The main aim of this course is the study of basic special functions and proves the properties and relations related to these functions. Furthermore, the simple sets of polynomials are discussed.

Learning Outcomes

  1. Learn basic concepts of special functions.
  2. Define gamma, beta and hypergeometric functions and prove some properties involving these functions.
  3. Discuss some applications of the gamma, beta function and hypergeometric functions,
  4. Define simple sets of polynomials.
  5. Define normalization, Bessel’s inequality, generating functions, differential equations, recurrence relations.

Course Contents

  1. The Weierstrass gamma function, Euler integral representation of gamma function.
  2. Relations satisfied by gamma function.
  3.  Euler’s constant, The order symbols o and O, properties of gamma function.
  4. Beta function, integral representation of beta function.
  5.  Relation between gamma and beta functions, properties of beta function.
  6. Legendre’s duplication formula.
  7. Gauss’ multiplication theorem.
  8. Hypergeometric series, the functions F(a,b;c;z) and F(a,b;c;I), integral representation of hypergeometric function.
  9. The hypergeometric differential equation, The contiguous relations, Simple transformations.
  10. A theorem due to Kummer.
  11. Confluent hypergeometric series, Integral representation of confluent hypergeometric function, the confluent hypergeometric.
  12. Differential equation, Kummer’s first formula.
  13. Simple sets of polynomials, Orthogonality.
  14. The three term recurrence relation, The Christofell-Darboux formula.
  15. Normalization, Bessel’s inequality, Generating functions, Differential equations, Recurrence relations.

Recommended Books:

1. Rainville, E.D. Special Functions. 2nd ed. Chelsea Publishing Co, 1971.

Suggested Books

2. Lebedev, N.N. Special Functions and their Applications. 2nd ed. Prentice Hall, 1972.

3. Whittaker & Watson. A Course in Modern analysis. 2nd ed. Cambridge, University   Press, 1978.


 

 Assessment Criteria

Sessional: 20 (Presentation / Assignment 04, Attendance 08, Result Mid-Term 04, Quiz 04)

Mid-Term Exam:  30

Final-Term Exam: 50


Key Dates and Time of Class Meeting

Program: BS-MATH(OLD)

Class: EX-PPP(8TH)

1. Monday (11:00 am - 12:30 pm)

2. Tuesday(08:00 am - 09: 30 am)


Commencement of Classes                                                   January 13, 2020

Mid Term Examination                                                            March 09-13, 2020

Final Term Examination                                                          May 04-08, 2020

Declaration of Result                                                              May 19, 2020


Text Book:  https://lms.su.edu.pk/files/6888/[Rainville_E.D.]_Special_functions(BookFi)_(1).pdf

Course Material