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Silicon (Si) is the second-most abundant element of the Earth’s surface. Beginning in 1840,
numerous laboratory, greenhouse, and field experiments have shown benefits of application of sil-
icon fertilizer for rice (Oryza sativa L.), corn (Zea mays L.), wheat (Triticum aestivum L.), barley
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(Hordeum vulgare L.), and sugar cane (Saccharum officinarum L.). Silicon fertilizer has a double
effect on the soil-plant system. First, improved plant-silicon nutrition reinforces plant-protective
properties against diseases, insect attack, and unfavorable climatic conditions. Second, soil treat-
ment with biogeochemically active silicon substances optimizes soil fertility through improved
water, physical and chemical soil properties, and maintenance of nutrients in plant-available
forms.

19.2 HISTORICAL PERSPECTIVES
In 1819, Sir Humphrey Davy wrote:

The siliceous epidermis of plants serves as support, protects the bark from the action of insects, and
seems to perform a part in the economy of these feeble vegetable tribes (Grasses and Equisetables) sim-
ilar to that performed in the animal kingdom by the shell of crustaceous insects (1)

In the nineteenth and twentieth centuries, many naturalists measured the elemental composition of
plants. Their data demonstrated that plants usually contain silicon in amounts exceeding those of
other elements (2) (Figure 19.1). In 1840, Justius von Leibig suggested using sodium silicate as a
silicon fertilizer and conducted the first greenhouse experiments on this subject with sugar beets
(3). Starting in 1856, and being continued at present, a field experiment at the Rothamsted Station
(England) has demonstrated a marked effect of sodium silicate on grass productivity (4).

The first patents on using silicon slag as a fertilizer were obtained in 1881 by Zippicotte and
Zippicotte (5). The first soil test for plant-available silicon was conducted in the Hawaiian Islands
by Professor Maxwell in 1898 (6).

Japanese agricultural scientists appear to have been the most advanced regarding the practical
use of silicon fertilizers, having developed a complete technology for using silicon fertilizers for
rice in the 1950s and 1960s. Other investigations of the effect of silicon on plants were conducted
in France, Germany, Russia, the United States, and in other countries.

In % from ash

0 2 6 10 14 18 22 26 30 34 38 42 46 50 54

% of ash in plants

FIGURE 19.1 Silicon in ash of cultivated plants. (From V.A. Kovda, Pochvovedenie 1:6-38, 1956.)
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19.3 SILICON IN PLANTS

19.3.1 PLANT ABSORPTION OF SILICON

Tissue analyses from a wide variety of plants showed that silicon concentrations range from 1 to
100 g Si kg~! of dry weight, depending on plant species (7). Comparison of these values with those
for elements such as phosphorus, nitrogen, calcium, and others shows silicon to be present in
amounts equivalent to those of macronutrients (Figure 19.1).

Plants absorb silicon from the soil solution in the form of monosilicic acid, also called orthosili-
cic acid [H,Si0,] (8.9). The largest amounts of silicon are adsorbed by sugarcane (300-700 kg of
Siha™'), rice (150-300 kg of Si ha™'), and wheat (50-150kg of Si ha™") (10). On an average, plants
absorb from 50 to 200kg of Si ha™'. Such values of silicon absorbed cannot be fully explained by
passive absorption (such as diffusion or mass flow) because the upper 20 cm soil layer contains only
an average of 0.1 to 1.6kg Si ha™! as monosilicic acid (11-13). Some results have shown that rice
roots possess specific ability to concentrate silicon from the external solution (14).

19.3.2 FORMS OF SILICON IN PLANTS

Basically, silicon is absorbed by plants as monosilicic acid or its anion (9). In the plant, silicon is
transported from the root to the shoot by means of the transportation stream in the xylem. Soluble
monosilicic acid may penetrate through cell membranes passively (15). Active transport of mono-
silicic acid in plants has received little study.

After root adsorption, monosilicic acid is translocated rapidly into the leaves of the plant in the
transpiration stream (16). Silicon is concentrated in the epidermal tissue as a fine layer of sili-
con—cellulose membrane and is associated with pectin and calcium ions (17). By this means, the
double-cuticular layer can protect and mechanically strengthen plant structures (18).

With increasing silicon concentration in the plant sap, monosilicic acid is polymerized (8). The
chemical nature of polymerized silicon has been identified as silicon gel or biogenic opal, amor-
phous SiO,, which is hydrated with various numbers of water molecules (9,19). Monosilicic acid
polymerization is assigned to the type of condensable polymerization with gradual dehydration of
monosilicic acid and then polysilicic acid (20,21):

n(Si(OH),) = (Si0,) + 2n(H,0)

Plants synthesize silicon-rich structures of nanometric (molecular), microscopic (ultrastruc-
tural), and macroscopic (bulk) dimensions (22). Ninety percent of absorbed silicon is transformed
into various types of phytoliths or silicon—cellulose structures, represented by amorphous silica
(18). Partly biogenic silica is generated as unique cell or inter-cell structures at the nanometer level
(23). The chemical composition of oat (Avena sativa L.) phytoliths (solid particles of Si0O,) was
shown to be amorphous silica (82-86%) and varying amounts of sodium, potassium, calcium, and
iron (24). Phytoliths are highly diversified, and one plant can synthesize several forms (25,26). A
change in plant-silicon nutrition has an influence on phytolith forms (27).

19.3.3 BIlOCHEMICAL REACTIONS WITH SILICON

Soluble silicon compounds, such as monosilicic acid and polysilicic acid, affect many chemical and
physical-chemical soil properties. Monosilicic acid possesses high chemical activity (21,28).
Monosilicic acid can react with aluminum, iron, and manganese with the formation of slightly sol-
uble silicates (29,30):

ALSLO, + 2H* + 3H,0 = 2AP* 4 2H,Si0,, log K°=15.12

ALSi,O4(OH), + 6H* = 2A1* + 2H,Si0, + H,0. log K°=5.45
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Fe,Si0, + 4H* = 2Fe?* + 2H,Si0,, log K°=19.76
MnSiO, + 2H* + H,0 = Mn>* + 2H,Si0,. log K°= 10.25

Mn,SiO, + 4H* = 2Mn?* + H,Si0,, log K° =24.45

Monosilicic acid under different concentrations is able to combine with heavy metals (Cd, Pb,
Zn, Hg, and others), forming soluble complex compounds if monosilicic acid concentration is less
(31), and slightly soluble heavy metal silicates when the concentration of monosilicic acid is greater
in the system (28,32).

ZnSi0,+ 4H* =2Zn?* + H,Si0,, log K°=13.15

PbSiO,+ 4H* = 2Pb?* + H,Si0,, log K° = 18.45

Silicon may play a prominent part in the effects of aluminum on biological systems (33).
Significant amelioration of aluminum toxicity by silicon has been noted by different groups and in
different species (34). The main mechanism of the effect of silicon on aluminum toxicity is proba-
bly connected with the formation of nontoxic hydroxyaluminosilicate complexes (35).

The anion of monosilicic acid [Si(OH);]~ can replace the phosphate anion [HPO,]>~ from
calcium, magnesium, aluminum, and iron phosphates (12). Silicon may replace phosphate from
DNA and RNA molecules. As a result, proper silicon nutrition is responsible for increasing the
stability of DNA and RNA molecules (36-38).

Silicon has also been shown to result in higher concentrations of chlorophyll per unit area of leaf
tissue (39). This action may mean that a plant can tolerate either low or high light levels by using
light more efficiently. Moreover, supplemental levels of soluble silicon are responsible for producing
higher concentrations of the enzyme ribulose bisphosphate carboxylase in leaf tissue (39). This
enzyme regulates the metabolism of CO, and promotes more efficient use of CO, by plants.

The increase in the content of sugar in sugar beets (Beta vulgaris L.) (3,40) and sugar cane
(41,42) as a result of silicon fertilizer application may be assessed as a biochemical influence of sil-
icon as well. The optimization of silicon nutrition for orange resulted in a significant increase in
fruit sugar (brix) (43).

There have been few investigations of the role and functions of polysilicic acid and phytoliths
in higher plants.

In spite of numerous investigations and observed effects of silicon on plants and the consider-
able uptake and accumulation of silicon by plants, no evidence yet shows that silicon takes part
directly in the metabolism of higher plants.

19.4 BENEFICIAL EFFECTS OF SILICON IN PLANT NUTRITION

19.4.1 EfrFecT OF SILICON ON B1OTIC STRESSES

Silicon has been found to suppress many plant diseases (Table 19.1) and insect attacks (Table
19.2). The effect of silicon on plant resistance to pests is considered to be due either to accumula-
tion of absorbed silicon in the epidermal tissue or expression of pathogensis-induced host-defense
responses. Accumulated monosilicic acid polymerizes into polysilicic acid and then transforms to
amorphous silica, which forms a thickened silicon—cellulose membrane (44,45), and, which can
be associated with pectin and calcium ions (46). By this means, a double-cuticular layer protects
and mechanically strengthens plants (9) (Figure 19.2). Silicon might also form complexes with
organic compounds in the cell walls of epidermal cells, therefore increasing their resistance to
degradation by enzymes released by the rice blast fungus (Magnaporthe grisea M.E. Barr) (47).
Indeed, silicon can be associated with lignin—carbohydrate complexes in the cell wall of rice epi-
dermal cells (48).
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TABLE 19.1

Plant Diseases Suppressed by Silicon

Plant

Barley (Hordeum vulgare L.)

Creeping bent grass
Cucumber (Cucumis
sativus L.)

Cucumber

Cucumber

Cucumber

Cucumber, muskmelon
(C. melo L.)

Grape (Vitis vinifera L.)
Grape

Pea (Pisum sativiem L.)

Rice (Oryza sativa L.)
Rice

Rice

Rice

Rice
Rice

Rice
Rice

St. Augustine grass
(Stenotaphrum secundatum
Kuntze)

Sugarcane (Saccharum
officinarum L.)
Sugarcane

Sugarcane

Tomato (Lyvcopersicon
escilentum Mill.)

Wheat (Triticum cestivim 1)
Wild rice (Zizania aquatica L.)

Zoysia grass

(Zoysia japonica Steud.)
Zucchini squash
(Cucurbita pepo L.)

Disease

Powdery mildew
Dollar spot
Root disease

Root disease
Stem rotting
Stem lesions
Powdery mildew

Powdery mildew
Powdery mildew
Mycosphaerella
leaf spot

Brown leaf spot
Brown spot (husk
discoloration)
Grain discoloration

Leaf and neck blast
Leaf scald
Sheath blight

Sheath blight
Stem rot

Gray leaf spot

Leaf freckle

Sugarcane rust
Sugarcane ring spot
Fungal infection

Powdery mildew
Fungal brown spot

Brown patch

Powdery mildew

Pathogen
Erysiphe graminis
Sclerotinia homoeocarpa
Pythium aphanidermatum

Pythium ultimum
Didymella bryvoniae
Botrytis cineria
Sphaerotheca fuliginea

Oidium ruckeri
Uncinula necaror
Mycosphaerella pinodes

Helminthosporium eryzae
Cochiobolus mivabeanus
(Bipolaris oryzae)
Bipolaris, Fusarium,
Epicoccum, etc.
Magnaportha grisea
(Pyricularia grisea)
(Pyricularia oryzae)
Gerlachia oryvzae
Thanatephorus cucumeris
(Rhizoctonia solani)
Corticum saskii (Shiriai)
Magnaporthe salvanii
(Sclerotium oryzae)

Magnaporthe grisea

Probably a nutrient disorder

Puccinia melanocephala
Leptosphaeria sacchari
Sphaerotheca fuliginea

Septoria nodorum
Bipolaris oryzae

Rhizoctania solani

Erysiphe cichoracearum

Reference

87-89
90
91

92
93
93
39.94, 95

96
97
50

98
99-105

101, 106-109

47, 101-103, 106,
107, 110-116

101, 106, 107, 117
52,117-119

120
117

121

122

123
124
39

89
125
126

95

Research also points to the role of silicon in plants as being active and suggests that the element
might be a signal for inducing defense reactions to plant diseases. Silicon has been demonstrated to
stimulate chitinase activity and rapid activation of peroxidases and polyphenoxidases after fungal
infection (49). Glycosidically bound phenolics extracted from amended plants when subjected to
acid or -glucosidase hydrolysis displayed strong fungistatic activity. Dann and Muir (50) reported
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TABLE 19.2

Plant Insects and Other Pests Suppressed by Silicon

Plant

Grape (Vitis vinifera L.)
Italian ryegrass (Lolium
multiforum Lam.)
Maize (Zea mays L.)
Rice (Oryza sativa L.)

Rice

Rice

Rice

Rice

Rice

Rice

Rice

Rice

Sargent crabapple

(Malus sylvestris Mill.)
Sorghum

(Sorghum bicolor Moench.)
Sugarcane

(Saccharum officinarum L.)
Sugarcane

Wheat (Triticum aestivum L.)
Zoysia grass

(Zoysia japonica Steud.)

“Noninsect pests.

Pest

Fruit cracking®
Stem borer

Borer
Stem borer

Stem maggot

Green leaf hopper
Brown plant hopper
White-back plant hopper
Leaf spider®

Mites®

Grey garden slug®
Lepidopteran (Pyralidae)
Japanese beetle

Root striga, parasitic
angiosperm
Stem borer

Stalk borer
Red flour beetle
Fall army worm

Insect Reference
127

Oscinella frur 128
Sesamia calamistis 129
Chilo suppressalis 9, 130-134
Scirpophaga incertulas
Chlorops oryvzae 135
Nephotettix bip nctatus cinticeps 135
Nalaparrata lugens 136
Sogetella furcifera 137
Tetranvchus spp. 9

— 138
Deroceras reticulatiom 139
Chilo zacconius 140
Papilla japonica 141
Scrophulariaceae; Striga 142
asiatica Kuntze
Diatraea succharira 143
Eldana saccharira 144
Tribotium castaneum 129
Spodoptera depravaia 126

Silica layer (2.5 )
Outer cell wall (2.5 p)

Cuticle (0.1 p)

D T

leaf-blade
(100 p)

FIGURE 19.2 Schematic representation of the rice (Oryza sativa L.) leaf epidermal cell. (From S. Yoshida,
Technical bulletin, no. 25, Food and Fertilizer Technology Center, Taipei, Taiwan, 1975.)

that pea (Pisum sativum L.) seedlings amended with potassium silicate showed an increase in the
activity of chitinase and [-1,3-glucanase prior to being challenged by the fungal blight caused by
Mycosphaerella pinodes Berk. et Blox. In addition, fewer lesions were observed on leaves from sil-
icon-treated pea seedlings than on leaves from pea seedlings not amended with silicon. More
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recently, flavonoids and momilactone phytoalexins were found to be produced in both dicots and
monocots, respectively, and these antifungal compounds appear to be playing an active role in plant
disease suppression (51,52).

19.4.2 EFFeCT OF SILICON ON ABIOTIC STRESSES

Silicon deposits in cell walls of xylem vessels prevent compression of the vessels under conditions
of high transpiration caused by drought or heat stress. The silicon—cellulose membrane in epider-
mal tissue also protects plants against excessive loss of water by transpiration (53). This action
occurs owing to a reduction in the diameter of stomatal pores (54) and, consequently, a reduction
in leaf transpiration (15).

The interaction between monosilicic acid and heavy metals, aluminum, and manganese in
soil (discussed below) helps clarify the mechanism by which heavy metal toxicity of plants is
reduced (55.56).

Silicon may alleviate salt stress in higher plants (57.58). There are several hypotheses for this
effect. They are (a) improved photosynthetic activity, (b) enhanced K/Na selectivity ratio, (c)
increased enzyme activity, and (d) increased concentration of soluble substances in the xylem,
resulting in limited sodium adsorption by plants (58-61).

Proper silicon nutrition can increase frost resistance by plants (58,62). However, this mecha-
nism remains poorly understood.

19.5 EFFECT OF SILICON ON PLANT GROWTH AND DEVELOPMENT

19.5.1 ErrecT OF SiLICON ON ROOT DEVELOPMENT

Optimization of silicon nutrition results in increased mass and volume of roots, giving increased
total and adsorbing surfaces (39,63-66). As a result of application of silicon fertilizer, the dry
weight of barley increased by 21 and 54% over 20 and 30 days of growth, respectively, relative to
plants receiving no supplemental silicon (67). Silicon fertilizer increases root respiration (68).

A germination experiment with citrus (Cifrus spp.) has demonstrated that with increasing
monosilicic acid concentration in irrigation water, the weight of roots increased more than that of
shoots (69). The same effect was observed for bahia grass (Paspalum notatum Fliigge) (70).

19.5.2 ErrecT OF SiLicoON ON FrRUIT FORMATION

Silicon plays an important role in hull formation in rice, and, in turn, seems to influence grain qual-
ity (71). The hulls of poor-quality, milky-white grains (kernels) are generally low in silicon content,
which is directly proportional to the silicon concentration in the rice straw (72).

Barley grains that were harvested from a silicon-fertilized area had better capacity for germi-
nation than seeds from a soil poor in plant-available silicon (37). Poor silicon nutrition had a nega-
tive effect on tomato (Lycopersicon esculentum Mill.) flowering (73). It is important to note that the
application of silicon fertilizer accelerated citrus growth by 30 to 80%, speeded up fruit maturation
by 2 to 4 weeks, and increased fruit quantity (74). A similar acceleration in plant maturation with
silicon fertilizer application was observed for corn (37).

19.5.3 ErrecT OF SiLicoN oN CroP YIELD

Numerous field experiments under different soil and climatic conditions and with various plants
clearly demonstrated the benefits of application of silicon fertilizer for crop productivity and crop
quality (Table 19.3).



Handbook of Plant Nutrition

558

£E'T

051 €81
611
81
89°€T
Il
LE 89°L
LE
00’y
TL'e
LS'E
Lyl Ly'e
8L°L
9l 86°C
9L's
80
6r'ry
0L'e
po's
'S
(43 4
TE'T
SF1 (AN
aou3JY By 3w
merns

8r'1
£€6°0
90
£'ST
901
86
68
€9
v
0
8’9
9T's
ot
Lr'e
LT
88°C
LP'T

I€°L
e
w's
(4153
€9
(A3
s
€0t

0T

P | 3w
‘uresn ‘doa)

Aey

(T paups puzay) s;eQ)

("] POSAA PLPTLLY)
Aragmens

("1 sapw paz) wo)

Kapreq

Aapey

AeH

(1 24082 umapaogy)
Kapeg

jueld

000T 2wy

Md'N
Md'N

Md

Md

A

A

3 pue ‘BN Y d
3 pue ‘BN Y d
TN pue ‘BN M d
TN pue ‘BN M d
Ty pue ‘BN Yy
SN pue ‘BN Y

d

d

ZZZZZZZZZZZZZZ

[onuoyy

awnday

0001
0
(00T
0
0
4601
0
%01
0
001
0
0
00s
001
0
0L8

(-ey
3y asoqg

ang

Sefs UN-1S

MM[OIZ

vorts snoydiouny

earpts snoydioury

s snoydaowny

29E21[TS UMIPOS

29EO1[TS UMIPOS

171|144
uodnps

BISSNY ‘(108 [B1AN]]Y Q
uapamg ‘nros orjozpod pray L
vrssny ‘[1os orjozpod Appog 9
vissny ‘pros orjozpod Apposg g
BIssSMY ‘[108 orjozpod Apposg ¥

11os sjozpod Appog €

pue[Sus ‘uonEeI§ pAISWEOY
SRy sg-yim-Ae) T
pue(duy

‘uoneIg PASWLyIoy

ey swng-yim-£el)y I
Anuno) ‘1og ‘ON

uononpoid dos) uo sidzINId4 UODI[IS JO DAY

€61 319VL




559

Silicon

panunuc)

101

91

191

091

651

8E1

LE1

9¢1

£E1

g

759
c8'¢
91’9
9¢°¢

P 08T
Z0¢
091

86'L
Ll
LE'L

SO'E1
9¢’L
L6'6
606
80y
99°¢
S8'E
8F't
99°T
9T
1
L't
6°C
9T

oy
Ay
SLE

20Ty

Y

20Ty

2

1Y

(1 panps pz8a0)) 201y
Aapey

("1 Wmsoaagn]

HINUDJOS) 018104

Aey

Kopeg

Kapeg

("youdop ojeg
umydiog) wnydiog
(] wWnANsSan wmoMLLf)

ey M

adeaoy woD)

("] sundma piag) 10wag

S put g ‘N
M Puv d ‘N

A
.|

amuey
amuepy

ar
z

3 pue
My pued ‘N

as
z

3 puv
M pue

e
Z

N
N
A_..f,_ 10¢ 1) amuey
(,_ey10g1) smuepy

S pue g ‘N
awr+H pue g ‘N
S put g ‘N

L't

000T1
0
0001
0

01t

0

01t

0

01t

0
0009
0
000%
0
00ST
0
009t
0
000€
0
000€
0
00001
0
0000t
0

01

0
0000zl

2yBOT[IS UMIpOg

UsSE mEns 201y

VIS WNIPOS

IS WNIPOS

MEI]S 20Ty

eorpis snoydaowry

apungg

Feys uory

eorfis snoydioury

mjoaz,
omjoayz

2yBaT[IS UMIpOg

mjoaz

deig

RLRSIN ‘[osn[)

eyjue] g ‘weo] Apuvy

RISSNY ‘TIOS INWSIYD (]
BISSnYy

‘wozowdy) dwems-pianyy
BISSIY

‘Mes ynm durems-rerany
RISSNY ‘[I0S P1ow yony

BISSIY ‘[10S yonJy

KRMION ‘p1ae [0SOISTH

BISSIY ‘[10S INUWISAYDY
RIS ‘(108 10UISAYD)
BISSNY ‘108 INUISAYD)

(JosI[joun) BIssny ‘WaZoway)y

([OST]OW) BISSNY "Wazouwdy )

(JOSITTOW) BISSNY ‘WAZOWIAY)

[

0c

61

81

L1

91

€1

vl

£l

cl

0



P61
PTl 0s1
L'EIY

8'9¢¢
44 L99T
8eE

we
LcE
[y £6T
991
151
51 £}
151
54
£91 ¥l
LST
Y91 vl

Handbook of Plant Nutrition

£91

£91
w9
BC'Y
98’y
96’

ERIETETEN | ey 8w
MBS

560

B'ET
I'81
4. 2%

L9°9C
¥'LT
L'te

Loe
9IE
LAY

026’9
SLLT'9
Trs
0Te'e
981'Y
1LS'S
9.8t
rI'e
YO'C
81’
YE'T
Lyl
I's

T 7Y
‘wean ‘dos)

sumnjoo ay) ur ad£) proq ur umoys st Jaziaay uoois jo uoneordde o) asuodsay a0y

aurandng
o pue d ‘N
(;-BU1SH) 'ODED +
N pue d ‘N
aurandng S pue ‘d ‘N
(,_eudyozin d
G-eydyozin) d +
(;-®u SN G'p) fODED
08T d
auvanedng 08T d
aueoaedng 79— Hd
auranedng g'¢ Hd
(1 umarigonffo d
wnapa20g) auraaedng d
—_H_M
—_H_M
Ealb. |
M put ’d ‘N
N pue .n— .Z
1Y
3N
N
S+ d'N
S+ d'N
elg awiay

00L9
0
LL19

005y

0
0ost
0
0991
0t8
0
0991
0ts
0
0es
0
0091
0
0091
0
0081
0

0
L't
0
L'y
0
Lt
0

G-y
8y) asog

Fes apeorrs winode)

Feps sovwng onPafH

Fers AL

aquaNIS Wwnoe)

AUIIS WNdE)

aquaNIS wnode)

vorms snoydiouny

1Rz
uodN|1s

EPLIO[] ‘[OSOISTH

SNOIMEN ‘J0soe]
SNOUTTNLIA] *DMUNY SOUTWM|y

emeH
‘JOSON] SNOWS LAY TWNH

NEARH '[OSOJR] STy

TTEMEH [0SO1e] TNy
IRMEH ‘[OSOIR] d1wn
aeosedepepy

‘Ka1ny ordom-rwas [eaaurpy

aeasedepepy
‘fa10) omedio aydioworpAy

Anuno) ‘j1os

0t

6¢

8¢

LT

9c

¥T

£

‘ON

(ponunuo)) €6l 319VL




Silicon 561

19.6 SILICON IN SOIL

19.6.1 FORMS OF SILICON IN SoIL

Soils generally contain from 50 to 400 g Si kg™! of soil. Soil-silicon compounds usually are pres-
ent as Si0, and various aluminosilicates. Quartz, together with crystalline forms of silicates (pla-
gioclase, orthoclase, and feldspars), secondary or clay- and silicon-rich minerals (kaolin,
vermiculite, and smectite), and amorphous silica are major constituents of most soils (75). These
silicon forms are only sparingly soluble and usually biogeochemically inert. Monosilicic and poly-
silicic acids are the principal soluble forms of silicon in soil (76).

For the most part, monosilicic acid occurs in a weakly adsorbed state in the soil (13,37).
Monosilicic acid has a low capacity for migration down the soil profile (77). The chemical similar-
ity between the silicate anion and the phosphate anion results in a competitive reaction between the
various phosphates and monosilicic acid in the soil. Increasing monosilicic acid concentration in the
soil solution causes transformation of the plant-unavailable phosphates into the plant-available ones
(12). Monosilicic acid can interact with aluminum, iron, manganese, and heavy metals to form
slightly soluble silicates (29,30).

Polysilicic acids are an integral component of the soil solution. They mainly affect soil physi-
cal properties. The mechanism of polysilicic acid formation is not clearly understood. Unlike mono-
silicic acid, polysilicic acid is chemically inert and basically acts as an adsorbent, forming colloidal
particles (34). Polysilicic acids are readily sorbed by minerals and form siloxane bridges (78). Since
polysilicic acids are highly water saturated, they may have an effect on the soil water-holding capac-
ity. Polysilicic acids have been found to be important for the formation of soil structure (79). There
is a pressing need to obtain additional information about biogeochemically active silicon-rich sub-
stances involved in soil-formation processes.

19.6.2 SoiL Tests

Silicon forms may be defined as total, extractable, and soluble. Total silicon comprises all existing
forms of soil silicon that can be dissolved by strong alkali-fusion or acid-digestion methods (80).
This parameter does not provide information about plant-available and chemically active silicon
because silicon in soil is in the form of relatively inert minerals (62).

Usually for determination of soil plant-available silicon, different extracts are used. Extracts
remove silicon of intermediate stability that is often associated with crystalline or amorphous soil
components. The most common chemical extracts used are 0.5M ammonium acetate (pH 4.8), 0.1
or 0.2M HClI, water, sodium acetate buffer (pH 4.0), and ammonium oxalate (pH 3.0) among oth-
ers (71,81-83). Unfortunately, soil drying is a component of all these extraction methods. During
drying, all monosilicic acid (plant-available form of Si) is dehydrated and transformed into amor-
phous silica (21). Concern has been expressed that data obtained on dried soil may not adequately
describe plant-available soil silicon and may be unsatisfactory for evaluating soil previously
amended with silicon fertilizer (71). Nevertheless, extractable silicon has been correlated with the
plant yield (84).

To overcome problems associated with soil drying, soluble monosilicic acid can be determined
in water extracted from field-moist soil samples. After 1 h of shaking and filtration, the clean extract
is analyzed for soluble monosilicic acid. This method also facilitates the testing for polysilicic acid
in the soil (13). It should be noted that a change in the soil-water concentration from 5 to 50% of
the field capacity had no effect on the sensitivity of the method (12,13).

To fully characterize soil plant-available silicon, it appears that more than one parameter
of measurement is required. The combination of data on soluble monosilicic acid, polysilicic
acid, and silicon in some extracts could give more complete information about the soil-silicon
status.
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19.7 SILICON FERTILIZERS

Although silicon is a very abundant element, for a material to be useful as a fertilizer, it must have a
relatively high content of silicon, provide sufficient water-soluble silicon to meet the needs of the
plant, be cost effective, have a physical nature that facilitates storage and application, and not con-
tain substances that will contaminate the soil (85). Many potential sources meet the first requirement;
however, only a few meet all of these requirements. Crop residues, especially of silicon-accumulat-
ing plants such as rice, are used as silicon sources either intentionally or unintentionally. When avail-
able, they should not be overlooked as sources of silicon. However, the crop demand for application
of silicon fertilizer generally exceeds that which can be supplied by crop residues.

Inorganic materials such as quartz, clays, micas, and feldspars, although rich in silicon, are poor
silicon-fertilizer sources because of the low solubility of the silicon. Calcium silicate, generally
obtained as a byproduct of an industrial procedure (steel and phosphorus production, for example)
is one of the most widely used silicon fertilizers. Potassium silicate, though expensive, is highly sol-
uble and can be used in hydroponic culture. Other sources that have been used commercially are
calcium silicate hydrate, silica gel, and thermo-phosphate (85).

19.8 SILICON IN ANIMAL NUTRITION

In the last 30 years, a few studies on silicon effects on mammals, fish, and birds were conducted
(33,38,86). Data have shown that active silicon (fine amorphous silica) increased the weight and
quality of animals. Chicken (Gallus gallus domesticus), pig (Sus scrofa), and sheep (Ovis aries) with
silicon-rich diets were healthier and stronger than animals without silicon supplements (33,38).
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20.1 SODIUM IN SOILS AND WATER

Sodium and potassium, being adjacent elements in Group 1 of the Periodic Table, have similar
chemical properties. In the biology of higher organisms, however, these two elements have very
different roles and are treated very differently by mechanisms involved in short- and long-range
transport. Estimates of the percentages of sodium and potassium in the Earth’s crust vary between
2.5 and 3% (by weight), with slightly more sodium than potassium (1), and these concentrations are
similar to the percentages of calcium and magnesium. Much of the sodium is in seawater, to the
extent of 30.6% by weight compared with only 1.1% for potassium and 1.2% for calcium. Chloride,
although present at only 0.05% in the Earth’s crust, makes up 55% of the mass of seawater salts.
For humans and most animals, physiological solutions are dominated by sodium (around 0.8%
[w/v] compared with about 0.02% for potassium, calcium, and magnesium) and chloride (0.9%),
and both elements are essential for animals. Thus, when we think of sodium, we think first of com-
mon salt—sodium chloride. In soils, the situation is more complex than in bulk solutions, and con-
centrations of cations (as experienced by the plant root) are influenced by ion exchange, diffusion,
and mass-flow processes. The osmotic effects of excessive salts are also influenced by the exact
amounts and proportions of anions and cations.

Some sodium occurs in most soils, but in temperate climates, the concentrations are often sim-
ilar to, or lower than, those of potassium. Excessive amounts of sodium may be present in the soil
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in arid and semi-arid areas, and where evapotranspiration is similar to or greater than precipitation.
The excess may be in the form of high concentrations of sodium ions in solution, usually accom-
panied by chloride and sulfate (saline soils), or where sodium is the main cation associated with
cation-exchange sites (sodic soils). There is no absolute division of salt-affected soils into these two
categories, saline or sodic, as there is a range from purely saline to purely sodic, with most salt-
affected soils falling somewhere between the two extremes. The FAQ estimated that in 2000, 3.1%
of the Earth’s land area was affected by salinity and a further 3.4% had sodic soils (2). These figures
include 19.5% of irrigated land and 2.1% of land under dry-land agriculture. Detailed properties of
these soils are presented in a number of monographs (3-9). A brief summary is given below.

20.1.1  SALINITY

A widely accepted definition of a saline soil is one that gives a saturated paste extract with an elec-
trical conductivity (EC,) of >4 dS m~! (mmho cm™'). Seawater is about 55 dS m~!. These saline
soils will also have an exchangeable sodium percentage (ESP) of <15 and a pH of <8.5. Saline
soils are a problem for most plants because of the high concentrations of soluble salts in the soil
solution. Soil salinity usually involves other ions in addition to those of sodium and chloride, par-
ticularly calcium, magnesium, and sulfate. The proportions of these ions depend on the chemistry
and hydrology of the soil, but all saline soils have high concentrations of salts that may be harmful
in three ways. First, the high concentrations result not only in higher electrical conductivity, but also
in high osmotic pressures (more negative osmotic potentials). This action makes it more difficult for
plants to establish a continuous gradient of water potential between the soil solution and the atmos-
phere—the driving force for transpiration and water uptake by osmosis. Plants must make their own
tissue solutions more concentrated (higher osmotic pressure) in order to draw water into their tis-
sues. This response is called osmotic adjustment, and in a strict sense, it refers to an increase in
solutes on a dry weight basis (a higher osmotic pressure can also be achieved to some extent by a
reduction in the amount of water). The simplest and energetically the cheapest way to achieve
osmotic adjustment is by the accumulation of inorganic ions (10). This action can lead to the sec-
ond problem—the toxicity of high concentrations of inorganic ions in plant tissues (11). Toxicity,
in this context, can result from direct interference with cellular metabolism or from an osmotic
imbalance caused by the accumulation of salts in the leaf apoplast, known as the Qertli effect
(12,13). The third problem is that high concentrations of salts can inhibit the uptake of other nutri-
ents such as potassium and nitrate (see below).

20.1.2 Sobpicary

In contrast, soils with little soluble sodium, and hence a low EC, (<4 dS m™'), but with a substan-
tial proportion of the exchangeable cations in the form of sodium (ESP>15) and a pH of >8.5, are
called sodic soils. In purely sodic soils, a substantial osmotic problem does not occur, since the con-
centrations of free ions in the soil solution are low. Nutrition is a problem because of the replace-
ment of nutrient cations (K*, Ca’>*, and Mg?*) at ion-exchange sites in the soil by sodium (Na™)
and because of the high pH. Sodic soils have poor physical structure and may be impermeable to
water and to plant roots, so that there are often secondary problems such as waterlogging and
hypoxia.

Primary salinization is the result of geological processes such as the deposition of salt from dry-
ing lakes and seas. The large areas of salt-affected soil in parts of Hungary, Australia, and the west-
ern United States of America are the result of such natural events. Secondary salinization refers to
the impact of man, mainly resulting from unsustainable irrigation for agriculture and rising water
tables. Secondary salinization has played a role in the decline of several civilizations. The Sumerian
civilization in Mesopotamia is probably the best known. This civilization was initially based on irri-
gated wheat farming, but lack of adequate drainage and excessive use of irrigation water with



Sodium 571

an appreciable salt content led to accumulation of salts in the irrigated lands. Wheat (Triticum aes-
tivumn L..) was replaced gradually by the more tolerant cereal barley (Hordeum vulgare L.), until it
was abandoned completely in about 1700 BC (6). Eventually, the salinity reached levels at which not
even barley would grow. Clearly, this presentation is a simplification of a complex series of events,
but the pattern of irrigation without adequate drainage or control of salt fluxes in the soil has been
repeated in other civilizations such as the Hohokam of the Sonoran Desert and the Indus civilization
of Pakistan. The mistakes of ancient civilizations have, unfortunately, been repeated in more modern
times. Examples are the vast irrigation systems in the Indian subcontinent and central Asia. In the
former case, remedial civil engineering is tackling the problem (6). In the former Soviet Union, large-
scale irrigation schemes built in the 1950s abstracted water from the Amu Darya and Syr Darya rivers
for the cultivation of cotton (Gossypium hirsutum L.) and other crops. These rivers flow into the Aral
Sea, and with the reduction in river flows, the level of the sea dropped by more than 10 m; and its
area decreased by over 40% in the latter half of the 20th century and is still decreasing. Even the
United States of America, with all of its technological and financial resources, is not immune to the
impact of secondary salinization, as in the San Joachim valley and the Salton Sea.

Secondary salinization is most severe in arid and semi-arid regions, where potential evapotran-
spiration rates are high, as in parts of the United States, the Indian subcontinent, Australia, the
Middle East, and South America.

20.2 SODIUM AS AN ESSENTIAL ELEMENT

Some uncertainty exists about the status of sodium as a nutrient, partly arising from the semantics
of ‘essentiality’. The original criteria of Arnon and Stout (14) were that an essential element should
be necessary for completion of the life cycle, should not be replaceable by other elements, and
should be involved directly in plant metabolism. Sodium fails to meet all the three criteria for most
plants and is generally regarded as a beneficial nutrient (see below). Only a few plants have any
difficulty completing their life cycles in the absence of sodium, and these include some euhalo-
phytes and some C, species. The osmotic functions of cations in the vacuoles of plants growing at
low salinity can be performed to some extent by any of the common cations. In particular, the
monovalent alkali metals can perform similar functions in generating solute osmotic pressures and
turgor (1,15-18).

The term ‘functional nutrient’ has been suggested for sodium, and, perhaps also for silicon and
selenium (19,20). It might equally be applied to some of the rare earth elements that promote plant
growth in certain circumstances (21). As Tyler (21) has pointed out for the latter group, research on
essentiality, even of sodium, has examined only a small proportion of the total number of species
in the Plant Kingdom. Even so, it is clear that for most species, sodium is not essential in any sense.

20.3 BENEFICIAL EFFECTS

20.3.1 GROWTH STIMULATION

Halophytes. The responses of halophytes and glycophytes to salinity have been reviewed many
times (4,7,22-28). One feature of the response of halophytes, and, particularly the succulent halo-
phytes predominantly from the family Chenopodiaceae, is that maximum biomass is achieved at
moderate-to-high salinity (29-33). In other species, growth can be stimulated at low salinity, com-
pared with the absence of salt (34), but this effect may depend on the overall nutritional status of
the plant and the purity of the sodium chloride.

A part of the biomass of halophytes is the inorganic ions that they accumulate, especially in the
shoots (23,26,27,30). It has been argued that, for a better assessment of plant productivity, only the
organic portion of the biomass should be considered—that is, the ash-free dry weight (35-37). This
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consideration certainly reduces the apparent stimulation of ‘growth’ by sodium in the salt-accumu-
lating, succulent euhalophytes, but a positive effect on ash-free dry weight is still apparent.

20.3.2 INTERACTION WITH OTHER NUTRIENTS

The role of potassium in generating turgor can be fulfilled by sodium and to some extent, by cal-
cium and magnesium, particularly at low concentrations of potassium (38—41). The estimated extent
to which potassium can be replaced by sodium in the edible portions of crops varies from 1% in
wheat (Zriticum aestivum L.) and rice (Oryza sativa L.) to 90% in red beet (Beta vulgaris L.) (42).
The interactions among cations in terms of uptake and accumulation rates are complex. The ability
of low concentrations (<500 uM) of sodium to stimulate potassium uptake when potassium con-
centrations are low does not appear to be of importance outside the laboratory (43). The extensive
literature on the physiology and genetics of potassium—sodium interactions, especially related to
membrane transport, is beyond the scope of this chapter and has been reviewed comprehensively by
other researchers (44-50). Some evidence suggests that shoot sodium concentrations (altered by
spraying sodium onto leaves) affects the transport of potassium to the shoots, or at least leaf potas-
sium concentrations (51).

Interactions between sodium and other nutrients have been observed (52-54). Excessive
sodium inhibits the uptake of potassium (43,55), calcium (56-67), and magnesium (53). A deficiency
of calcium, or a high sodium/calcium ratio, results in enhanced sodium uptake. For most species, this
calcium requirement is satisfied at a few moles per cubic meter of calcium in solution and is rarely
detected in soils. It can become a problem in hydroponics if the calcium concentration in the nutri-
ent solution is low, and no extra calcium is added. Maintaining low sodium/calcium ratios (as a
general rule, not >10:1 for dicots and 20:1 for monocots) will prevent this problem. Similar con-
siderations apply to silicon (68-75).

Nitrogen nutrition modifies the effects of sodium on Chenopodiaceae such as goosefoot
(Suaeda salsa L.) (76). Plants of this family accumulate large amounts of nitrogen in the form of
nitrate and glycinebetaine (30,77-80). The interactions among salinity, nitrogen, and sulfur nutri-
tion have been investigated in relation to the accumulation of different organic solutes in the halo-
phytic grasses of the genus Spartina (81-83). Generally, adequate nitrogen nutrition is necessary to
minimize the inhibition of growth caused by excess salt, but with some differences between the
ammonium- and nitrate-fed plants (84-94).

Salinity may interfere with nitrogen metabolism in a number of ways, starting with the uptake
of nitrate and ammonium (87,95). Under nonsaline conditions, nitrate is an important vacuolar
solute in many plants, including members of the Chenopodiaceae and Gramineae. Under saline
conditions, much of the vacuolar nitrate may be replaced by chloride, possibly releasing some
nitrate-nitrogen for plant growth and metabolism. On the other hand, salinity can result in the syn-
thesis of large amounts of nitrogen-containing compatible solutes such as glycinebetaine (and in a
few cases, proline) and lead to the accumulation of amides and polyamines. Changes may occur at
the site of nitrate reduction from the leaves to the roots, and hence changes in nitrate transport to
the shoots. Since the latter is linked to potassium recirculation (96,97) and long-range signaling
mechanisms controlling growth and resource allocation (98), the implications of such changes are
wide ranging. The activity of nitrate reductase may also be affected by salinity. Although toxic ions
can affect all aspects of nitrogen metabolism, little evidence suggests that nitrogen supply directly
limits the growth of plants under conditions of moderate salinities (99).

In comparison with the other nutrients, the interactions between salinity and phosphorus have
received relatively little attention (100) and depend to a large extent on the substrate (52,53). When
investigating interactions between salinity and nutrients, one has to be aware of the effects of the
substrate, the environment, the genotype—nutrient balances, the nutrient and salt concentrations, the
time of exposure to salinity, and the phenology of the plant. These interactions are complex and can-
not be comprehended adequately from one or two experiments.
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20.4 SODIUM IN FERTILIZERS

Application of sodium to many crops has been reported to stimulate growth, particularly when
potassium is deficient (15,101-107). This phenomenon has been documented repeatedly with Beta
species (red beet, fodder beet, and sugar beet) (108-126), and in a range of other crops including
asparagus (Asparagus officinalis L.), Italian ryegrass (Lolium multiflorum Lam.), tomato
(Lycopersicon esculentum Mill.), potato (Selanum tuberosum L.), carrots (Daucus carota L.), cel-
ery (Apium graveolens L.), and flax (Linum usitatissimum L.) (15,74,101,103,104,107,127,128).

There is particular interest in sodium fertilizer application to forage crops, since animals
require substantial amounts of sodium (129,130). Lactating dairy cows need a concentration of
about 2 g Na kg~! in forage (131). The problem is particularly evident on soils that are intensively
managed and deficient in nutrients (132-134), although there are exceptions (135). Application
of sodium fertilizer improves the quality of fodder crops and makes them more acceptable to
animals (136-140).

20.5 SODIUM METABOLISM IN PLANTS

20.5.1 Errects ON C, SPECIES

Sodium was reported to be necessary for the growth of some halophyte species (32,141-143);
notably, bladder saltbush (Atriplex vesicaria Heward, Chenopodiaceae). Sodium specifically stim-
ulates the growth of Joseph’s coat (Amaranthus tricolor L., Amaranthaceae) (144), possibly by an
effect on nitrate uptake and assimilation (145,146). Sodium appears to be essential for the C,
grasses such as proso millet (Panicum miliaceum L.), kleingrass (P. coloratum L.) and saltgrass
(Distichlis spicata Greene) (20,147,148) and has been found to stimulate the growth of grasses such
as marsh grass (Sporobolus virginicus Kunth) and alkali sacaton (S. airoides Torr.) in some studies
(149-151). Subsequent work showed that this requirement was linked with the C, pathway of pho-
tosynthesis (141,142,152-157) and specifically with pyruvate-Na™ co-transport into mesophyll
chloroplasts (158-163), a step that is necessary for the regeneration of phosphoenolpyruvate and the
fixation of CO,. Not all C, plants require sodium for photosynthesis or grow better when it is pres-
ent (161). The C, species of the NADP™-malic enzyme (ME) type have a different co-transport sys-
tem for pyruvate that uses protons rather than sodium ions.

In sorghum species (Sorghum L.), there is a specific effect of higher concentrations of sodium
(and low concentrations of lithium) on the kinase that regulates the activity of phosphoenolpyruvate
(PEP) carboxylase, the primary carbon-fixing enzyme in C, and crassulacean acid metabolism
(CAM) plants (164). The kinase also seems to be linked to the responses of PEP carboxylase
to nitrate in C, and C, Alternanthera Forssk. species (165). There was a report that sodium
was required for CAM in Chandlier plant (Kalanchoe tubiflora Hamet) (166), but little further
work has been published on this aspect, and no relationship occurs between CAM and halophytism
(167). On the other hand, salinity and other stresses are known to induce CAM photosynthesis
in the facultative CAM species, ice plant (Mesembryanthemum crystallinum L., Aizoaceae)
(168,169).

20.5.2 ToxiciTy OF SODIUM

Application of sodium to recently transplanted seedlings or cuttings runs the risk of uncontrolled by-
pass flow of water and sodium to the shoots through damaged roots. Hence sodium is often applied
in the laboratory, greenhouse, or growth-chamber experiments after the plants have become estab-
lished in the growing medium. For such situations, Munns (24,25,33) has described a series of events
that occurs in most plants. At its simplest, these effects start with the initial osmotic stress caused by
making the external (medium) water potential more negative. Subsequently, external inorganic ions
are taken up and organic solutes synthesized for osmotic adjustment of the plant cells. Failure to
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properly control the influx of inorganic salts results in the direct toxicity of high intracellular (par-
ticularly cytoplasmic) concentrations of ions or to osmotic imbalances within tissues such as the
accumulation of salts in the apoplast of species like rice (12,13). Although this description has been
challenged in detail regarding the implications for stress-resistance breeding (11) and the point at
which specific ion effects become evident (170), it is still the best model of physiological responses
to applied salinity. The same concepts, with modifications of timescale and phenology, can be use-
ful in the crop field and in natural environments, although in both cases the severity of salinity (and
other stresses) is subject to fluctuations that the laboratory experiment is designed to avoid.

Important questions are what, when, and why salts are toxic to plants. The question of whether
sodium or chloride is a toxic ion is still difficult to answer in most plants, though of course, this
action is not important if the problem is primarily osmotic. The question of when inorganic salts
(mainly sodium chloride) become toxic is a little easier to answer, at least in theory. Accumulation
of salts is required for osmotic adjustment, as cellular dehydration may make a contribution, but
generally perturbs metabolism by changing the concentrations of critical intermediates and signal-
ing molecules in the cytoplasm. If salts accumulate much in excess of the concentrations needed for
osmotic adjustment of plant cells, it is likely that they will become inhibitory to metabolism and
growth, although this may depend on the intracellular location of the salts (see below). The cyto-
plasm of eukaryotic cells has evolved to work best within a limited range of concentrations of
solutes, and particularly of certain ions. Exceeding these ranges for inorganic (and some organic)
ions (including potassium) creates problems for macromolecular structures, and hence enzyme
activities and nucleic acid metabolism (171,172).

20.6 INTRACELLULAR AND INTERCELLULAR COMPARTMENTATION

From the above, it follows that plants growing in saline environments and accumulating high con-
centrations of salts must have a mechanism that facilitates high rates of metabolic activity in the
cytoplasm. Enzymes from halophytes were shown not to have any enhanced capacity to work at
high salt concentrations compared with those from glycophytes (1,171-176). This observation led
to the hypothesis that toxic inorganic salts might be preferentially accumulated in vacuoles, where
they could still have an osmotic role. In this intracellular-compartmentation model (17,177-179),
the osmotic potential of the cytoplasm is adjusted by the accumulation of ‘compatible’ organic
solutes such as glycinebetaine, proline, and cyclitols (27,171,173,177,180-184). For the interpreta-
tion of plant-sodium contents in saline environments, it is not therefore sufficient to know how
much sodium a plant tissue contains. It is also necessary to consider the relative and absolute con-
centrations within different parts of the tissue, both at the inter and intracellular levels (178).

20.7 SODIUM IN VARIOUS PLANT SPECIES

One has to be cautious about interpreting concentrations expressed on the basis of different units
(30,185). A tissue dry weight basis is often used in the agricultural literature, but conveys no infor-
mation about the osmotic effects of solutes such as sodium ions or about changes in other dry weight
components such as chloride in euhalophytes. Thus, ash-free dry weight might be a more appropri-
ate basis for measuring concentrations. Using a fresh-weight basis does not facilitate the proper
assessment of osmotic contributions of solutes, nor does it provide information about changes in the
amount of solute independent of the amount of solvent (water). Expressing concentrations on a plant-
water basis, or as measured concentrations in cell sap, does convey information about the osmotic
effects of solutes, but does not allow a distinction to be made between osmotic adjustment sensu
stricto and changes in the water content of the tissue. An example is given in Reference (185), where
sodium concentrations in the roots and shoots of mammoth wildrye (Leynius sabulosus Tzvel.) are
compared as concentrations in sap or as concentrations per kilogram dry weight. The conclusion
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TABLE 20.1
Sodium Concentrations in a Variety of Plants under Saline and Nonsaline Conditions
Sodium
Species Conditions Concentration  Units Reference  Notes and Additional References
Phragmites Inland saline 11 mol m~> 186
communis lake. Austria water
Scirpus Estuarine salt 144 mol m™> 187 Middle of the marsh
maritimus marsh, UK. water
Spartina Estuarine salt 346 mol m™> 187 Seaward end of marsh
anglica marsh, U.K. water
Salicornia Estuarine salt 820 mol m~3 187 Seaward end of marsh
europaea marsh, U.K. water
Avicennia Mangrove 520 mol m™> 188 Sodium concentrations close to, or
maring swamp, water below, that of seawater have been
Australia reported in some mangrove species
by others (189-193)
Triticum Hydroponics, 0 1 mol m™3 194 cv. SARCI1
aestivim mol Na m~? plant sap
Triticum Hydroponics, 44 mol m™3 194 cv. SARCI1
aestivium 100 mol Na m~? plant sap
Triticum Hydroponics, 143 mol m~3 194 cv. SARC1
aestivium 100 mol Na plant sap
m™>, hypoxic
Eragrostis Hydroponics, 176 mol m™> 195 Salt-sensitive glycophyte
tef 100 mol Nam~* plant sap

Note: Seawater has about 480 mol Na m~3.

about whether there are higher concentrations of sodium in the roots or shoots is reversible depend-
ing on which units are used.

Table 20.1 shows the concentrations of sodium in the healthy shoots of different species. Under
nonsaline conditions, the sodium concentrations in most plant tissues are a few moles per cubic
meter plant water at most. As external salinity is increased, the amount of sodium within the plant
increases, but the rate at which this increase occurs varies from slow in wheat to very rapid in tef,
a salt-sensitive glycophyte with little ability to control the influx of sodium. Halophytes accumulate
substantial amounts of sodium, but are able to tightly control this accumulation at salinities close to
or below that of seawater.

In conclusion, sodium is essential only for some C, species, but is undoubtedly beneficial to the
growth of euhalophytes. It may stimulate the growth of some species with an evolutionary history
in saline environments, and even of apparently totally glycophytic species under certain conditions.
Whether there is a need to reclassify sodium as a ‘functional’ nutrient is open to debate. These con-
siderations are, however, of minor importance compared with the problems caused by the second-
ary salinization of agricultural land.
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