
Lab Session 08

1-Dimensional and Multi-Dimensional Arrays in C++ Language.

Objectives:

1. Illustration of Arrays.

2. To learn the syntax and semantics of the 1-D and Multi-Dimensional Arrays in C++

programming language.

3. Demonstrate a thorough understanding of Arrays by designing and implementing programs

logic.

Arrays:

An array is a consecutive group of memory locations that all have the same type. To refer to a

particular location or element in the array, we specify the name of the array and the position

number of the particular element in the array.

Figure 1 shows an integer array called c that contains 12 elements. You refer to any one of these

elements by giving the array name followed by the particular element’s position number in square

brackets ([]). The position number is more formally called a subscript or index (this number

specifies the number of elements from the beginning of the array). The first element has subscript

0 (zero) and is sometimes called the zeroth element. Thus, the elements of array c are c[0]

(pronounced “c sub zero”), c[1], c[2] and so on. The highest subscript in array c is 11, which is 1

less than the number of elements in the array (12). Array names follow the same conventions as

other variable names.

In books on C programming, structures are often considered an advanced feature and are

introduced toward the end of the book. However, for C++ programmers, structures are one of the

two important building blocks in the understanding of objects and classes. In fact, the syntax of a

structure is almost identical to that of a class. A structure (as typically used) is a collection of data,

while a class is a collection of

both data and functions. So

by learning about structures

we’ll be paving the way for

an understanding of classes

and objects. Structures in

C++ (and C) serve a similar

purpose to records in some

other languages such as

Pascal.

A subscript must be an

integer or integer expression

(using any integral type). If a

JUNAID
Highlight

JUNAID
Highlight

program uses an expression as a subscript, then the program evaluates the expression to determine

the subscript. For example, if we assume that variable a is equal to 5 and that variable b is equal

to 6, then the statement adds 2 to array element c[11]. A subscripted array name is an lvalue—it

can be used on the left side of an assignment, just as nonarray variable names can.

c[a + b] += 2;

Let’s examine array c in Fig. 1 more closely. The name of the entire array is c. Its 12 elements are

referred to as c[0] to c[11]. The value of c[0] is -45, the value of c[1] is 6, the value of c[2] is 0,

the value of c[7] is 62, and the value of c[11] is 78. To print the sum of the values contained in the

first three elements of array c, we’d write:

cout << c[0] + c[1] + c[2] << endl;

To divide the value of c[6] by 2

and assign the result to the

variable x, we would write:

x = c[6] / 2;

The brackets that enclose a

subscript are actually an

operator that has the same

precedence as parentheses.

Figure 2 shows the precedence

and associativity of the

operators introduced so far. The

operators are shown top to

bottom in decreasing order of

precedence with their

associativity and type.

 Operator precedence and associativity

Declaring Arrays:

Arrays occupy space in memory. To specify the type of the elements and the number of elements

required by an array use a declaration of the form:

type arrayName[arraySize];

The compiler reserves the appropriate amount of memory. (Recall that a declaration which

reserves memory is more properly known as a definition.) The arraySize must be an integer

constant greater than zero. For example, to tell the compiler to reserve 12 elements for integer

array c, use the declaration. Arrays can be declared to contain values of any nonreference data

type. For example, an array of type string can be used to store character strings.

int c[12]; // c is an array of 12 integers

Example 01:

This program, REPLAY, creates an array of four integers representing the ages of four people. It then asks
the user to enter four values, which it places in the array. Finally, it displays all four values.

#include <iostream>

using namespace std;

int main()

{

int age[4]; //array ‘age’ of 4 ints

for(int j=0; j<4; j++) //get 4 ages

{

cout << “Enter an age: “;

cin >> age[j]; //access array element

}

for(j=0; j<4; j++) //display 4 ages

cout << “You entered “ << age[j] << endl;

return 0;

}

Here’s a sample interaction with the program:

Enter an age: 44

Enter an age: 16

Enter an age: 23

Enter an age: 68

You entered 44

You entered 16

You entered 23

You entered 68

The first for loop gets the ages from the user and places them in the array, while the second reads

them from the array and displays them.

In the REPLAY example, the array is type int. The name of the array comes next, followed

immediately by an opening bracket, the array size, and a closing bracket. The number in brackets

must be a constant or an expression that evaluates to a constant, and should also be an integer.

In the example we use the value 4.

Array Elements:

The items in an array are called elements (in contrast to the items in a structure, which are called

members). As we noted, all the elements in an array are of the same type; only the values vary.

Figure 3 shows the elements of the array age.

Syntax of Array definition

Following the conventional (although in some ways

backward) approach, memory grows downward in the

figure. That is, the first array elements are on the top of

the page; later elements extend downward. As specified

in the definition, the array has exactly four elements.

Notice that the first array element is numbered 0. Thus,

since there are four elements, the last one is number 3.

This is a potentially confusing situation; you might think

the last element in a four-element array would be

number 4, but it’s not.

Array Elements

Accessing Array Elements:

In the REPLAY example we access each array element twice. The first time, we insert a value

into the array, with the line

cin >> age[j];

The second time, we read it out with the line

cout << “\nYou entered “ << age[j];

In both cases the expression for the array element is

age[j]

This consists of the name of the array, followed by brackets delimiting a variable j. Which of the

four array elements is specified by this expression depends on the value of j; age[0] refers to the

first element, age[1] to the second, age[2] to the third, and age[3] to the fourth. The variable (or

constant) in the brackets is called the array index.

Since j is the loop variable in both for loops, it starts at 0 and is incremented until it reaches

3, thereby accessing each of the array elements in turn.

Averaging Array Elements

Here’s another example of an array at work. This one, SALES, invites the user to enter a series of

six values representing widget sales for each day of the week (excluding Sunday), and then

calculates the average of these values. We use an array of type double so that monetary values can

be entered.

#include <iostream>

using namespace std;

int main()

{

const int SIZE = 6; //size of array

double sales[SIZE]; //array of 6 variables

cout << “Enter widget sales for 6 days\n”;

for(int j=0; j<SIZE; j++) //put figures in array

cin >> sales[j];

double total = 0;

for(j=0; j<SIZE; j++) //read figures from array

total += sales[j]; //to find total

double average = total / SIZE; // find average

cout << “Average = “ << average << endl;

return 0;

}

Here’s some sample interaction with SALES:

Enter widget sales for 6 days

352.64

867.70

781.32

867.35

746.21

189.45

Average = 634.11

A new detail in this program is the use of a const variable for the array size and loop limits. This

variable is defined at the start of the listing:

const int SIZE = 6;

Using a variable (instead of a number, such as the 4 used in the last example) makes it easier to

change the array size: Only one program line needs to be changed to change the array size, loop

limits, and anywhere else the array size appears. The all-uppercase name reminds us that the

variable cannot be modified in the program.

Initializing Arrays:

You can give values to each array element when the array is first defined. Here’s an example,

DAYS, that sets 12 array elements in the array days_per_month to the number of days in each

month.

#include <iostream>

using namespace std;

int main()

{

int month, day, total_days;

int days_per_month[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

cout << “\nEnter month (1 to 12): “; //get date

cin >> month;

cout << “Enter day (1 to 31): “;

cin >> day;

total_days = day; //separate days

for(int j=0; j<month-1; j++) //add days each month

total_days += days_per_month[j];

cout << “Total days from start of year is: “ << total_days

<< endl;

return 0;

}

The program calculates the number of days from the beginning of the year to a date specified by

the user. (Beware: It doesn’t work for leap years.) Here’s some sample interaction:

Enter month (1 to 12): 3

Enter day (1 to 31): 11

Total days from start of year is: 70

Once it gets the month and day values, the program first assigns the day value to the total_days

variable. Then it cycles through a loop, where it adds values from the days_per_month array to

total_days. The number of such values to add is one less than the number of months. For instance,

if the user enters month 5, the values of the first four array elements (31, 28, 31, and 30) are added

to the total.

The values to which days_per_month is initialized are surrounded by braces and separated by

commas. They are connected to the array expression by an equal sign. Figure 4 shows the syntax.

 Array Initialization

Actually, we don’t need to use the array size when we initialize all the array elements, since the

compiler can figure it out by counting the initializing variables. Thus we can write

int days_per_month[] = { 31, 28, 31, 30, 31, 30,

 31, 31, 30, 31, 30, 31 };

What happens if you do use an explicit array size, but it doesn’t agree with the number of

initializers? If there are too few initializers, the missing elements will be set to 0. If there are too

many, an error is signaled.

JUNAID
Highlight

Example 02:

The program in Fig. 7.3 declares 10-element integer array n (line 9). Lines 12–13 use a for

statement to initialize the array elements to zeros. Like other automatic variables, automatic arrays

are not implicitly initialized to zero although static arrays are. The first output statement (line 15)

displays the column headings for the columns printed in the subsequent for statement (lines 18–

19), which prints the array in tabular format. Remember that setw specifies the field width in which

only the next value is to be output.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 int n[10]; // n is an array of 10 integers

 // initialize elements of array n to 0

 for (int i = 0; i < 10; ++i)

n[i] = 0; // set element at location i to 0

cout << "Element" << setw(13) << "Value" << endl;

// output each array element's value

for (int j = 0; j < 10; ++j)

cout << setw(7) << j << setw(13) << n[j] << endl;

} // end main

Output:

Element Value

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

Example 03:

The elements of an array also can be initialized in the array declaration by following the array

name with an equal’s sign and a brace-delimited comma-separated list of initializers. The program

uses an initializer list to initialize an integer array with 10 values (line 10) and prints the array in

tabular format.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 // use initializer list to initialize array n

 int n[10] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

 cout << "Element" << setw(13) << "Value" << endl;

 // output each array element's value

 for (int i = 0; i < 10; ++i)

 cout << setw(7) << i << setw(13) << n[i] << endl;

} // end main

Output:

Element Value

0 32

1 27

2 64

3 18

4 95

5 14

6 90

7 70

8 60

9 37

If there are fewer initializers than array elements, the remaining array elements are initialized to

zero. For example, the elements of array n in Fig. 7.3 could have been initialized to zero with the

declaration

 int n[10] = {}; // initialize elements of array n to 0

which initializes the elements to zero, because there are fewer initializers (none in this case) than

array elements. This technique can be used only in the array’s declaration, whereas the

initialization technique shown in Fig. 7.3 can be used repeatedly during program execution to

“reinitialize” an array’s elements.

If the array size is omitted from a declaration with an initializer list, the compiler sizes the array to the
number of elements in the initializer list. For example, creates a five-element array.

 int n[] = { 1, 2, 3, 4, 5 };

If the array size and an initializer list are specified in an array declaration, the number of initializers
must be less than or equal to the array size. The array declaration causes a compilation error,
because there are six initializers and only five array elements.

int n[5] = { 32, 27, 64, 18, 95, 14 };

Example 04:

Following program sets the elements of a 10-element array s to the even integers 2, 4, 6, …, 20

(lines 14–15) and prints the array in tabular format (lines 17–21). These numbers are generated

(line 15) by multiplying each successive value of the loop counter by 2 and adding 2.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int arraySize = 10;

int s[arraySize]; // array s has 10 elements

for (int i = 0; i < arraySize; ++i) // set the values

s[i] = 2 + 2 * i;

cout << "Element" << setw(13) << "Value" << endl;

// output contents of array s in tabular format

for (int j = 0; j < arraySize; ++j)

 cout << setw(7) << j << setw(13) << s[j] << endl;

} // end main

Output ???

Example 05:

Summing the Elements of an Array

#include <iostream>

using namespace std;

int main()

{

 const int arraySize = 10; // constant variable indicating size of array

 int a[arraySize] = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

 int total = 0;

 // sum contents of array a

 for (int i = 0; i < arraySize; ++i)

total += a[i];

cout << "Total of array elements: " << total << endl;

} // end main

Output:

Total of array elements: 849

Multidimensional Arrays

So far we’ve looked at arrays of one dimension: A single variable specifies each array element.

But arrays can have higher dimensions. Here’s a program, SALEMON that uses a two-dimensional

array to store sales figures for several districts and several months:

Definition

The array is defined with two size specifiers, each enclosed in brackets:

double sales[DISTRICTS][MONTHS];

You can think about sales as a two-dimensional array, laid out like a checkerboard. Anotherway

to think about it is that sales is an array of arrays. It is an array of DISTRICTS elements, each of

which is an array of MONTHS elements. Figure 4 shows how this looks.

Of course there can be arrays of more than two dimensions. A three-dimensional array is an

array of arrays of arrays. It is accessed with three indexes:

elem = dimen3[x][y][z];

This is entirely analogous to one- and

two-dimensional arrays.

Example 06:

#include <iostream>

#include <iomanip> //for setprecision,

etc.

using namespace std;

const int DISTRICTS = 4; //array

dimensions

const int MONTHS = 3;

int main()

{

int d, m;

double

sales[DISTRICTS][MONTHS]; //two-

dimensional array definition

cout << endl;

for(d=0; d<DISTRICTS; d++)

//get array values

for(m=0; m<MONTHS; m++)

{

cout << “Enter sales for district “ << d+1;

cout << “, month “ << m+1 << “: “;

cin >> sales[d][m]; //put number in array

cout << “\n\n”;

cout << “ Month\n”;

cout << “ 1 2 3”;

for(d=0; d<DISTRICTS; d++)

{

cout <<”\nDistrict “ << d+1;

for(m=0; m<MONTHS; m++) //display array values

cout << setiosflags(ios::fixed) //not exponential

<< setiosflags(ios::showpoint) //always use point

<< setprecision(2) //digits to right

<< setw(10) //field width

<< sales[d][m]; //get number from array

} //end for(d)

cout << endl;

return 0;

} //end main

This program accepts the sales figures from the user and then displays them in a table.

Enter sales for district 1, month 1: 3964.23

Enter sales for district 1, month 2: 4135.87

Enter sales for district 1, month 3: 4397.98

Enter sales for district 2, month 1: 867.75

Enter sales for district 2, month 2: 923.59

Enter sales for district 2, month 3: 1037.01

Enter sales for district 3, month 1: 12.77

Enter sales for district 3, month 2: 378.32

Enter sales for district 3, month 3: 798.22

Enter sales for district 4, month 1: 2983.53

Enter sales for district 4, month 2: 3983.73

Enter sales for district 4, month 3: 9494.98

Output:

Tasks/Assignment:

1. Write source code of C++ program to add two m x n matrix.

2. Write source code of C++ program to subtract two m x n matrix.

3. Write source code of C++ Program to Multiply Two Matrices.

