimensional solute transport for an exchanging solute during steady-state flow 
through a homogeneous porous medium, where the liquid phase is presumed to consist of 
a mobile and immobile region and includes a Freundlich-type equilibrium adsorption-
desorption processes (van Genuchten and Wierenga, 1976) can be described by a two-
region model as follows: 
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(16.39) 

and 

 (16.40) 

where Ssm and Ssim are concentration of adsorbed phase in mobile and immobile phase 
respectively (MM−1); Rm and Rim are retardation factors accounting for equilibrium type 
adsorption processes in mobile and immobile regions, respectively; and 
parameter/represents the mass fraction of solid phase that is in direct contact with the 
mobile liquid phase. If the exchange process in both the dynamic (Ssm) and stagnant (Ssim) 
region is assumed to be instantaneous, linear and reversible process (van Genuchten, 
1981) then, 

Ssm=KDCm and Ssim=KDCim 
(16.41) 

and the total adsorption can be represented by 
Ss=fSsm+(1−f)Ssim 

(16.42) 

For equilibrium adsorption, transferring these into Eqs. (16.39) and (16.40) results in 
following set of equations 

(16.43) 

 (16.44) 

16.14 TWO-REGION ANION EXCLUSION MODEL 

The two-region anion exclusion model divides the total soil-water phase into two 
compartments, (i) mobile water and (ii) immobile water, and anion exclusion is assumed 
to take place in the immobile region (van Genuchten, 1981). This assumption is 
analogous to the assumptions made by Krupp et al. (1972), as anion exclusion takes place 
in the smaller pores inside the dense aggregate or in the immobile water along the pore 
wall. An equivalent exclusion distance (dex) exists near the pore wall where concentration 
remains zero. Therefore, specific exclusion volume (Vex; cm3 water g−1 of soil) is related 
to specific surface area (Am; cm2 g−1) and dex as follows: 

Vex=dexAm 
(16.45) 
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The θex is obtained by multiplying Eq. (45) by soil bulk density (ρb) 
θex=Vexρb 

(16.46) 

The part of liquid phase unaffected by anion exclusion (θa) can be calculated as follows: 
θa=θim−θex 

(16.47) 

Using Eq. (16.47), the following physical nonequilibrium equation representing the anion 
exclusion process is obtained (van Genuchten, 1981) 

 (16:48) 

 (16.49) 

where Ca is concentration in the part of immobile zone unaffected by exclusion. The 
model described above assumes anion exclusion taking place inside the immobile water 
zone. Therefore, convective transport in mobile zone remains unaffected by the exclusion 
process and Cm never exceeds input concentration C0 (van Genuchten, 1981). 

16.15 TWO-SITE NONEQUILIBRIUM TRANSPORT MODEL 

Considering that the solid phase of soil is made up of various constituents (i.e., soil 
minerals, organic matter, aluminum, and iron oxides), and chemical react with these 
different constituents at different rates and intensities. Selim et al. (1976) and Cameron 
and Klute (1997) proposed a two-site chemical nonequilibrium model where adsorption 
term consists of two components, equilibrium adsorption, and first-order kinetics. The 
sorption or exchange sites in this model are assumed to have instantaneous adsorption 
(type-1 sites) and time-dependent kinetic adsorption (type-2 sites). At equilibrium, 
adsorption on both types of sorption sites is described by the following linear equations: 

Ss1=KDeC=FKDC 
(16.50) 

Ss2=KDkC=(1−F)KDC 
(16.51) 

where subscript “e” refers to type 1 or equilibrium site and subscript “k” refers to type 2 
or kinetic sites, respectively, and F is the fraction of all sites occupied by type 1 sorption 
sites. Total adsorption at equilibrium is 

Ss=Sse+Ssk 
(16.52) 

Because type 1 sites are always at equilibrium therefore, 
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 (16.53) 

The adsorption rate for type 2 kinetic nonequilibrium sites can be given by a linear and 
reversible first order equation of following form 

 (16.54) 

where α is the first order rate coefficient. Combining above equations with Eq. (16.14) 
lead to following formulation (van Genuchten, 1981; Nkedi-Kizza et al., 1984): 

 
(16.55) 

(16.56) 

16.16 INITIAL AND BOUNDARY CONDITIONS FOR STEP 
INPUT EXPERIMENTS 

The analytical solutions of Eqs. (16.23), (16.24), (16.25), (16.43), (16.44), (16.48), 
(16.49), (16.55), and (16.56) are available for a large number of initial and boundary 
conditions for both finite and semi-infinite systems for both step and pulse type solute 
application (van Genuchten 1981, van Genuchten and Alves, 1982). This section briefly 
describes some of the initial and boundary conditions required for solving solute transport 
equations. The most common initial condition for any soil is: 

C(x, 0)=Ci 
(16.57) 

At the upper boundary of the soil surface or (or inflow into the soil column; i.e. at x=0), 
two different boundary conditions can be considered. The first type or constant 
concentration boundary condition is of the form as follows: 

C(0, t)=C0 
(16.58) 

For column displacement experiments, where chemical is applied at a constant rate, the 
boundary condition (16.58) leads to mass balance errors, which become quite significant 
for large values of (D/v) (van Genuchten, 1981, Parker and van Genuchten, 1984). The 
other boundary condition is a third type, or constant flux type, that leads to the 
conservation of mass inside the soil column provided dispersion outside the soil can be 
ignored is given as follows: 
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(16.59) 

A third type inlet condition is usually preferred over first type inlet condition (van 
Genuchten and Parker, 1984, Toride et al., 1993). In order to describe the outlet 
conditions, it is assumed that the concentration is macroscopically continuous at the 
outlet and no dispersion occurs outside the soil. Parker and van Genuchten, (1984) 
suggested that by assuming that the upstream solute concentrations are not affected by 
the outlet boundary, solutions for an infinite outlet condition can be applied to the finite 
region. The outlet condition for a semi infinite profile (0≤x<∞) and a finite system of 
length L can be specified in terms of zero concentration gradient as below 

 
(16.60) 

 
(16.61) 

The boundary condition [Eq. (16.60)] assumes a semi-infinite soil column and is 
commonly used. When effluent curves from finite columns are calculated using analytical 
solutions based on boundary condition [Eq. (16.60)], some errors may be introduced. 
Therefore, zero concentration gradient at the upper end of the column as specified by Eq. 
(16.61) is frequently used for column displacement studies. However, there is no 
evidence available to prove that the boundary condition Eq. (16.61) leads to a better 
description of physical processes at and around x=L. On the other hand, the boundary 
condition [Eq. (16.59)] gives a discontinuous distribution at the inlet, which is against the 
requirement of a continuous distribution at x=L (van Genuchten, 1981). 

16.17 DIMENSIONAL INITIAL AND BOUNDARY CONDITIONS 
FOR PULSE APPLICATION 

Assuming that the concentrations are continuous across the inlet boundary and that input 
solution is well mixed, a first type boundary condition across the inlet boundary for a 
pulse type injection can be specified as (van Genuchten, 1981): 

C(0, t)=C0 0<t<t0 
C(0, t)=0t>t0 (16.62) 

A third type boundary condition for the pulse input for a well mixed input solution can be 
specified as 

[−D(∂C/∂x)+vC]|x=0=vC0 0<t≤t0 
[−D(∂C/∂x)+vC]|x=0=0 t>t0 (16.63) 

The two-site model [Eqs. (16.55) and (16.56)] can be solved for the boundary and initial 
conditions given by Eqs. 16.57 to 16.61. One additional initial condition for the solution 
is 
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Ssk(x, 0)=(1−F)KDCi 
(16.64) 

The initial condition and the boundary conditions at exit remain the same as described by 
Eqs. (16.52), (16.55), and (16.56). The boundary condition at inlet, Eq. (16.57), becomes 
inappropriate when the input solution is not well mixed. Other arguments against the 
applicability of Eq. (16.57) can be that the plane considered as a macroscopic boundary 
has no physical relevance at the microscopic level, as irregularity in pore structure and 
morphology become manifest at this level. Also the medium properties vary continuously 
over a finite transition zone of l/2, where l is the representative elementary volume (REV) 
of the porous medium (Parker and van Genuchten, 1984). 

16.18 THE COMBINED NONDIMENSIONAL TRANSPORT 
EQUATIONS 

Nonequilibrium transport Eqs. (16.31), (16.32), (16.36), (16.37), (16.43), and (16.44) are 
mathematically equivalent and transferring nondimensional quantities listed in Table 16.4 
reduces them to the following combined nondimensional equations (van Genuchten, 
1981; Nkedi-Kizza, 1984) 

 (16.65) 

 (16.66) 

where β is partition coefficient, ω is nondimensional mass transfer parameter and P is 
peclet number. Initial and boundary conditions for a step type input are 

C1(x, 0)=C2(x, 0)=0 
(16.67) 

 (16.68) 

 (16.69) 

For β=1, Eqs. (16.65) and (16.66) reduce to the nondimensional CDE. Some of the 
analytical solutions of Eqs. (16.17), (16.65), and (16.66) are given in Table 16.5. 

16.19 ESTIMATION OF SOLUTE TRANSPORT PARAMETERS 

The equilibrium solute transport equation [refer to Eq. (16.17)] has two parameters: (i) 
the apparent diffusion coefficient (D) or P (vL/D) and (ii) the retardation factor (R).  

TABLE 16.4 Nondimensional Variables 
Introduced in the Solute Transport Equations 

Principles of soil physics     460



The nondimesional variables 

FOR ALL THE EQUATIONS  

  
  

 
FOR TWO REGION EQUATION  

    
FOR TWO REGION EQUATION  

C1=Cm/C0 C2=Cm/C0 

  

 

  

 

  

 

 

    

 

q=θmvm 

Source: Modified from van Genuchten, 1981. 

TABLE 16.5 Analytical Solutions of Equilibrium 
CDE and Nonequilibrium (NE) Transport 
Equations 

sionless 

tration 

Concentration-type boundary conditions Flux-type boundary conditions 

C1(0, T)=1 

 

e 
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urce: Modified from van Genuchten, 1981. 

16.19.1 Retardation Factor (R) 

From Measured Breakthrough Curve 

The retardation factor (R) can be estimated by locating the number of pore volumes 
(T=R) at which the relative concentration of the measured ETC is 0.5. For the measured 
chloride ETC in Fig. 16.8, the value of T at C/C0 of 0.5 is 1.2. Therefore, the value of R is 
also 1.2. Both pore volumes (T) and retardation factor (R) are dimensionless. 

From Batch Experiment 

The batch experiments for solute adsorption are performed by mixing air-dried soil and 
solution (1:1). At least six different initial solution concentrations, which are within the 
experimental range, are usually selected. Generally three to four replications for each 
concentration are made. The mixture is stirred, and after equilibrating for 24 hours, is 
centrifuged and the concentration of the extracted solution is measured. The difference 
between the initial solution concentration and that in the supernatant (centrifuge) is 
assumed to be the result of adsorption. A graph is plotted between the solution 
concentration and the adsorbed concentration (Fig. 16.6) and the slope of the line gives 
the value of distribution coefficient (KD) The R can be calculated from Eq. (16.18) for 
known values of bulk density and water content of soil in the experiment. 
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FIGURE 16.8 The estimation of 
retardation coefficient from a 
measured ETC (R=T=1.2) where T is 
pore volumes. (Redrawn from Shukla 
and Kammerer, 1998.) 

By Fitting Flow Velocity 

The pore water velocity can be used as a fitting parameter in the trial and error method 
while keeping R a constant and equal to 1. Therefore, fitted velocity will effectively be a 
v/R value. The slope of the plot between fitted and measured pore water velocity gives an 
effective R-value. 

From Travel Time Analysis 

Time moment analysis provides a model independent tool for characterizing the solute 
BTCs. The first temporal moment provides the mean break-through time, the second 
central temporal moment (i.e., the variance) describes the solute spreading, and the third 
(skewness) describes the degree of asymmetry of the BTCs (Valocchi, 1985). These 
numerical estimates can be compared to the CDE theoretical travel time moments to 
provide estimates of the CDE model parameters, in contrast to least-squares fitting of the 
analytical solution to Eqs. (16.23) and (16.24). For a finite pulse, the expected or 
theoretical mean travel time to depth L is: 

 (16.70) 

and the theoretical travel time variance is 

 (16.71) 
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where R is retardation factor, D is apparent dispersion coefficient (cm2h−1), v is pore 
water velocity (cmh−1), t0 is the duration of pulse (h), and L is the displacement length 
(cm). For the step input experiments, a smooth cubic spline to each BTC can be fitted, 
and then the derivatives can be computed with respect to time. The center of mass of an 
inert solute pulse under steady flow at a given average measured pore water velocity (v) 
is model independent and moves at the same rate as the average v. However, different 
process models often result in quite different rates of spreading or dispersion but these do 
not affect the mean travel time (Valocchi, 1985). The slope of the best-fit curve between 
observed and theoretical travel times provides the effective R-value with intercept equal 
to zero. For details on travel moment analysis readers are advised to refer Jury and Roth 
(1990).  

16.19.2 Apparent Dispersion Coefficient 

The apparent dispersion coefficient (D) can be estimated by the following methods. 

Trial and Error Method 

The parameters D (or P) can be estimated by comparing the experimentally measured 
ETC with a series of calculated distributions. The distributions can be calculated for a 
known value of R (=T) by selecting several values of P (1, 2, 4, 5, 10, 20, 50, 100, 300, 
etc.). The value of P, which provides the best fit between the experimental and calculated 
BTC is chosen, and D is calculated from the known values of displacement length and 
pore water velocity (D=vL/P). 

From Slope of an Effluent Curve 

The apparent diffusion coefficient can be approximated by an experimental BTC from 
the following equation (Kirkham and Powers, 1972) 

 (16.72) 

where m is the slope of BTC at one pore volume, i.e., 

 (16.73) 

Log Normal Plot of Effluent Curve 

In this method the inverse complimentary error function of relative concentration (see 
Table 16.5) from the experimentally determined BTC is plotted against log of pore 
volumes (T). The value of P is estimated from the slope (m) of above straight line 
(P=4*m2−b, where b is a correction factor) (van Genuchten and Wierenga, 1986). 
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Least Square Analysis 

The trail and error method is expanded into a more rigorous approach by continuously 
adjusting the values of P and R until the sum of the  

TABLE 16.6 Merits and Demerits of Approximate 
Methods of Solute Transport Parameter Estimation 

Method Merits Demerits 

Trial and 
error 

Provide first estimates of P and R quickly Method is not necessarily 
reproducible 

From slope 
of ETC 

Method is simple and based upon analytical 
solution. For conservative solutes works 
reasonably well. 

Method is not suitable for small 
values of P and for 
nonconservative solutes 

Log 
normal 
plot 

Results are more accurate than the above two 
methods 

Straight line is not generally 
obtained. Method is not suitable 
for aggregated or structured soils 

Least 
square 
analysis 

Results are the most accurate among all the 
methods described above. Computer programs are 
available and easy to use. Number of fitting 
parameters can be varied according to the need 

User judgment is necessary for 
reporting fitted values of 
parameters 

squared deviations between measured and fitted concentrations are minimized in a least 
square sense (van Genuchten and Wierenga, 1986). The merits and demerits of all the 
methods described above are presented in Table 16.6. 

16.19.3 Parameters of TRM 

The physical nonequilibrium model or two-region model (TRM) requires specification of 
four dimensionless parameters P (vm, L, D), R(ρb, KD, θ), and ω (α, L, 
θm, vm) [refer Eqs. (16.65) and (16.66)]. The parameters of TRM can be estimated by a 
number of ways: 

Least Square Fitting 

The first option is to use a trial-and-error method and fit all the four-nondimesional 
parameters to the measured breakthrough curve, also known as “inverse modeling 
technique,” by minimizing the sum of squares between measured and fitted breakthrough 
curves using a nonlinear least square method. The second option is to determine R from 
the batch experiment and obtain the remaining three-nondimensional parameters by least 
square fit. It should be remembered while using the least square method that for P values 
>5, the least square fitting method is appropriate, however for P<5, the problems 
associated with conservation of mass become important and trial and error method 
remains no longer appropriate. The lower P values also suggest extremely broad range in 
pore water velocity distributions in mobile water region, which renders division of flow 
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domain into two flow regions inadequate. A possible solution is to divide flow domain in 
more compartments (Morisawa et al., 1986) or consider pore water velocity to be a 
continuous function (White et al., 1986). 

Mobile (θm) and Immobile (θim) Water Contents 

The total moisture content (θ) of the soil is the sum of the mobile (θm) and immobile (θim) 
moisture contents. The mobile and immobile water can be estimated in a number of 
ways: (i) all the water held at field capacity (24 h after the infiltration test or at suction of 
330 kPa) can be considered as immobile water. Therefore, mobile water (θm) can be 
obtained by subtraction the θim from total water content of soil (θ) as follows: 
θm=θ−θim 

(16.74) 

(ii) The total concentration in soil after infiltration test is given by a mass balance 
equation as follows: 
θC=θmCm+θimCim 

(16.75) 

A conservative tracer such as bromide (Br) or chloride (Cl) of known initial 
concentration (C0) used as a solute is infiltrated into the soil. After the steady state 
infiltration with tracer solution is achieved, the concentration of the solute extracted from 
soil sample (C) below the infiltration can be measured. If all the soil moisture is mobile 
than C equals C0. If immobile moisture is present C<C0 and θim can be obtained as 
follows (Clothier, et al., 1992): 

 (16.76) 

alternately 

 
(16.77) 

The above equation assumes that transfer coefficient (α) in Eq. (16.56) is small and very 
little solute diffuses into the immobile region. 

The θim and α 

The θim and α can also be estimated simultaneously by applying a sequence of 
nonconservative nonreactive tracers for varying periods of time (Jaynes et al., 1995). 

Eq. (16.37) after separating the variables can be written as follows: 

 
(16.78) 
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where t is defined as the application time and varies for different tracers, Plotting the 
ln(1−C/C0) versus t, for all the tracers, gives straight lines with negative slopes (Fig. 
16.9). The intercept at t=0 gives natural log of the  

 

FIGURE 16.9 A schematic of 
normalized concentration of tracers 
and the time of application. 

ratio of immobile water and total moisture content [the second term on right-hand side of 
Eq. (16.78)]. For a known θ, θim can be estimated by multiplying the intercept with θ and 
making appropriate In transformations. The first term of Eq. (16.78) gives the slope and 
for a known θim, a can be easily calculated. The tracer front will reach a given sampling 
depth (d) slightly earlier than specified by t. Therefore, t in Eq. (16.78) can be replaced 
by “t-d/vm” and Eq. (16.77) becomes (Jaynes and Horton, 1998): 

 
(16.79) 

The θim and α can again be measured by plotting the ln(l − C/C0) versus t. It should 
clearly understood that the assumption Cm=C0 associated with Eqs. (16.76) to (16.79) 
may not be correct for a>0. 

By Making Approximations 
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The partition coefficient “β” can be obtained by using the inverse modeling technique 
from a measured breakthrough curve. The β, f and are related by the following 
equation, which shows that from a known value of β the f and cannot be calculated 
directly: 

 
(16.80) 

If R is close to 1 then 

 
(16.81) 

For R≠1, the mobile water fraction which is the ratio of θm and θ, can be calculated 
from known field capacity water content and Eq. (16.74). A better option for obtaining 
the values of or β is to make some assumptions on f, which is defined as the fraction 
of sorption sites in mobile region. When soil is saturated and distribution of sorption sites 
is independent of the location in soil-water regions (Seyfried and Rao, 1987) 

 
(16.82) 

However, the assumption that more sites for adsorption are available in the immobile 
region is more appropriate (Nkedi-Kizza et al., 1982). This assumption is appropriate 
because the pores in immobile regions are smaller and have higher exposed surface area 
than in mobile region. Therefore, f can be assumed to vary from 0 to (Seyfried and 
Rao, 1987).  

Aggregate Geometry Models 

The nondimensional mass transfer parameter (ω) is not directly related to any specific 
soil characteristic or property and is difficult to determine. The a is a function of time of 
diffusion, sphere radius (particles constituting the porous medium), molecular diffusion 
coefficient, intraaggregate water content (θim), macroporosity (fraction of total porosity); 
therefore, apart from Eqs. (16.78) and (16.79), the α can be calculated for the known or 
assumed geometry of aggregates. For spherical aggregates α can be calculated as follows 
(Rao et al., 1980). 

 (16.83) 

where De is the effective diffusion coefficient, r is the radius of sphere, and α* is time 
dependent variable. The α values of cubic aggregates can be obtained by replacing “a” 
with an equivalent spherical radius “r=0.6203l”, where f is the length of the side of the 
cube (Rao et al., 1982). Another widely used formula for the estimation of α based on soil 
geometry is (van Genuchten, 1985; van Genuchten and Dalton, 1986): 
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(16.84) 

where n is a geometry factor, and ae is an average effective diffusion length. If a soil 
matrix, with overall conductivity of Ke, can be divided into a two-flow domain physical 
nonequilibrium model. The water contents of these flow regions are θA and θB for 
velocities υA and υB, respectively. For steady flow condition the a can be estimated as 
follows (Skopp et al., 1981): 

 
(16.85) 

where d is the aggregate size (cm), rp is the interaggregate pore size (cm), and g is 
acceleration due to gravity (cmh−2). It should be remembered here that α values estimated 
using aggregate geometry models does not necessarily fit the measured breakthrough 
curves very well. The α values depend on the experimental conditions (Ma and Selim, 
1998). In general α values increase with flow velocity probably as a result of turbulent 
mixing at high velocities (van Genuchten and Wierenga, 1977). However, α values 
decrease if greater pore connectivity exists in the flow domain (Skopp and Gardner, 
1992).  

16.20 Land Use Effects on Flow and Transport 

The flow and transport properties of soils often vary with time due to the influence of 
land use and soil management practices. The soil remains mostly undisturbed under no-
till, which enhances the organic matter accumulation at the soil surface and development 
of macropores (cracks between aggregates and pores). The macropore channels in no-till 
system increase the leaching of nutrients and pesticides by bypassing the water-filled 
micropores unless the sources are located within the soil micropores. These cracks 
increase the hydraulic conductivity of soil and decrease reactivity of dissolved chemicals 
due to the low pore surface area and short residence time. The increase in organic matter 
increases the reactivity of chemicals in the soil matrix and the soils start behaving as a 
multireaction, multiregion soil. It is important to know this shift in flow and transport 
processes due to macropores as failure to take these into account can lead to erroneous 
conclusions. For an example: In a macroporous soil system, a zero-tension lysimeter was 
installed at a 90-cm depth, which captured 50% of the applied pesticide leached out of 
root zone system via macropore channels. The analysis of soil samples at different depth 
increments showed very little traces of pesticides. Therefore, without having the 
knowledge of preferential flow of pesticides, an inaccurate conclusion that pesticides had 
limited mobility due to high degradation rates can be drawn. Similarly, an increase in 
organic matter provides kinetic adsorption sites for some solutes, which would lead to 
inaccurate results if lumped into instantaneous equilibrium adsorption terms (Wilson et 
al., 2000). 
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Example 16.1 

Concentration of a solute is 30 mg/g of soil and bulk density is 1.35 Mg/m3. Assuming 
steady flow conditions, solute free soil profile, and solute diffusion coefficient 
3×10−10m2/s, calculate flux density at a vertical distance of 0.1 m and amount of solute in 
1 ha that diffuses across this boundary in 2 months. (Hint: Use Fick’s first law.) 

Solution 
Solute concentration=ρb * Ca=30 * 1.35=40.5 M/gm3 or 4.05×107 mg/m3 

Concentration gradient at 0.1 m below soil surface 
δC/δz=∆C/∆z=(0–4.05×107)/(0–0.1)=4.05×108 mg/m4    

The flux density of solute is obtained by using equation 7 
J=−(3×10−10)*(4.05×108)=−0.122 mg m−2s−1   

The negative sign implies that solute is moving downward. The total quantity of solute 
moved below 0.1 m in one month (Q) can be calculated as 

Q=0.122*10000*30*24*3600=3.16×109mgha−1    

Example 16.2 

Nitrate-N was applied in a field at volumetric moisture content of 0.35. If soil water flux 
density was 0.05cmd−1 and soil solution concentration of NO3-N was 4mgL−1, calculate 
the pore water velocity and amount of NO3-N leached per unit area by convective flow 
below the root zone in 2 days. 

Solution 
Pore water velocity=v=q/θ=0.05/0.35=0.143 cm/d 
The flux density for convective transport (Jm) can be calculated from equation 6. 
Jm=qC=0.05*4*1000/1000=2.0 mg/m2d   

Therefore, amount of NO3-N (Q) leached through root zone in 2 days 
Q=Jm* A*t=2*1*2=4 mg    

Example 16.3 

Assuming steady condition and piston flow through a soil column at moisture content of 
0.35cm3cm−3, calculate the total time required to transport chloride from the bottom of 
the root zone to groundwater at 50 m below when average daily drainage rate is 0.25 m/d. 

Solution 
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Total depth of water in the vadose zone=0.35*50=17.5 m The breakthrough time (total 
time required) to transport all the chloride to groundwater=17.5/0.25=70 d Alternately, 
pore water velocity of chloride (v=q/θ)=0.25/0.35=0.71 m/d Breakthrough time 
(t*=L/v)=50/0.71=70 d 

Example 16.4 

Using the information in Example 3, calculate the velocity and breakthrough time for 
chloride if bulk density of soil was 1.4 Mg/m3 and the slope of equilibrium isotherm was 
0.06 m3 Mg−1. 

Solution 
The retardation factor (R)=1+k*ρb/θ=1 +0.06* 1.4/0.35=1.24 Average chloride 

velocity=0.25/(0.35* 1.24)=0.58 m/d The breakthrough time=50/0.58=86 days 

PROBLEMS 

1. In a repacked loam soil column with total porosity (  of 0.5, the measured 
dispersivity (λ) was 1.2. Assuming that diffusion coefficient of solute in water (D0) is 1 
cm2 day−1, calculate remaining parameters given in the table below. 

Note: Tortuosity factor (ξ) is given as (known as the Millington– Quirk 
formula, 1961). Effective-dispersion diffusion coefficient (D) is given by De=Dh+Dm. 
q (cm.d−1) θ v (cm.d−1) ξ Dh Dm D 

0.2 0.25           

1 0.3           

2 0.35           

5 0.4           

2. Assume that average volumetric water content (θ) of soil is 0.2; and bulk density 
(ρb) is 1.5 g cm−1. The average annual drainage rate (dr) is 0.5 myr−1. If a pesticide, 
Kd=2cm2g−1, is applied to this soil, calculate how long (breakthrough time) it will take to 
move the pesticide to the groundwater at (L) 12 m depth. 

3. Chloride solution was applied as a step input to a 10 cm long soil column initially 
saturated with water. The flux density of chloride (q) was 0.5 cm h−1, and average water 
content of column was 0.45cm3cm−3. The chloride ETC can be plotted on an Excel 
spreadsheet with X-axis as pore volumes (p) and relative chloride concentration (C/C0). 
The pore volumes are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 and corresponding C/C0 are 
0.01, 0.06, 0.15, 0.3, 0.54, 0.8, 0.96, and 0.99 respectively. Calculate the apparent 
diffusion coefficient (D) and retardation coefficient (R). 

Solute transport     471



REFERENCES 

Bear J. (1972). Dynamics of fluid in porous media. Elsevier Science, New York. 
Bear J. and Y.Bachmat (1967). A generalized theory on hydrodynamic dispersion in porous media. 

Symp. Artificial Recharge Management Aquifers, Haifa, Int. Assoc. Sci. Hydrol., 72:7–36. 
Biggar J.W. and D.R.Nielsen (1967). Miscible displacement and leaching phenomenon. Agronomy 

11:254–274. 
Bolt G.H. (1979) (ed.). Soil chemistry. B: Physio-chemical models. Elsevier Scientific Pub. Co., 

New York. 
Bond W.J., B.N.Gardiner, and D.E.Smiles (1982). Constant flux adsorption of a tritiated calcium 

chloride solution by a clay soil with anion exclusion. Soil Sci. Soc. Am. J. 46:1133–1137. 
Bresler E. (1973). Anion exclusion and coupling effects in a nonsteady transport through 

unsaturated soils: I. Theory. Soil Sci. Soc. Am. Proc. 37:663–669. 
Butters G.L., W.A.Jury, and F.F. Ernst (1989). Field scale transport of bromide in an unsaturated 

soil. 1. Experimental methodology and results. Water Resour. Res. 25:1575–1581. 
Cameron D.R. and A.Klute (1977). Convective–Dispersive solute transport with a combined 

equilibrium and kinetic adsorption model. WRR, 13(1): 183–188. 
Clothier B.E., M.B.Kirkham, and J.E.Mclean (1992). In situ measurements of the effective 

transport volumes for solute moving through soil. Soil Sci. Soc. Am. J. 56:733–736. 
Coats K.H. and B.D.Smith (1964). Dead end pore volume and dispersion in porous media. SPE J. 

4:73–84. 
De Josselin De Jong G. (1958). Longitudinal and transverse diffusion in granular deposits. Trans. 

Amer. Geophys. Union 59:67. 
Ellsworth T.R., P.J.Shouse, T.H.Skaggs, J.A.Jobes, and J.Fargerlund (1996). Solute transport in 

unsaturated soil: experimental design, parameter estimation, and model discrimination. Soil Sci. 
Soc. Am. J. 60:397–407. 

Fleming J.B. and G.L. Butters (1995). Bromide transport detection in tilled and nontilled soil:solute 
samplers vs. soil cores. Soil Sci. Soc. Am. J. 59: 1207–1216. 

Flury M., W.A.Jury, and E.J.Kladivko (1998). Field scale solute transport in vadose zone: 
Experimental observations and interpretation. In: H.M. Selim and L. Ma (eds.), Physical 
Nonequilibrium in Soils. Ann Arbor Press, Michigan, p 349–365. 

Fried J.J. and M.A.Combarnous (1971). Dispersion in porous media. Ad. Hydroci. 7:169–282. 
Greenkorn R.A. (1983). Flow phenomena in porous media. Marcel Dekker Inc., New York and 

Basel, p 190. 
Hamlen C.J. and R.G.Kachanowski (1992). Field solute transport across a soil horizon boundary. 

Soil Sci. Soc. Am. J. 56:1716–1720. 
James R.V. and J.Rubin (1986). Transport of chloride ion in a water unsaturated soil exhibiting 

anion exclusion. Soil Sci. Soc. Am. J. 50:1142–1149. 
Jaynes D.B. (1991). Field study of bromacil transport under continuous flood irrigation. Soil Sci. 

Soc. Am. J. 55:658–664. 
Jaynes D.B., S.D.Logsdon, and R.Horton (1995). Field method for measuring mobile/immobile 

water content and solute transfer rate coefficient. Soil Sci. Soc. Am. J. 59:352–356. 
Jury A.W. and K.Roth (1990). Transfer functions and solute movement through soil. Birkhaeuser 

Verlag, Basel, Germany. 
Jury A.W., W.R.Gardner, and W.H.Gardner (1991). Soil physics, 5th Edition, John Wiley, New 

York. Torelli L. and A.E. Scheidegger (1972). Threedimensional branching type models of flow 
through porous media. J. Hydro. 15:23. 

Kirkham D. and W.L.Powers (1972). Advanced soil physics. Wiley Interscience, John Wiley & 
Sons, Inc., New York. 

Krupp H.K. and D.E.Elrick (1968). Miscible displacement in an unsaturated glass bead medium. 
Water Resour. Res. 4:809–815. 

Principles of soil physics     472



Krupp H.K., J.W.Biggar, and D.R.Nielsen (1972). Relative flow rates of salt and water in soil. Soil 
Sci. Soc. Am. Proc. 36:412–417. 

Kutilek M. and D.R.Nielsen (1994). Soil Hydrology. Catena Verlag, CremlingenDestedt, Germany. 
Lapidus L. and N.R.Amundson (1952). Mathematics of adsorption in beds. J. Phys. Chem. 56:584. 
Ma L. and H.M.Selim (1998). Physical nonequilibrium in soils: modeling and application. In: 

H.M.Selim and L.Ma (eds.), Physical Nonequilibrium in Soils. Ann Arbor Press, Michigan, p 
83–115. 

Morisawa S., M.Horiuchi, T.Yamaoka, and Inoue Y. (1986). Evaluation of solute transport in 
unsaturated soil column by multicompartment flow model. (In Japanese) Proc. Environ. 
Sanitary Engg. Res. 22:9–22. 

Nielsen D.R., M.Th.van Genuchten, and J.W.Biggar (1986). Water flow and solute transport 
processes in the unsaturated zone. Water Resour. Res., 22(9): 89S–108S. 

Nkedi-Kizza P., J.W.Biggar, H.M.Selim, M.Th.van Genuchten, P.J.Wierenga, J.M.Davidson, and 
D.R.Nielsen (1984). On the equivalence of two conceptual models for describing ion exchange 
during transport through an aggregated oxisol. Water Resour. Res., 20(8): 1123–1130. 

Nkedi-Kizza P., P.S.C.Rao, R.E.Jessup, and J.M.Davidson (1982). Ion exchange and diffusive 
mass transfer during miscible displacement through and aggregated Oxisol. Soil Sci. Soc. Am. 
J. 46:471–476. 

Parker J.C. and M.Th.van Genuchten (1984a). Flux-averaged and volume-averaged concentrations 
in continuum approaches to solute transport. Water Resour. Res. 20(7):866–872. 

Perkins T.K. and O.C.Johnston (1963). A review of diffusion and dispersion in porous media. Pet. 
Trans. AIME 228, SPEJ 70. 

Pfannkuch H.O. (1962). Contribution a L’etude des deplacement de fluides miscible dans un milieu 
poreux. Rev. Inst. Fr. Petrol. 18(2):215. 

Rao P.S.C., R.E.Jussup, D.E.Rolston, J.M.Davidson, and D.P.Kilcrease (1980). Experimental and 
mathematical description of nonadsorbed solute transfer by diffusion in spherical aggregates. 
Soil Sci. Soc. Am. J. 44(4):684–688. 

Rao P.S.C., R.E.Jessup, and T.M.Addiscott (1982). Experimental and theoretical aspects of solute 
diffusion in spherical and nonspherical aggregates. Soil Sci. 133:342–349. 

Roth K., W.A.Jury, H.Fluehler, and W.Attinger (1991). Transport of chloride through an 
unsaturated field soil. Water Resourc. Res. 27:2533–2541. 

Selim H.M. (1992). Modeling the transport and retention of inorganics in soil. Adv. Agron. 
47:331–384. 

Selim H.M., J.H.Davidson, and R.S.Mansell (1976). Evaluation of a two-site adsorption desorption 
model for describing solute transport in soils. Proceedings Summer Computer Simulation 
Conference, Washington D.C., 444–448. 

Seyfried M.S. and P.S.C.Rao (1987). Solute transport in undisturbed columns of an aggregated 
tropical soil: Preferential flow effects. Soil Sci. Soc. Am. J. 51: 1434–1444. 

Shukla M.K. and G.Kammerer (1998). Comparison between two models describing solute transport 
in porous media with and without immobile water. Austrian Journal of Water Management 
50(9/10):254–260. 

Shukla M.K., F.J.Kastanek, and D.R.Nielsen (2000). Transport of chloride through water-saturated 
soil columns. The Bodenkulture, Austrian Journal of Agricultural Research 51(4):235–246. 

Shukla M.K., F.J.Kastanek, and D.R.Nielsen (2002). Inspectional analysis of convective dispersion 
equation and application on measured BTCs. Soil Sci. Soc. of Am. J. 66(4): 1087–1094. 

Shukla M.K., T.R.Ellsworth, R.J.Hudson, and D.R.Nielsen (2003). Effect of water flux on solute 
velocity and dispersion. Soil Sci. Soc. Am. J. 67:449–457. 

Skopp J. and W.R.Gardner (1992). Miscible displacement: an interacting flow region model. Soil 
Sci. Soc. Am. J. 56:1680–1686. 

Sposito G. (1989). The chemistry of soils. Oxford Press, p 277. 
Taylor G.I. (1953). The dispersion of matter in solvent flowing slowly through a tube. Proc. R. Soc. 

London, Ser. A 219:189–203. 

Solute transport     473



Toride N., F.K.Leij, and M.Th.van Genuchten (1993). A comprehensive set of analytical solutions 
for nonequilibrium solute transport with first-order and zero-order production. Water Resour. 
Res. 29(7):2167–2182. 

Valocchi, A.J. (1985). Validity of local equilibrium assumption for modeling sorbing solute 
transport through homogeneous soils. Water Resour. Res. 21: 808–820. 

Van de Pol R.M., P.J.Wierenga, and D.R.Nielsen (1977). Solute movement in field soil. Soil Sci. 
Soc. Am. J. 41:10–13. 

van Genuchten M.Th. (1985). A general approach for modeling solute transport in structured soils. 
Proc. 17 The Int. Congress. IAH, Hydrogeology of Rocks of Low Permeability. Jan 7–12, 1985, 
Tucson, AZ. Mem. Int. Assoc. Hydrogeol. 17:512–526. 

van Genuchten M.Th. and F.N.Dalton (1986). Models for simulating salt movement in aggregated 
field soils. Geoderma. 38:165–183. 

van Genuchten M.Th. and P.J.Wierenga (1976). Mass transfer studies in sorbing porous media I 
Analytical solutions. SSSA Proceedings 40(4):473–480. 

van Genuchten M.Th. (1981). Non-equilibrium transport parameters from miscible displacement 
experiments. Research report 119, USD A, US Soil salinity lab Riverside, California, 

van Genuchten M.Th. and J.C.Parker (1984). Boundary conditions for displacement experiments 
through short laboratory soil columns. Soil Sci. Soc. Am. J. 48: 703–708. 

van Genuchten M.Th. and P.J.Wierenga (1977). Mass transfer studies in sorbing porous media. II. 
Experimental evaluation with tritium (3H2O). Soil Sci. Soc. Am. J. 41:272–277. 

van Genuchten M.Th. and P.J.Wierenga (1986). Solute dispersion coefficients and retardation 
factors. In: A. Klute, (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical 
Methods, 2nd Edition, American Society of Agronomy, Madison, Wisconsin. 

van Genuchten M.Th. and W.J.Alves (1982). Analytical solutions of the onedimensional 
connective dispersion solute transport equation. USDA Tech. Bull. 1661. 

Van Wesenbeck I.J. and R.G.Kachanowski (1991). Spatial scale dependence of in situ solute 
transport. Soil Sci. Soc. Am. J. 55:3–7. 

White R.E., L.K.Heng, and R.B.Edis (1998). Transfer function approaches to modeling solute 
transport in soils. In: H.M. Selim and L. Ma (eds.), Physical nonequilibrium in soils. Ann Arbor 
Press, Michigan, p 311–346. 

White R.E., J.S.Dyson, Z.Gerstl, and B.Yaron (1986). Leaching of herbicides through undisturbed 
cores of a structured clay soil. Soil Sci. Soc. Am. J. 50: 277–283. 

Wilson J.L. and L.W.Gelhar (1974). Dispersive mixing in a partially saturated porous medium, 
Persons Laboratory Report 191, Massachusetts Institute of Technology, Cambridge. 

Wilson G.V., H.M.Selim, and J.H.Dane (2000). Flow and transport processes. In: H.D. Scott, (ed.), 
Water and Chemical Transport in Soils of the Southeastern USA. SCSB-395. Department of 
Plant and Soil Sciences, Oklahama State University. 

Principles of soil physics     474


