Laboratory Assessment of Human Performance

$$
2
$$

An_{1}

Physiological Testing: Theory and Ethics

What the Athlete Gains From Physiological Testing

* Information regarding strengths and weaknesses
- Can serve as baseline data to plan training programs
*Feedback regarding effectiveness of training program
* Education about the physiology of exercise

What Physiological Testing Will Not Do

* Difficult to simulate sports in laboratory
- Physiological and psychological demands
* Difficult to predict performance from single battery of tests
- Performance in the field is the ultimate test of athletic success

Components of Effective Physiological Testing

* Physiological variables tested should be relevant to the sport
* Tests should be valid and reliable
* Tests should be sport-specific
* Tests should be repeated at regular intervals
* Testing procedures should be carefully controlled
* Test results should be interpreted to the coach and athlete

Direct Testing of Maximal Aerobic Power

A maximum rate at which an individual can consume O2 during maximal exertion.

Expressed as the maximum volume of oxygen consumed/min

Absolute: litres per min (L/min)
Relative: milliliters per kilogram per minute (ml/kg/min)

VO_{2} max depends on

-Cardiovascular
Cardiac Output Hemoglobin Content
Capillary Density
\square Muscular
Muscle Mass
Fiber Type
Mitochondrial Density, Oxidative Enzymes
-Pulmonary
Pulmonary function

* VO_{2} max is considered the best test for predicting success in endurance events
* Most accurate means of measurement is direct testing in laboratory
- Open-circuit spirometry
* Specificity of testing
- Should be specific to athlete's sport
- Runners tested on treadmill

Exercise Test Protocol

* Should use large muscle groups
* Optimal test length 10-12 minutes
- Start with 3-5 minute warm-up
- Increase work rate to near maximal load
- Increase load stepwise every 1-4 minutes until subject cannot maintain desired work rate
\square Criteria for VO_{2} max
- Plateau in VO_{2} with increasing work rate
- Blood lactate concentration of >8 mmoles $\cdot \mathrm{L}^{-1}$
- Respiratory exchange ratio ≥ 1.15
- HR in last stage ± 10 beats $\bullet \mathrm{min}^{-1}$ of $\mathrm{HR}_{\text {max }}$

Determining VO_{2} Max

V02maxtest					Time limittest	
Sbijet	Ve maxlit erfmin 1	We max $/ \mathrm{m} / \mathrm{kg} / \mathrm{mi}$ n)	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \end{array}$	$\begin{aligned} & \text { vVO2 } \\ & \text { max } \\ & \mid(\mathrm{Km} \mid \\ & \mathrm{h} \mid \end{aligned}$	$\begin{aligned} & \mathrm{t} \\ & \mathrm{~m} \\ & \mathrm{mi} \\ & \mathrm{ni} \\ & \mathrm{n} \end{aligned}$	
1	33	559	182	13	45	18
2	43	581	185	18	81	186
3	3.7	528	188	17	48	195
4	42	4.6	180	16	73	180

Norm Values for $\mathrm{VO}_{2} \max (\mathrm{ml} / \mathrm{kg} / \mathrm{min})$

Age(years)	Very High	High	Good	Average	Fair	Low
Males						
$20-29$	>61	$53-61$	$43-52$	$34-42$	$25-33$	<25
$30-39$	>57	$49-57$	$39-48$	$31-38$	$23-30$	<23
$40-49$	>53	$45-53$	$36-44$	$27-35$	$20-26$	<20
$50-59$	>49	$43-49$	$34-42$	$25-33$	$18-24$	<18
$60-69$	>45	$41-45$	$31-40$	$23-30$	$16-22$	<16
Females						
$20-29$	>57	$49-57$	$38-48$	$31-37$	$24-30$	<24
$30-39$	>53	$45-53$	$34-44$	$28-33$	$20-27$	<20
$40-49$	>50	$42-50$	$31-41$	$24-30$	$17-23$	<17
$50-59$	>42	$38-42$	$28-37$	$21-27$	$15-20$	<15
$60-69$	>39	$35-39$	$24-34$	$18-23$	$13-17$	<13

Determination of Peak VO_{2} in Paraplegic Athletes

* Paraplegic athletes can be tested using arm exercise
- Arm ergometers
- Wheelchair ergometers
* Highest VO_{2} measured during arm exercise is not considered VO_{2} max
- Called "peak VO_{2} "
* Higher peak VO_{2} using accelerated protocol
- Test starts at $50-60 \%$ of peak VO_{2}
- Limits muscular fatigue early in test

Astrand sub maximal test

Minute	Subject 1	Subject 2 Subject 3				
	Load (Watt)	Heart rate (bpm)	Load (Watt)	Heart rate (bpm)	Load (Watt)	Heart rate (bpm)
1	100	95	100	70	75	130
2	100	110	100	90	75	142
3	100	119	100	95	75	151
4	100	127	100	107	75	154
5	100	132	100	110	75	156
6	100	135	100	112	75	158
Absolute oxygen uptake (L/min)	$\begin{aligned} & \hline 2.7 \\ & (1 / \mathrm{min}) \end{aligned}$		3.6 (1/min)		2.9 (1/min)	
Relative oxygen uptake ($\mathrm{ml} / \mathrm{kg} / \mathrm{min}$)	$\begin{aligned} & 37 \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$		$\begin{aligned} & 62 \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$		$\begin{aligned} & 45 \\ & (\mathrm{ml} / \mathrm{kg} / \mathrm{min}) \end{aligned}$	

Laboratory Tests to Predict Endurance Performance

*Peak running velocity

- Highest speed that can be maintained for $>5 \mathrm{sec}$
* Lactate threshold
- Exercise intensity at which blood lactic acid begins to systematically increase
- Direct measurement
- Estimation by ventilatory threshold
* Critical power
- Speed at which running speed/time curve reaches plateau

Measurement of Peak Running Velocity to Predict Performance

* Peak running velocity
- Tested on treadmill or on track
- Progressively increasing speed on treadmill
- Highest speed that can be maintained for $>5 \mathrm{sec}$
* Excellent predictor of 5 km run performance
- Strong correlation
- $r=-0.97$
- Also a good predictor of 10-90 km race performance

Relationship Between Peak Running Velocity and 5-km Race Performance

Use of the Lactate Threshold to Evaluate Performance

* Lactate threshold estimates maximal steady-state running speed
- Predictor of success in distance running events
* Direct determination of lactate threshold (LT)
- 2-5 minute warm-up
- Stepwise increases in work rate every 4 minutes
- Measure blood lactate at each work rate
- LT is the breakpoint in the lactate/ VO_{2} graph
* Prediction of the LT by ventilatory alterations
- Ventilatory threshold ($\mathrm{T}_{\text {vent }}$)
- Point at which there is a sudden increase in ventilation
- Used as an estimate of LT

Time/min)	Load (Mm/hour)	HR(Beatsper min)	latatate(mmol/\|iter)
4	10	130	1.36
8	12	150	2.57
12	14	168	2.71
16	16	181	7.27
20	18	192	12.0

Measurement of Critical Power

* Critical power
- Running speed at which running speed/time curve reaches a plateau
- Power output that can be maintained indefinitely
- However, most athletes fatigue in $30-60$ min when exercising at critical power
* Measurement of critical power
- Subjects perform series of timed exercise trials to exhaustion
* Prediction of performance in events lasting 3-100 minutes
- Highly correlated with high VO_{2} max and LT

Tests to Determine Exercise Economy

* Higher economy means that less energy is expended to maintain a given speed
- Runner with higher running economy should defeat a less economical runner in a race
Measurement of the oxygen cost of running at various speeds
- Plot oxygen requirement as a function of running speed
- Greater running economy reflected in lower oxygen cost

The Oxygen Cost of Running for Two Subjects

Figure 20.7

Determination of Maximal Anaerobic Power

* Testing should involve energy pathways used in the event
- Ultra short-term tests
- ATP-PC system
* Short-term tests
- Anaerobic glycolysis

Tests of Ultra Short-Term Anaerobic Power

* Tests ATP-PC system

* Power tests
- Jumping power tests Standing broad jump and vertical jump
- Running power tests
- Shuttle Test (intermittent shuttle running (running back and forth) between markers placed 20 meters apart.
- Cycling power tests
- Quebec 10-second test

Tests of Short-Term Anaerobic Power

*Tests anaerobic glycolysis
$*$ Cycling tests

- Wingate test
- Subject pedals as rapidly as possible for 30 seconds against predetermined load (based on body weight)
- Peak power indicative of ATP-PC system
- Percentage of peak power decline is an index of ATP-PC system and glycolysis
* Running tests
- Maximal runs of 200-800 m
* Sport-specific tests

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & \text { Age } & \text { Height } & \text { Weight } & \begin{array}{l}\text { peak } \\ \text { power } \\ (\mathrm{W})\end{array} & \begin{array}{l}\text { Peak } \\ \text { power } \\ (\mathrm{W} / \mathrm{Kg})\end{array} & \begin{array}{l}\text { Power } \\ \text { Drop } \\ (\mathrm{W})\end{array}\end{array} \begin{array}{l}\text { Power } \\ \text { drop } \\ (\mathrm{W} / \mathrm{Kg})\end{array}\right]$.

Muscular Strength

* Maximal force that can be generated by a muscle or muscle group
* Assessed by:
- Isometric measurement
- Static force of muscle using tensiometer
- Free weight testing
- Weight (dumbbell or barbell) remains constant
- 1 RM lift, handgrip dynamometer
- Isokinetic measurement
- Variable resistance at constant speed
- Variable resistance devices
- Variable resistance over range of motion

Measurement of Maximal Isometric Force During Knee Extension

Handgrip Dynamometer to Assess Grip Strength

Isokinetic Assessment of Knee Extension

Printout From Isokinetic Dynamometer During a Knee Extension

BIOIMPEDENCE

	Subject 1	Subject 2	Subject 3	Subject 4
Weight (Kg)	76.2	67.8	87.9	44.3
fat\%	23	17.3	35.4	13.3
fat mass (Kg)	17.5	11.7	31.1	5.9
Ffm(kg)	58.7	56.1	56.8	38.4
muscle mass (Kg)	55.8	53.3	53.9	36.4
Tbw (Kg)	41.8	39.7	44.0	26.3
Tbw\%	54.9	58.6	50.1	59.4
Bonemass (Kg)	2.9	2.8	2.9	2.0
BMR(K)	7293	6791	7355	4916
Metabolic age	40	28	38	12
Visceral fat rating	6	5	12	1
BMI	26.4	24	31.1	19.7
Degree of obesity\%	19.8	9.2	41.5	10.5
Idealbody	63.4	62.1	62.1	49.5

