Artificial Intelligence

Dr. Qaiser Abbas
Department of Computer Science & IT

University of Sargodha

Sunday 21 April 19

Genetic algorithms (Ref. B. 1)

* The genetic algorithm isn’t really a single
algorithm, but a collection of algorithms and
techniques that can be used to solve a variety

of problems in a number of different problem
domains.

* Lets first discuss shortly its evolution.

Sunday 21 April 19

Evolutionary Strategies

* In early evolutionary strategy, the population size was
restricted to two members, the parent and child.

* The child member was modified in a random way (a form of
mutation), and whichever member was more fit (parent or
child) was then allowed to propagate to the next generation
as the parent.

f=5.6 1=9.1 f=9.1 f=11.1

r ®

® .0

=0.1 8.7 1.1 136
Generation t, Generation t, Generation t, Generation t,

FIGURE 7.1: Demonstrating the simple two member evolutionary strategy.

Sunday 21 April 19

Evolutionary Strategies

I Number of States

53 1XX 2XX X3X X4X 1X+
A VR Rl W

~ Number of Transitions \
State a

b+
Transition Legend: 0 11X | X
- Transition to Stale 4 2 | x| x

X - Error Bl KL
+ - Success 2 X3!l x
3 X 4 X
4 T IR] ¥

[0 a
K 2 |
‘,A
(14 4
d 4 4 +
a b b 4
= Terminate -
Successiul
Recognition

FIGURE 7.2: Evolving finite state machines for a simple parsing task.

Sunday 21 April 19

Genetic Algorithms

John Holland introduced the idea of genetic algorithms in the 1960s as a
population-based algorithm with greater biological plausibility (reasonable) than
previous approaches.

Evolutionary strategies used mutation as a way to search the solution space,
Holland’s genetic algorithm extended this with additional operators straight from
biology.

In addition to mutation, Holland also used crossover and inversion to navigate the
solution space (see Figure 7.3).

Potential solutions (or chromosomes) are represented as strings of bits instead of

real values. Population
o~ -~
cells 11010001 00011010 !
. i)
a set of chromosomes (strings of 01001101 10111010 / Selection
genes 7 N
can encode a trait Recombination
(Mutation
Crossover
Inversion)
00011011 01100111 2
‘—.
, 8 w,

FIGURE 7.3: Holland’s bit-string genetic algorithm.

Genetic Programming

A : 4+)
X2 +Y?
— B+ (*)
(X Xv Y Y g
xz...yf!
—
B +) i
%)
X X+Y? - .
Y 2

FIGURE 7.4: Using the crossover operator to create new S-expressions.

Sunday 21 April 19

GENETIC ALGORITHMS (GA)

* The GA is called a population-based technique because
instead of operating on a single potential solution, it uses a
population of potential solutions.

— The larger the population, the greater the diversity of the
members of the population, and the larger the area that is
searched.

Sunday 21 April 19

GENETIC ALGORITHMS (GA)

* One attempt to understand why genetic algorithms work is called
the Building-Block Hypothesis (BBH).

* This specifies, for binary GA, that the crossover operation (splitting
two chromosomes and then swapping the tails) improves the
solution.

* One can think of this as genetic repair, where fit building blocks are
combined together to produce higher fitness solutions.

* Additionally, using fitness-proportionate selection (higher fit
members are selected more often), less fit members and their
corresponding building blocks die out and thus increasing the
overall fitness of the population.

Sunday 21 April 19

GENETIC ALGORITHMS (GA)

* The overall genetic algorithm can be
defined by the simple process shown in
Figure 7.7.

Initialize Pool with
Random Population

\ /
S Py

-

:

Compute the Fitness
of each Member

* First, a pool of random potential
solutions is created that should have

adequate diversity. |
Y

* Next, the fitness of each member is - N
ComputEd R°E“,!§§f' ! Selection Process
* Next, members of the population are | B
selected based on some algorithm. The Y
H Mutation / 2 o
two simplest approaches are roulette (imsl%m/ ‘ Fssomitiuiton

wheel selection, and elitist selection
(see Figure 7.8).

FIGURE 7.7: Simple flow of the genetic algorithm.

Sunday 21 April 19 9

GENETIC ALGORITHMS (GA)

F tnoss Selection Frnesa
Member A 8 Member A Member A } 8 Member A
Member B 4 . Member A Member B 6 Member A
Member C 4 Member B > Member
" MemberD || 0 " Member C . o -
r |
Member D 0 Member B
Fitness Sum = 16
Fitnass Sum = 16
8
a p(0.25)
' Elitist jon — T
p(0.5) Selection op 50%
c
p(0.25)
Rouletie Wheel

FIGURE 7.8: Two of the simpler GA selection models.

* From the selection process, we have a number of members
that have the right to propagate their genetic material to the
next population.

Sunday 21 April 19 10

GENETIC ALGORITHMS (GA)

* The next step is to recombine these members’ material to
form the members of the next generation.

e Commonly, parents are selected two at a time from the set of
individuals that are permitted to propagate (from the
selection process).

* Given two parents, two children are created in the new
generation with slight alternations courtesy of the
recombination process (with a given probability that the
genetic operator can occur). Figures 7.9 and 7.10 illustrate
four of the genetic operators.

Sunday 21 April 19 11

GENETIC ALGORITHMS (GA)

Parént A Parent B ParentA . Parent B
mifinnmn 0000000000000000 M1 0000000000000000
A » ’ A »
Single-Point . Rouble-Point
Crossover 8 *Crossover
- 4 2 o7 3 A
1111111100000000 0000000011111111 11111100000000'1 1 0000001111111100
Chitd A Child B ChidA " Child B

FIGURE 7.9: lllustrating the crossover operators in genetic recombination.

Parent A Parent B Parent A Parent B
MMM I 11111 i 0000000000000000 A RRRERARERERREEE 0000000000000000
- » - »
Mutation Inversion
» 4 » 4
1111111111101 0000010000000000 1111111100111111 1111000000000000
Child A ChidB Child A Child B

FIGURE 7.10: lllustrating the mutation and inversion genetic operators.

Sunday 21 April 19

12

GENETIC ALGORITHMS (GA)

* Finally, how it terminates? There are a

number of ways that we can terminate the
process.

— The most obvious is to end when a solution is
found, or one that meets the designer’s criteria.
But from the algorithm’s perspective, we also

need to account for the population, and its ability
to find a solution.

Sunday 21 April 19 13

GENETIC ALGORITHMS (GA)

— Another termination criterion, potentially returning a
suboptimal solution, is when the population lacks
diversity, and therefore the inability to adequately search
the solution space. When the members of the population
become similar, there’s a loss in the ability to search. To
combat this, we terminate the algorithm early by
detecting if the average fitness of the population is near
the maximum fitness of any member of the population.

The issue of lack of diversity in genetic algorithms results in
premature convergence, as the members converge on a local
maximum, not having found the global maximum. Early
termination is one solution, but others include algorithm

restart if this situation is detected.

Sunday 21 April 19 14

GENETIC ALGORITHMS (GA)

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new _population < empty set
for i« =1 to SIZE(population) do
x +— RANDOM-SELECTION(population, FITNESS-FN)
y < RANDOM-SELECTION(population, FITNESS-FN)
child < REPRODUCE(z, y)
if (small random probability) then child < MUTATE(child)
add child to new_population
population «— new _population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

function REPRODUCE(z, i) returns an individual
inputs: z, y, parent individuals

n < LENGTH(z); ¢ « random number from 1 to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ + 1,n))

Sunday 21 April 19

15

GA: Example 1

* let us have a look at a simple genetic algorithm
and use it in an everyday application: searching
for a maximum of the function , where x can take

values between 0 and 31. It is clear right away
that the solution is the value x = 31.

* Next, a Simple execution of GA shows the
essential element of its operation, which is that
the result of the optimization is improving from

generation to generation.

Sunday 21 April 19

16

GA: Example 1

. Starting “alue of the Ofispring Actqal
A series of opulation variable fx) =x2 number offspring
numbers p(ul:x \dom) ‘ < - f- ’ fitness number
= (/f.ve) (rounded up)
| 01101 13 169 0.58 |
2 11000 24 576 1.97 2
3 01000 S 64 0.22 0
4 10011 19 361 1.23 |
sum 1170} 400 | . 4
Average:faye | | 293 | 100 L S
Maximum 576 1.97 2

Table a: Computation of randomly chosen population variables

Sunday 21 April 19

GA: Example 1

: : Randomly Cross-over : Value of the fix) =x2
Fust generation chosen e New variable /f
offspring Cross-over P d population - ~‘-a“(f
partner (random) X (rounded up)
0110]1 2 4 01100 2 144 (0.32,0)
1100]0 1 | 11001 25 625(1.42.1)
011000 4 2 01011 11 121 (0.42, 0)
101011 3 2 10000 16 256 (0.58, 1)

Maximum

..................

..................

1146

Table b: The presentation of the cross-over and the first generation

offspring characteristics computation

Sunday 21 April 19

18

GA: Example 1

* We have assumed the value 0.001 e.g. 1/1000
bits for the mutation.

* Since there are four subjects in each generation,
each of the subjects being five bits (binary places)
long, the probability that one of them would
mutate is 4*5*%0.001=0.02 (2/100).

* |n the first step, none of the bits has mutated.
We can keep computing in the same way until we
reach the value x =31 in just a few iterations.

Sunday 21 April 19 19

A simple example of genetic

algorithm
01100 3 3 01111 15
11001 4 1 10000 16
11011 1 3 11000 24
10000
2 1 11001 25

Sunday 21 April 19

20

GA: Example 2

':ﬁ.

ety
o g 5:-:-:-

[16257403] [15720364] [53607142]

[30475261] [14630752]

Sunday 21 April 19 21

GA: Example 2

* GAs require that the states are encoded as strings.

* The crossover helps iff substrings are meaningful components

32752411 + 24748552 = 32748552

Sunday 21 April 19 22

GA: Example 2

e |dea:
— a variant of stochastic local beam search
— generate successors from pairs of states

— the states have to be encoded as strings

24748552 | 24 31% 327@52411 32748552 3274812
32752411 [23 29% 247@48552 >_< 24752411 24752411
24415124 | 20 26% 327'525411 32752124 320252124
32543213 | 11 14% 24415%124 >_< 24415411 2441541[]

Fitness Selection Pairs Cross-Over

Additional Reading from TB.Ch.4

* Contingency
* Online search

Lab Project 5

Implement a basic binary genetic algorithm for a
given problem

Visit the following link and study and understand
the genetics algorithm.
http://www.theprojectspot.com/tutorial-post/
creating-a-genetic-algorithm-for-beginners/3

Java source code is given there, configure it,
execute it and submit the report accordingly.

