The course introduces students with basic concepts of  matrices, vector differential calculus, integral calculus and partial differential equations.

Prerequisite 

 


Learning Outcomes

At the end of this course the student will be able to:

  • understand  the concept of matrices and determinants
  • solve system of linear equations
  • learn the concept an use of partial differential equations and their applications
  • know about vector differential calculus.

Contents

  1. Matrices, addition, subtraction, multiplication and  determinants. 
  2. Linear system of equations and their solutions. Crammer's rule.
  3. Guass elimination method, row reduced echelon form, Guass-Jordan method
  4. rank of the matrices, inverse of matrices.
  5. Vector differential calculus: Gradient, divergence, curl and the concepts of vector integral calculus
  6. Basic concept of partial differential equations, Fourier series, Wave equation, Heat equation, Laplace's equation, Poisson equation and their solution by using Fourier series and Laplace transform.  

Textbook(s)

  • C. R. Wylie. Advance engineering  mathematics 6th edition, McGraw-Hill Education.
  • Erwin Kreyszig. Advance engineering  mathematics 10th edition, John Wiley and Sons.

 

ASSESSMENT CRITERIA

Sessional: 20 (Presentation / Assignment 10, Attendance 05, Quiz 05)

Mid-Term Exam:  30

Final-Term Exam: 50


Key Dates and Time of Class Meeting

Friday                                                                    1:30pm-4:00pm


Commencement of Classes                                                   October 12, 2020

Mid Term Examination                                                            December 14-18, 2020

Final Term Examination                                                          February 08-12, 2021

Declaration of Result                                                              February 19, 2021

Course Material